1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/cpu.h> 9 #include <linux/prctl.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/sched/idle.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/pm.h> 19 #include <linux/tick.h> 20 #include <linux/random.h> 21 #include <linux/user-return-notifier.h> 22 #include <linux/dmi.h> 23 #include <linux/utsname.h> 24 #include <linux/stackprotector.h> 25 #include <linux/cpuidle.h> 26 #include <linux/acpi.h> 27 #include <linux/elf-randomize.h> 28 #include <linux/static_call.h> 29 #include <trace/events/power.h> 30 #include <linux/hw_breakpoint.h> 31 #include <linux/entry-common.h> 32 #include <asm/cpu.h> 33 #include <asm/apic.h> 34 #include <linux/uaccess.h> 35 #include <asm/mwait.h> 36 #include <asm/fpu/api.h> 37 #include <asm/fpu/sched.h> 38 #include <asm/fpu/xstate.h> 39 #include <asm/debugreg.h> 40 #include <asm/nmi.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mce.h> 43 #include <asm/vm86.h> 44 #include <asm/switch_to.h> 45 #include <asm/desc.h> 46 #include <asm/prctl.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/io_bitmap.h> 49 #include <asm/proto.h> 50 #include <asm/frame.h> 51 #include <asm/unwind.h> 52 #include <asm/tdx.h> 53 #include <asm/mmu_context.h> 54 #include <asm/shstk.h> 55 56 #include "process.h" 57 58 /* 59 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 60 * no more per-task TSS's. The TSS size is kept cacheline-aligned 61 * so they are allowed to end up in the .data..cacheline_aligned 62 * section. Since TSS's are completely CPU-local, we want them 63 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 64 */ 65 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 66 .x86_tss = { 67 /* 68 * .sp0 is only used when entering ring 0 from a lower 69 * privilege level. Since the init task never runs anything 70 * but ring 0 code, there is no need for a valid value here. 71 * Poison it. 72 */ 73 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 74 75 #ifdef CONFIG_X86_32 76 .sp1 = TOP_OF_INIT_STACK, 77 78 .ss0 = __KERNEL_DS, 79 .ss1 = __KERNEL_CS, 80 #endif 81 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 82 }, 83 }; 84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 85 86 DEFINE_PER_CPU(bool, __tss_limit_invalid); 87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 88 89 /* 90 * this gets called so that we can store lazy state into memory and copy the 91 * current task into the new thread. 92 */ 93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 94 { 95 memcpy(dst, src, arch_task_struct_size); 96 #ifdef CONFIG_VM86 97 dst->thread.vm86 = NULL; 98 #endif 99 /* Drop the copied pointer to current's fpstate */ 100 dst->thread.fpu.fpstate = NULL; 101 102 return 0; 103 } 104 105 #ifdef CONFIG_X86_64 106 void arch_release_task_struct(struct task_struct *tsk) 107 { 108 if (fpu_state_size_dynamic()) 109 fpstate_free(&tsk->thread.fpu); 110 } 111 #endif 112 113 /* 114 * Free thread data structures etc.. 115 */ 116 void exit_thread(struct task_struct *tsk) 117 { 118 struct thread_struct *t = &tsk->thread; 119 struct fpu *fpu = &t->fpu; 120 121 if (test_thread_flag(TIF_IO_BITMAP)) 122 io_bitmap_exit(tsk); 123 124 free_vm86(t); 125 126 shstk_free(tsk); 127 fpu__drop(fpu); 128 } 129 130 static int set_new_tls(struct task_struct *p, unsigned long tls) 131 { 132 struct user_desc __user *utls = (struct user_desc __user *)tls; 133 134 if (in_ia32_syscall()) 135 return do_set_thread_area(p, -1, utls, 0); 136 else 137 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 138 } 139 140 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs, 141 int (*fn)(void *), void *fn_arg) 142 { 143 schedule_tail(prev); 144 145 /* Is this a kernel thread? */ 146 if (unlikely(fn)) { 147 fn(fn_arg); 148 /* 149 * A kernel thread is allowed to return here after successfully 150 * calling kernel_execve(). Exit to userspace to complete the 151 * execve() syscall. 