1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/ds.h> 24 #include <asm/debugreg.h> 25 26 unsigned long idle_halt; 27 EXPORT_SYMBOL(idle_halt); 28 unsigned long idle_nomwait; 29 EXPORT_SYMBOL(idle_nomwait); 30 31 struct kmem_cache *task_xstate_cachep; 32 33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 34 { 35 *dst = *src; 36 if (src->thread.xstate) { 37 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 38 GFP_KERNEL); 39 if (!dst->thread.xstate) 40 return -ENOMEM; 41 WARN_ON((unsigned long)dst->thread.xstate & 15); 42 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 43 } 44 return 0; 45 } 46 47 void free_thread_xstate(struct task_struct *tsk) 48 { 49 if (tsk->thread.xstate) { 50 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 51 tsk->thread.xstate = NULL; 52 } 53 54 WARN(tsk->thread.ds_ctx, "leaking DS context\n"); 55 } 56 57 void free_thread_info(struct thread_info *ti) 58 { 59 free_thread_xstate(ti->task); 60 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 61 } 62 63 void arch_task_cache_init(void) 64 { 65 task_xstate_cachep = 66 kmem_cache_create("task_xstate", xstate_size, 67 __alignof__(union thread_xstate), 68 SLAB_PANIC | SLAB_NOTRACK, NULL); 69 } 70 71 /* 72 * Free current thread data structures etc.. 73 */ 74 void exit_thread(void) 75 { 76 struct task_struct *me = current; 77 struct thread_struct *t = &me->thread; 78 unsigned long *bp = t->io_bitmap_ptr; 79 80 if (bp) { 81 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 82 83 t->io_bitmap_ptr = NULL; 84 clear_thread_flag(TIF_IO_BITMAP); 85 /* 86 * Careful, clear this in the TSS too: 87 */ 88 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 89 t->io_bitmap_max = 0; 90 put_cpu(); 91 kfree(bp); 92 } 93 } 94 95 void show_regs_common(void) 96 { 97 const char *board, *product; 98 99 board = dmi_get_system_info(DMI_BOARD_NAME); 100 if (!board) 101 board = ""; 102 product = dmi_get_system_info(DMI_PRODUCT_NAME); 103 if (!product) 104 product = ""; 105 106 printk("\n"); 107 printk(KERN_INFO "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 108 current->pid, current->comm, print_tainted(), 109 init_utsname()->release, 110 (int)strcspn(init_utsname()->version, " "), 111 init_utsname()->version, board, product); 112 } 113 114 void flush_thread(void) 115 { 116 struct task_struct *tsk = current; 117 118 #ifdef CONFIG_X86_64 119 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) { 120 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING); 121 if (test_tsk_thread_flag(tsk, TIF_IA32)) { 122 clear_tsk_thread_flag(tsk, TIF_IA32); 123 } else { 124 set_tsk_thread_flag(tsk, TIF_IA32); 125 current_thread_info()->status |= TS_COMPAT; 126 } 127 } 128 #endif 129 130 flush_ptrace_hw_breakpoint(tsk); 131 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 132 /* 133 * Forget coprocessor state.. 134 */ 135 tsk->fpu_counter = 0; 136 clear_fpu(tsk); 137 clear_used_math(); 138 } 139 140 static void hard_disable_TSC(void) 141 { 142 write_cr4(read_cr4() | X86_CR4_TSD); 143 } 144 145 void disable_TSC(void) 146 { 147 preempt_disable(); 148 if (!test_and_set_thread_flag(TIF_NOTSC)) 149 /* 150 * Must flip the CPU state synchronously with 151 * TIF_NOTSC in the current running context. 152 */ 153 hard_disable_TSC(); 154 preempt_enable(); 155 } 156 157 static void hard_enable_TSC(void) 158 { 159 write_cr4(read_cr4() & ~X86_CR4_TSD); 160 } 161 162 static void enable_TSC(void) 163 { 164 preempt_disable(); 165 if (test_and_clear_thread_flag(TIF_NOTSC)) 166 /* 167 * Must flip the CPU state synchronously with 168 * TIF_NOTSC in the current running context. 169 */ 170 hard_enable_TSC(); 171 preempt_enable(); 172 } 173 174 int get_tsc_mode(unsigned long adr) 175 { 176 unsigned int val; 177 178 if (test_thread_flag(TIF_NOTSC)) 179 val = PR_TSC_SIGSEGV; 180 else 181 val = PR_TSC_ENABLE; 182 183 return put_user(val, (unsigned int __user *)adr); 184 } 185 186 int set_tsc_mode(unsigned int val) 187 { 188 if (val == PR_TSC_SIGSEGV) 189 disable_TSC(); 190 else if (val == PR_TSC_ENABLE) 191 enable_TSC(); 192 else 193 return -EINVAL; 194 195 return 0; 196 } 197 198 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 199 struct tss_struct *tss) 200 { 201 struct thread_struct *prev, *next; 202 203 prev = &prev_p->thread; 204 next = &next_p->thread; 205 206 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 207 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 208 ds_switch_to(prev_p, next_p); 209 else if (next->debugctlmsr != prev->debugctlmsr) 210 update_debugctlmsr(next->debugctlmsr); 211 212 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 213 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 214 /* prev and next are different */ 215 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 216 hard_disable_TSC(); 217 else 218 hard_enable_TSC(); 219 } 220 221 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 222 /* 223 * Copy the relevant range of the IO bitmap. 