xref: /linux/arch/x86/kernel/process.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 
33 /*
34  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
35  * no more per-task TSS's. The TSS size is kept cacheline-aligned
36  * so they are allowed to end up in the .data..cacheline_aligned
37  * section. Since TSS's are completely CPU-local, we want them
38  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
39  */
40 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
41 
42 #ifdef CONFIG_X86_64
43 static DEFINE_PER_CPU(unsigned char, is_idle);
44 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
45 
46 void idle_notifier_register(struct notifier_block *n)
47 {
48 	atomic_notifier_chain_register(&idle_notifier, n);
49 }
50 EXPORT_SYMBOL_GPL(idle_notifier_register);
51 
52 void idle_notifier_unregister(struct notifier_block *n)
53 {
54 	atomic_notifier_chain_unregister(&idle_notifier, n);
55 }
56 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
57 #endif
58 
59 struct kmem_cache *task_xstate_cachep;
60 EXPORT_SYMBOL_GPL(task_xstate_cachep);
61 
62 /*
63  * this gets called so that we can store lazy state into memory and copy the
64  * current task into the new thread.
65  */
66 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
67 {
68 	*dst = *src;
69 
70 	dst->thread.fpu_counter = 0;
71 	dst->thread.fpu.has_fpu = 0;
72 	dst->thread.fpu.last_cpu = ~0;
73 	dst->thread.fpu.state = NULL;
74 	if (tsk_used_math(src)) {
75 		int err = fpu_alloc(&dst->thread.fpu);
76 		if (err)
77 			return err;
78 		fpu_copy(dst, src);
79 	}
80 	return 0;
81 }
82 
83 void free_thread_xstate(struct task_struct *tsk)
84 {
85 	fpu_free(&tsk->thread.fpu);
86 }
87 
88 void arch_release_task_struct(struct task_struct *tsk)
89 {
90 	free_thread_xstate(tsk);
91 }
92 
93 void arch_task_cache_init(void)
94 {
95         task_xstate_cachep =
96         	kmem_cache_create("task_xstate", xstate_size,
97 				  __alignof__(union thread_xstate),
98 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
99 	setup_xstate_comp();
100 }
101 
102 /*
103  * Free current thread data structures etc..
104  */
105 void exit_thread(void)
106 {
107 	struct task_struct *me = current;
108 	struct thread_struct *t = &me->thread;
109 	unsigned long *bp = t->io_bitmap_ptr;
110 
111 	if (bp) {
112 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
113 
114 		t->io_bitmap_ptr = NULL;
115 		clear_thread_flag(TIF_IO_BITMAP);
116 		/*
117 		 * Careful, clear this in the TSS too:
118 		 */
119 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
120 		t->io_bitmap_max = 0;
121 		put_cpu();
122 		kfree(bp);
123 	}
124 
125 	drop_fpu(me);
126 }
127 
128 void flush_thread(void)
129 {
130 	struct task_struct *tsk = current;
131 
132 	flush_ptrace_hw_breakpoint(tsk);
133 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
134 	drop_init_fpu(tsk);
135 	/*
136 	 * Free the FPU state for non xsave platforms. They get reallocated
137 	 * lazily at the first use.
138 	 */
139 	if (!use_eager_fpu())
140 		free_thread_xstate(tsk);
141 }
142 
143 static void hard_disable_TSC(void)
144 {
145 	cr4_set_bits(X86_CR4_TSD);
146 }
147 
148 void disable_TSC(void)
149 {
150 	preempt_disable();
151 	if (!test_and_set_thread_flag(TIF_NOTSC))
152 		/*
153 		 * Must flip the CPU state synchronously with
154 		 * TIF_NOTSC in the current running context.
155 		 */
156 		hard_disable_TSC();
157 	preempt_enable();
158 }
159 
160 static void hard_enable_TSC(void)
161 {
162 	cr4_clear_bits(X86_CR4_TSD);
163 }
164 
165 static void enable_TSC(void)
166 {
167 	preempt_disable();
168 	if (test_and_clear_thread_flag(TIF_NOTSC))
169 		/*
170 		 * Must flip the CPU state synchronously with
171 		 * TIF_NOTSC in the current running context.