152 */ 153 regs->ax = 0; 154 } 155 156 syscall_exit_to_user_mode(regs); 157 } 158 159 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 160 { 161 unsigned long clone_flags = args->flags; 162 unsigned long sp = args->stack; 163 unsigned long tls = args->tls; 164 struct inactive_task_frame *frame; 165 struct fork_frame *fork_frame; 166 struct pt_regs *childregs; 167 unsigned long new_ssp; 168 int ret = 0; 169 170 childregs = task_pt_regs(p); 171 fork_frame = container_of(childregs, struct fork_frame, regs); 172 frame = &fork_frame->frame; 173 174 frame->bp = encode_frame_pointer(childregs); 175 frame->ret_addr = (unsigned long) ret_from_fork_asm; 176 p->thread.sp = (unsigned long) fork_frame; 177 p->thread.io_bitmap = NULL; 178 p->thread.iopl_warn = 0; 179 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 180 181 #ifdef CONFIG_X86_64 182 current_save_fsgs(); 183 p->thread.fsindex = current->thread.fsindex; 184 p->thread.fsbase = current->thread.fsbase; 185 p->thread.gsindex = current->thread.gsindex; 186 p->thread.gsbase = current->thread.gsbase; 187 188 savesegment(es, p->thread.es); 189 savesegment(ds, p->thread.ds); 190 191 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM) 192 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags); 193 #else 194 p->thread.sp0 = (unsigned long) (childregs + 1); 195 savesegment(gs, p->thread.gs); 196 /* 197 * Clear all status flags including IF and set fixed bit. 64bit 198 * does not have this initialization as the frame does not contain 199 * flags. The flags consistency (especially vs. AC) is there 200 * ensured via objtool, which lacks 32bit support. 201 */ 202 frame->flags = X86_EFLAGS_FIXED; 203 #endif 204 205 /* 206 * Allocate a new shadow stack for thread if needed. If shadow stack, 207 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to 208 * update it. 209 */ 210 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size); 211 if (IS_ERR_VALUE(new_ssp)) 212 return PTR_ERR((void *)new_ssp); 213 214 fpu_clone(p, clone_flags, args->fn, new_ssp); 215 216 /* Kernel thread ? */ 217 if (unlikely(p->flags & PF_KTHREAD)) { 218 p->thread.pkru = pkru_get_init_value(); 219 memset(childregs, 0, sizeof(struct pt_regs)); 220 kthread_frame_init(frame, args->fn, args->fn_arg); 221 return 0; 222 } 223 224 /* 225 * Clone current's PKRU value from hardware. tsk->thread.pkru 226 * is only valid when scheduled out. 227 */ 228 p->thread.pkru = read_pkru(); 229 230 frame->bx = 0; 231 *childregs = *current_pt_regs(); 232 childregs->ax = 0; 233 if (sp) 234 childregs->sp = sp; 235 236 if (unlikely(args->fn)) { 237 /* 238 * A user space thread, but it doesn't return to 239 * ret_after_fork(). 240 * 241 * In order to indicate that to tools like gdb, 242 * we reset the stack and instruction pointers. 243 * 244 * It does the same kernel frame setup to return to a kernel 245 * function that a kernel thread does. 246 */ 247 childregs->sp = 0; 248 childregs->ip = 0; 249 kthread_frame_init(frame, args->fn, args->fn_arg); 250 return 0; 251 } 252 253 /* Set a new TLS for the child thread? */ 254 if (clone_flags & CLONE_SETTLS) 255 ret = set_new_tls(p, tls); 256 257 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 258 io_bitmap_share(p); 259 260 return ret; 261 } 262 263 static void pkru_flush_thread(void) 264 { 265 /* 266 * If PKRU is enabled the default PKRU value has to be loaded into 267 * the hardware right here (similar to context switch). 