224 * Normally this is 128 bytes or less: 225 */ 226 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 227 max(prev->io_bitmap_max, next->io_bitmap_max)); 228 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 229 /* 230 * Clear any possible leftover bits: 231 */ 232 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 233 } 234 propagate_user_return_notify(prev_p, next_p); 235 } 236 237 int sys_fork(struct pt_regs *regs) 238 { 239 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 240 } 241 242 /* 243 * This is trivial, and on the face of it looks like it 244 * could equally well be done in user mode. 245 * 246 * Not so, for quite unobvious reasons - register pressure. 247 * In user mode vfork() cannot have a stack frame, and if 248 * done by calling the "clone()" system call directly, you 249 * do not have enough call-clobbered registers to hold all 250 * the information you need. 251 */ 252 int sys_vfork(struct pt_regs *regs) 253 { 254 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 255 NULL, NULL); 256 } 257 258 259 /* 260 * Idle related variables and functions 261 */ 262 unsigned long boot_option_idle_override = 0; 263 EXPORT_SYMBOL(boot_option_idle_override); 264 265 /* 266 * Powermanagement idle function, if any.. 267 */ 268 void (*pm_idle)(void); 269 EXPORT_SYMBOL(pm_idle); 270 271 #ifdef CONFIG_X86_32 272 /* 273 * This halt magic was a workaround for ancient floppy DMA 274 * wreckage. It should be safe to remove. 275 */ 276 static int hlt_counter; 277 void disable_hlt(void) 278 { 279 hlt_counter++; 280 } 281 EXPORT_SYMBOL(disable_hlt); 282 283 void enable_hlt(void) 284 { 285 hlt_counter--; 286 } 287 EXPORT_SYMBOL(enable_hlt); 288 289 static inline int hlt_use_halt(void) 290 { 291 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 292 } 293 #else 294 static inline int hlt_use_halt(void) 295 { 296 return 1; 297 } 298 #endif 299 300 /* 301 * We use this if we don't have any better 302 * idle routine.. 303 */ 304 void default_idle(void) 305 { 306 if (hlt_use_halt()) { 307 trace_power_start(POWER_CSTATE, 1); 308 current_thread_info()->status &= ~TS_POLLING; 309 /* 310 * TS_POLLING-cleared state must be visible before we 311 * test NEED_RESCHED: 312 */ 313 smp_mb(); 314 315 if (!need_resched()) 316 safe_halt(); /* enables interrupts racelessly */ 317 else 318 local_irq_enable(); 319 current_thread_info()->status |= TS_POLLING; 320 } else { 321 local_irq_enable(); 322 /* loop is done by the caller */ 323 cpu_relax(); 324 } 325 } 326 #ifdef CONFIG_APM_MODULE 327 EXPORT_SYMBOL(default_idle); 328 #endif 329 330 void stop_this_cpu(void *dummy) 331 { 332 local_irq_disable(); 333 /* 334 * Remove this CPU: 335 */ 336 set_cpu_online(smp_processor_id(), false); 337 disable_local_APIC(); 338 339 for (;;) { 340 if (hlt_works(smp_processor_id())) 341 halt(); 342 } 343 } 344 345 static void do_nothing(void *unused) 346 { 347 } 348 349 /* 350 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 351 * pm_idle and update to new pm_idle value. Required while changing pm_idle 352 * handler on SMP systems. 353 * 354 * Caller must have changed pm_idle to the new value before the call. Old 355 * pm_idle value will not be used by any CPU after the return of this function. 356 */ 357 void cpu_idle_wait(void) 358 { 359 smp_mb(); 360 /* kick all the CPUs so that they exit out of pm_idle */ 361 smp_call_function(do_nothing, NULL, 1); 362 } 363 EXPORT_SYMBOL_GPL(cpu_idle_wait); 364 365 /* 366 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 367 * which can obviate IPI to trigger checking of need_resched. 368 * We execute MONITOR against need_resched and enter optimized wait state 369 * through MWAIT. Whenever someone changes need_resched, we would be woken 370 * up from MWAIT (without an IPI). 371 * 372 * New with Core Duo processors, MWAIT can take some hints based on CPU 373 * capability. 374 */ 375 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 376 { 377 trace_power_start(POWER_CSTATE, (ax>>4)+1); 378 if (!need_resched()) { 379 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 380 clflush((void *)¤t_thread_info()->flags); 381 382 __monitor((void *)¤t_thread_info()->flags, 0, 0); 383 smp_mb(); 384 if (!need_resched()) 385 __mwait(ax, cx); 386 } 387 } 388 389 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 390 static void mwait_idle(void) 391 { 392 if (!need_resched()) { 393 trace_power_start(POWER_CSTATE, 1); 394 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 395 clflush((void *)¤t_thread_info()->flags); 396 397 __monitor((void *)¤t_thread_info()->flags, 0, 0); 398 smp_mb(); 399 if (!need_resched()) 400 __sti_mwait(0, 0); 401 else 402 local_irq_enable(); 403 } else 404 local_irq_enable(); 405 } 406 407 /* 408 * On SMP it's slightly faster (but much more power-consuming!) 