172 		 */
173 		hard_enable_TSC();
174 	preempt_enable();
175 }
176 
177 int get_tsc_mode(unsigned long adr)
178 {
179 	unsigned int val;
180 
181 	if (test_thread_flag(TIF_NOTSC))
182 		val = PR_TSC_SIGSEGV;
183 	else
184 		val = PR_TSC_ENABLE;
185 
186 	return put_user(val, (unsigned int __user *)adr);
187 }
188 
189 int set_tsc_mode(unsigned int val)
190 {
191 	if (val == PR_TSC_SIGSEGV)
192 		disable_TSC();
193 	else if (val == PR_TSC_ENABLE)
194 		enable_TSC();
195 	else
196 		return -EINVAL;
197 
198 	return 0;
199 }
200 
201 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
202 		      struct tss_struct *tss)
203 {
204 	struct thread_struct *prev, *next;
205 
206 	prev = &prev_p->thread;
207 	next = &next_p->thread;
208 
209 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
210 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
211 		unsigned long debugctl = get_debugctlmsr();
212 
213 		debugctl &= ~DEBUGCTLMSR_BTF;
214 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
215 			debugctl |= DEBUGCTLMSR_BTF;
216 
217 		update_debugctlmsr(debugctl);
218 	}
219 
220 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
221 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
222 		/* prev and next are different */
223 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
224 			hard_disable_TSC();
225 		else
226 			hard_enable_TSC();
227 	}
228 
229 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
230 		/*
231 		 * Copy the relevant range of the IO bitmap.
232 		 * Normally this is 128 bytes or less:
233 		 */
234 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
235 		       max(prev->io_bitmap_max, next->io_bitmap_max));
236 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
237 		/*
238 		 * Clear any possible leftover bits:
239 		 */
240 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
241 	}
242 	propagate_user_return_notify(prev_p, next_p);
243 }
244 
245 /*
246  * Idle related variables and functions
247  */
248 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
249 EXPORT_SYMBOL(boot_option_idle_override);
250 
251 static void (*x86_idle)(void);
252 
253 #ifndef CONFIG_SMP
254 static inline void play_dead(void)
255 {
256 	BUG();
257 }
258 #endif
259 
260 #ifdef CONFIG_X86_64
261 void enter_idle(void)
262 {
263 	this_cpu_write(is_idle, 1);
264 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
265 }
266 
267 static void __exit_idle(void)
268 {
269 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
270 		return;
271 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
272 }
273 
274 /* Called from interrupts to signify idle end */
275 void exit_idle(void)
276 {
277 	/* idle loop has pid 0 */
278 	if (current->pid)
279 		return;
280 	__exit_idle();
281 }
282 #endif
283 
284 void arch_cpu_idle_enter(void)
285 {
286 	local_touch_nmi();
287 	enter_idle();
288 }
289 
290 void arch_cpu_idle_exit(void)
291 {
292 	__exit_idle();
293 }
294 
295 void arch_cpu_idle_dead(void)
296 {
297 	play_dead();
298 }
299 
300 /*
301  * Called from the generic idle code.
302  */
303 void arch_cpu_idle(void)
304 {
305 	x86_idle();
306 }
307 
308 /*
309  * We use this if we don't have any better idle routine..