268 */ 269 pkru_write_default(); 270 } 271 272 void flush_thread(void) 273 { 274 struct task_struct *tsk = current; 275 276 flush_ptrace_hw_breakpoint(tsk); 277 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 278 279 fpu_flush_thread(); 280 pkru_flush_thread(); 281 } 282 283 void disable_TSC(void) 284 { 285 preempt_disable(); 286 if (!test_and_set_thread_flag(TIF_NOTSC)) 287 /* 288 * Must flip the CPU state synchronously with 289 * TIF_NOTSC in the current running context. 290 */ 291 cr4_set_bits(X86_CR4_TSD); 292 preempt_enable(); 293 } 294 295 static void enable_TSC(void) 296 { 297 preempt_disable(); 298 if (test_and_clear_thread_flag(TIF_NOTSC)) 299 /* 300 * Must flip the CPU state synchronously with 301 * TIF_NOTSC in the current running context. 302 */ 303 cr4_clear_bits(X86_CR4_TSD); 304 preempt_enable(); 305 } 306 307 int get_tsc_mode(unsigned long adr) 308 { 309 unsigned int val; 310 311 if (test_thread_flag(TIF_NOTSC)) 312 val = PR_TSC_SIGSEGV; 313 else 314 val = PR_TSC_ENABLE; 315 316 return put_user(val, (unsigned int __user *)adr); 317 } 318 319 int set_tsc_mode(unsigned int val) 320 { 321 if (val == PR_TSC_SIGSEGV) 322 disable_TSC(); 323 else if (val == PR_TSC_ENABLE) 324 enable_TSC(); 325 else 326 return -EINVAL; 327 328 return 0; 329 } 330 331 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 332 333 static void set_cpuid_faulting(bool on) 334 { 335 u64 msrval; 336 337 msrval = this_cpu_read(msr_misc_features_shadow); 338 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 339 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 340 this_cpu_write(msr_misc_features_shadow, msrval); 341 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 342 } 343 344 static void disable_cpuid(void) 345 { 346 preempt_disable(); 347 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 348 /* 349 * Must flip the CPU state synchronously with 350 * TIF_NOCPUID in the current running context. 351 */ 352 set_cpuid_faulting(true); 353 } 354 preempt_enable(); 355 } 356 357 static void enable_cpuid(void) 358 { 359 preempt_disable(); 360 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 361 /* 362 * Must flip the CPU state synchronously with 363 * TIF_NOCPUID in the current running context. 364 */ 365 set_cpuid_faulting(false); 366 } 367 preempt_enable(); 368 } 369 370 static int get_cpuid_mode(void) 371 { 372 return !test_thread_flag(TIF_NOCPUID); 373 } 374 375 static int set_cpuid_mode(unsigned long cpuid_enabled) 376 { 377 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 378 return -ENODEV; 379 380 if (cpuid_enabled) 381 enable_cpuid(); 382 else 383 disable_cpuid(); 384 385 return 0; 386 } 387 388 /* 389 * Called immediately after a successful exec. 390 */ 391 void arch_setup_new_exec(void) 392 { 393 /* If cpuid was previously disabled for this task, re-enable it. */ 394 if (test_thread_flag(TIF_NOCPUID)) 395 enable_cpuid(); 396 397 /* 398 * Don't inherit TIF_SSBD across exec boundary when 399 * PR_SPEC_DISABLE_NOEXEC is used. 400 */ 401 if (test_thread_flag(TIF_SSBD) && 402 task_spec_ssb_noexec(current)) { 403 clear_thread_flag(TIF_SSBD); 404 task_clear_spec_ssb_disable(current); 405 task_clear_spec_ssb_noexec(current); 406 speculation_ctrl_update(read_thread_flags()); 407 } 408 409 mm_reset_untag_mask(current->mm); 410 } 411 412 #ifdef CONFIG_X86_IOPL_IOPERM 413 static inline void switch_to_bitmap(unsigned long tifp) 414 { 415 /* 416 * Invalidate I/O bitmap if the previous task used it. This prevents 417 * any possible leakage of an active I/O bitmap. 418 * 419 * If the next task has an I/O bitmap it will handle it on exit to 420 * user mode. 421 */ 422 if (tifp & _TIF_IO_BITMAP) 423 tss_invalidate_io_bitmap(); 424 } 425 426 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 427 { 428 /* 429 * Copy at least the byte range of the incoming tasks bitmap which 430 * covers the permitted I/O ports. 431 * 432 * If the previous task which used an I/O bitmap had more bits 433 * permitted, then the copy needs to cover those as well so they 434 * get turned off. 435 */ 436 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 437 max(tss->io_bitmap.prev_max, iobm->max)); 438 439 /* 440 * Store the new max and the sequence number of this bitmap 441 * and a pointer to the bitmap itself. 442 */ 443 tss->io_bitmap.prev_max = iobm->max; 444 tss->io_bitmap.prev_sequence = iobm->sequence; 445 } 446 447 /** 448 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode 449 */ 450 void native_tss_update_io_bitmap(void) 451 { 452 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 453 struct thread_struct *t = ¤t->thread; 454 u16 *base = &tss->x86_tss.io_bitmap_base; 455 456 if (!test_thread_flag(TIF_IO_BITMAP)) { 457 native_tss_invalidate_io_bitmap(); 458 return; 459 } 460 461 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 462 *base = IO_BITMAP_OFFSET_VALID_ALL; 463 } else { 464 struct io_bitmap *iobm = t->io_bitmap; 465 466 /* 467 * Only copy bitmap data when the sequence number differs. The 468 * update time is accounted to the incoming task. 469 */ 470 if (tss->io_bitmap.prev_sequence != iobm->sequence) 471 tss_copy_io_bitmap(tss, iobm); 472 473 /* Enable the bitmap */ 474 *base = IO_BITMAP_OFFSET_VALID_MAP; 475 } 476 477 /* 478 * Make sure that the TSS limit is covering the IO bitmap. It might have 479 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 480 * access from user space to trigger a #GP because the bitmap is outside 481 * the TSS limit. 482 */ 483 refresh_tss_limit(); 484 } 485 #else /* CONFIG_X86_IOPL_IOPERM */ 486 static inline void switch_to_bitmap(unsigned long tifp) { } 487 #endif 488 489 #ifdef CONFIG_SMP 490 491 struct ssb_state { 492 struct ssb_state *shared_state; 493 raw_spinlock_t lock; 494 unsigned int disable_state; 495 unsigned long local_state; 496 }; 497 498 #define LSTATE_SSB 0 499 500 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 501 502 void speculative_store_bypass_ht_init(void) 503 { 504 struct ssb_state *st = this_cpu_ptr(&ssb_state); 505 unsigned int this_cpu = smp_processor_id(); 506 unsigned int cpu; 507 508 st->local_state = 0; 509 510 /* 511 * Shared state setup happens once on the first bringup 512 * of the CPU. It's not destroyed on CPU hotunplug. 513 */ 514 if (st->shared_state) 515 return; 516 517 raw_spin_lock_init(&st->lock); 518 519 /* 520 * Go over HT siblings and check whether one of them has set up the 521 * shared state pointer already. 522 */ 523 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 524 if (cpu == this_cpu) 525 continue; 526 527 if (!per_cpu(ssb_state, cpu).shared_state) 528 continue; 529 530 /* Link it to the state of the sibling: */ 531 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 532 return; 533 } 534 535 /* 536 * First HT sibling to come up on the core. Link shared state of 537 * the first HT sibling to itself. The siblings on the same core 538 * which come up later will see the shared state pointer and link 539 * themselves to the state of this CPU. 540 */ 541 st->shared_state = st; 542 } 543 544 /* 545 * Logic is: First HT sibling enables SSBD for both siblings in the core 546 * and last sibling to disable it, disables it for the whole core. This how 547 * MSR_SPEC_CTRL works in "hardware": 548 * 549 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 550 */ 551 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 552 { 553 struct ssb_state *st = this_cpu_ptr(&ssb_state); 554 u64 msr = x86_amd_ls_cfg_base; 555 556 if (!static_cpu_has(X86_FEATURE_ZEN)) { 557 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 558 wrmsrl(MSR_AMD64_LS_CFG, msr); 559 return; 560 } 561 562 if (tifn & _TIF_SSBD) { 563 /* 564 * Since this can race with prctl(), block reentry on the 565 * same CPU. 566 */ 567 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 568 return; 569 570 msr |= x86_amd_ls_cfg_ssbd_mask; 571 572 raw_spin_lock(&st->shared_state->lock); 573 /* First sibling enables SSBD: */ 574 if (!st->shared_state->disable_state) 575 wrmsrl(MSR_AMD64_LS_CFG, msr); 576 st->shared_state->disable_state++; 577 raw_spin_unlock(&st->shared_state->lock); 578 } else { 579 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 580 return; 581 582 raw_spin_lock(&st->shared_state->lock); 583 st->shared_state->disable_state--; 584 if (!st->shared_state->disable_state) 585 wrmsrl(MSR_AMD64_LS_CFG, msr); 586 raw_spin_unlock(&st->shared_state->lock); 587 } 588 } 589 #else 590 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 591 { 592 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 593 594 wrmsrl(MSR_AMD64_LS_CFG, msr); 595 } 596 #endif 597 598 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 599 { 600 /* 601 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 602 * so ssbd_tif_to_spec_ctrl() just works. 603 */ 604 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 605 } 606 607 /* 608 * Update the MSRs managing speculation control, during context switch. 609 * 610 * tifp: Previous task's thread flags 611 * tifn: Next task's thread flags 612 */ 613 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 614 unsigned long tifn) 615 { 616 unsigned long tif_diff = tifp ^ tifn; 617 u64 msr = x86_spec_ctrl_base; 618 bool updmsr = false; 619 620 lockdep_assert_irqs_disabled(); 621 622 /* Handle change of TIF_SSBD depending on the mitigation method. */ 623 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 624 if (tif_diff & _TIF_SSBD) 625 amd_set_ssb_virt_state(tifn); 626 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 627 if (tif_diff & _TIF_SSBD) 628 amd_set_core_ssb_state(tifn); 629 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 630 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 631 updmsr |= !!(tif_diff & _TIF_SSBD); 632 msr |= ssbd_tif_to_spec_ctrl(tifn); 633 } 634 635 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 636 if (IS_ENABLED(CONFIG_SMP) && 637 static_branch_unlikely(&switch_to_cond_stibp)) { 638 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 639 msr |= stibp_tif_to_spec_ctrl(tifn); 640 } 641 642 if (updmsr) 643 update_spec_ctrl_cond(msr); 644 } 645 646 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 647 { 648 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 649 if (task_spec_ssb_disable(tsk)) 650 set_tsk_thread_flag(tsk, TIF_SSBD); 651 else 652 clear_tsk_thread_flag(tsk, TIF_SSBD); 653 654 if (task_spec_ib_disable(tsk)) 655 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 656 else 657 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 658 } 659 /* Return the updated threadinfo flags*/ 660 return read_task_thread_flags(tsk); 661 } 662 663 void speculation_ctrl_update(unsigned long tif) 664 { 665 unsigned long flags; 666 667 /* Forced update. Make sure all relevant TIF flags are different */ 668 local_irq_save(flags); 669 __speculation_ctrl_update(~tif, tif); 670 local_irq_restore(flags); 671 } 672 673 /* Called from seccomp/prctl update */ 674 void speculation_ctrl_update_current(void) 675 { 676 preempt_disable(); 677 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 678 preempt_enable(); 679 } 680 681 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 