310  */
311 void default_idle(void)
312 {
313 	trace_cpu_idle_rcuidle(1, smp_processor_id());
314 	safe_halt();
315 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
316 }
317 #ifdef CONFIG_APM_MODULE
318 EXPORT_SYMBOL(default_idle);
319 #endif
320 
321 #ifdef CONFIG_XEN
322 bool xen_set_default_idle(void)
323 {
324 	bool ret = !!x86_idle;
325 
326 	x86_idle = default_idle;
327 
328 	return ret;
329 }
330 #endif
331 void stop_this_cpu(void *dummy)
332 {
333 	local_irq_disable();
334 	/*
335 	 * Remove this CPU:
336 	 */
337 	set_cpu_online(smp_processor_id(), false);
338 	disable_local_APIC();
339 
340 	for (;;)
341 		halt();
342 }
343 
344 bool amd_e400_c1e_detected;
345 EXPORT_SYMBOL(amd_e400_c1e_detected);
346 
347 static cpumask_var_t amd_e400_c1e_mask;
348 
349 void amd_e400_remove_cpu(int cpu)
350 {
351 	if (amd_e400_c1e_mask != NULL)
352 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
353 }
354 
355 /*
356  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
357  * pending message MSR. If we detect C1E, then we handle it the same
358  * way as C3 power states (local apic timer and TSC stop)
359  */
360 static void amd_e400_idle(void)
361 {
362 	if (!amd_e400_c1e_detected) {
363 		u32 lo, hi;
364 
365 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
366 
367 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
368 			amd_e400_c1e_detected = true;
369 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
370 				mark_tsc_unstable("TSC halt in AMD C1E");
371 			pr_info("System has AMD C1E enabled\n");
372 		}
373 	}
374 
375 	if (amd_e400_c1e_detected) {
376 		int cpu = smp_processor_id();
377 
378 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
379 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
380 			/*
381 			 * Force broadcast so ACPI can not interfere.
382 			 */
383 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
384 					   &cpu);
385 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
386 		}
387 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
388 
389 		default_idle();
390 
391 		/*
392 		 * The switch back from broadcast mode needs to be
393 		 * called with interrupts disabled.
394 		 */
395 		local_irq_disable();
396 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
397 		local_irq_enable();
398 	} else
399 		default_idle();
400 }
401 
402 void select_idle_routine(const struct cpuinfo_x86 *c)
403 {
404 #ifdef CONFIG_SMP
405 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
406 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
407 #endif
408 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
409 		return;
410 
411 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
412 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
413 		pr_info("using AMD E400 aware idle routine\n");
414 		x86_idle = amd_e400_idle;
415 	} else
416 		x86_idle = default_idle;
417 }
418 
419 void __init init_amd_e400_c1e_mask(void)
420 {
421 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
422 	if (x86_idle == amd_e400_idle)
423 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
424 }
425 
426 static int __init idle_setup(char *str)
427 {
428 	if (!str)
429 		return -EINVAL;
430 
431 	if (!strcmp(str, "poll")) {
432 		pr_info("using polling idle threads\n");
433 		boot_option_idle_override = IDLE_POLL;
434 		cpu_idle_poll_ctrl(true);
435 	} else if (!strcmp(str, "halt")) {
436 		/*
437 		 * When the boot option of idle=halt is added, halt is
438 		 * forced to be used for CPU idle. In such case CPU C2/C3
439 		 * won't be used again.
440 		 * To continue to load the CPU idle driver, don't touch
441 		 * the boot_option_idle_override.
442 		 */
443 		x86_idle = default_idle;
444 		boot_option_idle_override = IDLE_HALT;
445 	} else if (!strcmp(str, "nomwait")) {
446 		/*
447 		 * If the boot option of "idle=nomwait" is added,
448 		 * it means that mwait will be disabled for CPU C2/C3
449 		 * states. In such case it won't touch the variable
450 		 * of boot_option_idle_override.
451 		 */
452 		boot_option_idle_override = IDLE_NOMWAIT;
453 	} else
454 		return -1;
455 
456 	return 0;
457 }
458 early_param("idle", idle_setup);
459 
460 unsigned long arch_align_stack(unsigned long sp)
461 {
462 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
463 		sp -= get_random_int() % 8192;
464 	return sp & ~0xf;
465 }
466 
467 unsigned long arch_randomize_brk(struct mm_struct *mm)
468 {
469 	unsigned long range_end = mm->brk + 0x02000000;
470 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
471 }
472 
473