682 { 683 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 684 685 newval = cr4 ^ mask; 686 if (newval != cr4) { 687 this_cpu_write(cpu_tlbstate.cr4, newval); 688 __write_cr4(newval); 689 } 690 } 691 692 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 693 { 694 unsigned long tifp, tifn; 695 696 tifn = read_task_thread_flags(next_p); 697 tifp = read_task_thread_flags(prev_p); 698 699 switch_to_bitmap(tifp); 700 701 propagate_user_return_notify(prev_p, next_p); 702 703 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 704 arch_has_block_step()) { 705 unsigned long debugctl, msk; 706 707 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 708 debugctl &= ~DEBUGCTLMSR_BTF; 709 msk = tifn & _TIF_BLOCKSTEP; 710 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 711 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 712 } 713 714 if ((tifp ^ tifn) & _TIF_NOTSC) 715 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 716 717 if ((tifp ^ tifn) & _TIF_NOCPUID) 718 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 719 720 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 721 __speculation_ctrl_update(tifp, tifn); 722 } else { 723 speculation_ctrl_update_tif(prev_p); 724 tifn = speculation_ctrl_update_tif(next_p); 725 726 /* Enforce MSR update to ensure consistent state */ 727 __speculation_ctrl_update(~tifn, tifn); 728 } 729 } 730 731 /* 732 * Idle related variables and functions 733 */ 734 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 735 EXPORT_SYMBOL(boot_option_idle_override); 736 737 /* 738 * We use this if we don't have any better idle routine.. 739 */ 740 void __cpuidle default_idle(void) 741 { 742 raw_safe_halt(); 743 raw_local_irq_disable(); 744 } 745 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 746 EXPORT_SYMBOL(default_idle); 747 #endif 748 749 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle); 750 751 static bool x86_idle_set(void) 752 { 753 return !!static_call_query(x86_idle); 754 } 755 756 #ifndef CONFIG_SMP 757 static inline void __noreturn play_dead(void) 758 { 759 BUG(); 760 } 761 #endif 762 763 void arch_cpu_idle_enter(void) 764 { 765 tsc_verify_tsc_adjust(false); 766 local_touch_nmi(); 767 } 768 769 void __noreturn arch_cpu_idle_dead(void) 770 { 771 play_dead(); 772 } 773 774 /* 775 * Called from the generic idle code. 776 */ 777 void __cpuidle arch_cpu_idle(void) 778 { 779 static_call(x86_idle)(); 780 } 781 EXPORT_SYMBOL_GPL(arch_cpu_idle); 782 783 #ifdef CONFIG_XEN 784 bool xen_set_default_idle(void) 785 { 786 bool ret = x86_idle_set(); 787 788 static_call_update(x86_idle, default_idle); 789 790 return ret; 791 } 792 #endif 793 794 struct cpumask cpus_stop_mask; 795 796 void __noreturn stop_this_cpu(void *dummy) 797 { 798 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); 799 unsigned int cpu = smp_processor_id(); 800 801 local_irq_disable(); 802 803 /* 804 * Remove this CPU from the online mask and disable it 805 * unconditionally. This might be redundant in case that the reboot 806 * vector was handled late and stop_other_cpus() sent an NMI. 807 * 808 * According to SDM and APM NMIs can be accepted even after soft 809 * disabling the local APIC. 810 */ 811 set_cpu_online(cpu, false); 812 disable_local_APIC(); 813 mcheck_cpu_clear(c); 814 815 /* 816 * Use wbinvd on processors that support SME. This provides support 817 * for performing a successful kexec when going from SME inactive 818 * to SME active (or vice-versa). The cache must be cleared so that 819 * if there are entries with the same physical address, both with and 820 * without the encryption bit, they don't race each other when flushed 821 * and potentially end up with the wrong entry being committed to 822 * memory. 823 * 824 * Test the CPUID bit directly because the machine might've cleared 825 * X86_FEATURE_SME due to cmdline options. 826 */ 827 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0))) 828 native_wbinvd(); 829 830 /* 831 * This brings a cache line back and dirties it, but 832 * native_stop_other_cpus() will overwrite cpus_stop_mask after it 833 * observed that all CPUs reported stop. This write will invalidate 834 * the related cache line on this CPU. 835 */ 836 cpumask_clear_cpu(cpu, &cpus_stop_mask); 837 838 for (;;) { 839 /* 840 * Use native_halt() so that memory contents don't change 841 * (stack usage and variables) after possibly issuing the 842 * native_wbinvd() above. 843 */ 844 native_halt(); 845 } 846 } 847 848 /* 849 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 850 * states (local apic timer and TSC stop). 851 * 852 * XXX this function is completely buggered vs RCU and tracing. 853 */ 854 static void amd_e400_idle(void) 855 { 856 /* 857 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 858 * gets set after static_cpu_has() places have been converted via 859 * alternatives. 860 */ 861 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 862 default_idle(); 863 return; 864 } 865 866 tick_broadcast_enter(); 867 868 default_idle(); 869 870 tick_broadcast_exit(); 871 } 872 873 /* 874 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf 875 * exists and whenever MONITOR/MWAIT extensions are present there is at 876 * least one C1 substate. 877 * 878 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait 879 * is passed to kernel commandline parameter. 880 */ 881 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 882 { 883 u32 eax, ebx, ecx, edx; 884 885 /* User has disallowed the use of MWAIT. Fallback to HALT */ 886 if (boot_option_idle_override == IDLE_NOMWAIT) 887 return 0; 888 889 /* MWAIT is not supported on this platform. Fallback to HALT */ 890 if (!cpu_has(c, X86_FEATURE_MWAIT)) 891 return 0; 892 893 /* Monitor has a bug. Fallback to HALT */ 894 if (boot_cpu_has_bug(X86_BUG_MONITOR)) 895 return 0; 896 897 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); 898 899 /* 900 * If MWAIT extensions are not available, it is safe to use MWAIT 901 * with EAX=0, ECX=0. 902 */ 903 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) 904 return 1; 905 906 /* 907 * If MWAIT extensions are available, there should be at least one 908 * MWAIT C1 substate present. 909 */ 910 return (edx & MWAIT_C1_SUBSTATE_MASK); 911 } 912 913 /* 914 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 915 * with interrupts enabled and no flags, which is backwards compatible with the 916 * original MWAIT implementation. 917 */ 918 static __cpuidle void mwait_idle(void) 919 { 920 if (!current_set_polling_and_test()) { 921 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 922 mb(); /* quirk */ 923 clflush((void *)¤t_thread_info()->flags); 924 mb(); /* quirk */ 925 } 926 927 __monitor((void *)¤t_thread_info()->flags, 0, 0); 928 if (!need_resched()) { 929 __sti_mwait(0, 0); 930 raw_local_irq_disable(); 931 } 932 } 933 __current_clr_polling(); 934 } 935 936 void select_idle_routine(const struct cpuinfo_x86 *c) 937 { 938 #ifdef CONFIG_SMP 939 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 940 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 941 #endif 942 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL) 943 return; 944 945 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 946 pr_info("using AMD E400 aware idle routine\n"); 947 static_call_update(x86_idle, amd_e400_idle); 948 } else if (prefer_mwait_c1_over_halt(c)) { 949 pr_info("using mwait in idle threads\n"); 950 static_call_update(x86_idle, mwait_idle); 951 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) { 952 pr_info("using TDX aware idle routine\n"); 953 static_call_update(x86_idle, tdx_safe_halt); 954 } else 955 static_call_update(x86_idle, default_idle); 956 } 957 958 void amd_e400_c1e_apic_setup(void) 959 { 960 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 961 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 962 local_irq_disable(); 963 tick_broadcast_force(); 964 local_irq_enable(); 965 } 966 } 967 968 void __init arch_post_acpi_subsys_init(void) 969 { 970 u32 lo, hi; 971 972 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 973 return; 974 975 /* 976 * AMD E400 detection needs to happen after ACPI has been enabled. If 977 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 978 * MSR_K8_INT_PENDING_MSG. 979 */ 980 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 981 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 982 return; 983 984 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 985 986 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 987 mark_tsc_unstable("TSC halt in AMD C1E"); 988 pr_info("System has AMD C1E enabled\n"); 989 } 990 991 static int __init idle_setup(char *str) 992 { 993 if (!str) 994 return -EINVAL; 995 996 if (!strcmp(str, "poll")) { 997 pr_info("using polling idle threads\n"); 998 boot_option_idle_override = IDLE_POLL; 999 cpu_idle_poll_ctrl(true); 1000 } else if (!strcmp(str, "halt")) { 1001 /* 1002 * When the boot option of idle=halt is added, halt is 1003 * forced to be used for CPU idle. In such case CPU C2/C3 1004 * won't be used again. 1005 * To continue to load the CPU idle driver, don't touch 1006 * the boot_option_idle_override. 1007 */ 1008 static_call_update(x86_idle, default_idle); 1009 boot_option_idle_override = IDLE_HALT; 1010 } else if (!strcmp(str, "nomwait")) { 1011 /* 1012 * If the boot option of "idle=nomwait" is added, 1013 * it means that mwait will be disabled for CPU C1/C2/C3 1014 * states. 1015 */ 1016 boot_option_idle_override = IDLE_NOMWAIT; 1017 } else 1018 return -1; 1019 1020 return 0; 1021 } 1022 early_param("idle", idle_setup); 1023 1024 unsigned long arch_align_stack(unsigned long sp) 1025 { 1026 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1027 sp -= get_random_u32_below(8192); 1028 return sp & ~0xf; 1029 } 1030 1031 unsigned long arch_randomize_brk(struct mm_struct *mm) 1032 { 1033 return randomize_page(mm->brk, 0x02000000); 1034 } 1035 1036 /* 1037 * Called from fs/proc with a reference on @p to find the function 1038 * which called into schedule(). This needs to be done carefully 1039 * because the task might wake up and we might look at a stack 1040 * changing under us. 1041 */ 1042 unsigned long __get_wchan(struct task_struct *p) 1043 { 1044 struct unwind_state state; 1045 unsigned long addr = 0; 1046 1047 if (!try_get_task_stack(p)) 1048 return 0; 1049 1050 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state); 1051 unwind_next_frame(&state)) { 1052 addr = unwind_get_return_address(&state); 1053 if (!addr) 1054 break; 1055 if (in_sched_functions(addr)) 1056 continue; 1057 break; 1058 } 1059 1060 put_task_stack(p); 1061 1062 return addr; 1063 } 1064 1065 long do_arch_prctl_common(int option, unsigned long arg2) 1066 { 1067 switch (option) { 1068 case ARCH_GET_CPUID: 1069 return get_cpuid_mode(); 1070 case ARCH_SET_CPUID: 1071 return set_cpuid_mode(arg2); 1072 case ARCH_GET_XCOMP_SUPP: 1073 case ARCH_GET_XCOMP_PERM: 1074 case ARCH_REQ_XCOMP_PERM: 1075 case ARCH_GET_XCOMP_GUEST_PERM: 1076 case ARCH_REQ_XCOMP_GUEST_PERM: 1077 return fpu_xstate_prctl(option, arg2); 1078 } 1079 1080 return -EINVAL; 1081 } 1082