409 * to poll the ->work.need_resched flag instead of waiting for the 410 * cross-CPU IPI to arrive. Use this option with caution. 411 */ 412 static void poll_idle(void) 413 { 414 trace_power_start(POWER_CSTATE, 0); 415 local_irq_enable(); 416 while (!need_resched()) 417 cpu_relax(); 418 trace_power_end(0); 419 } 420 421 /* 422 * mwait selection logic: 423 * 424 * It depends on the CPU. For AMD CPUs that support MWAIT this is 425 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 426 * then depend on a clock divisor and current Pstate of the core. If 427 * all cores of a processor are in halt state (C1) the processor can 428 * enter the C1E (C1 enhanced) state. If mwait is used this will never 429 * happen. 430 * 431 * idle=mwait overrides this decision and forces the usage of mwait. 432 */ 433 static int __cpuinitdata force_mwait; 434 435 #define MWAIT_INFO 0x05 436 #define MWAIT_ECX_EXTENDED_INFO 0x01 437 #define MWAIT_EDX_C1 0xf0 438 439 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 440 { 441 u32 eax, ebx, ecx, edx; 442 443 if (force_mwait) 444 return 1; 445 446 if (c->cpuid_level < MWAIT_INFO) 447 return 0; 448 449 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 450 /* Check, whether EDX has extended info about MWAIT */ 451 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 452 return 1; 453 454 /* 455 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 456 * C1 supports MWAIT 457 */ 458 return (edx & MWAIT_EDX_C1); 459 } 460 461 /* 462 * Check for AMD CPUs, which have potentially C1E support 463 */ 464 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 465 { 466 if (c->x86_vendor != X86_VENDOR_AMD) 467 return 0; 468 469 if (c->x86 < 0x0F) 470 return 0; 471 472 /* Family 0x0f models < rev F do not have C1E */ 473 if (c->x86 == 0x0f && c->x86_model < 0x40) 474 return 0; 475 476 return 1; 477 } 478 479 static cpumask_var_t c1e_mask; 480 static int c1e_detected; 481 482 void c1e_remove_cpu(int cpu) 483 { 484 if (c1e_mask != NULL) 485 cpumask_clear_cpu(cpu, c1e_mask); 486 } 487 488 /* 489 * C1E aware idle routine. We check for C1E active in the interrupt 490 * pending message MSR. If we detect C1E, then we handle it the same 491 * way as C3 power states (local apic timer and TSC stop) 492 */ 493 static void c1e_idle(void) 494 { 495 if (need_resched()) 496 return; 497 498 if (!c1e_detected) { 499 u32 lo, hi; 500 501 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 502 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 503 c1e_detected = 1; 504 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 505 mark_tsc_unstable("TSC halt in AMD C1E"); 506 printk(KERN_INFO "System has AMD C1E enabled\n"); 507 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 508 } 509 } 510 511 if (c1e_detected) { 512 int cpu = smp_processor_id(); 513 514 if (!cpumask_test_cpu(cpu, c1e_mask)) { 515 cpumask_set_cpu(cpu, c1e_mask); 516 /* 517 * Force broadcast so ACPI can not interfere. 518 */ 519 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 520 &cpu); 521 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 522 cpu); 523 } 524 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 525 526 default_idle(); 527 528 /* 529 * The switch back from broadcast mode needs to be 530 * called with interrupts disabled. 531 */ 532 local_irq_disable(); 533 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 534 local_irq_enable(); 535 } else 536 default_idle(); 537 } 538 539 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 540 { 541 #ifdef CONFIG_SMP 542 if (pm_idle == poll_idle && smp_num_siblings > 1) { 543 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 544 " performance may degrade.\n"); 545 } 546 #endif 547 if (pm_idle) 548 return; 549 550 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 551 /* 552 * One CPU supports mwait => All CPUs supports mwait 553 */ 554 printk(KERN_INFO "using mwait in idle threads.\n"); 555 pm_idle = mwait_idle; 556 } else if (check_c1e_idle(c)) { 557 printk(KERN_INFO "using C1E aware idle routine\n"); 558 pm_idle = c1e_idle; 559 } else 560 pm_idle = default_idle; 561 } 562 563 void __init init_c1e_mask(void) 564 { 565 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 566 if (pm_idle == c1e_idle) 567 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 568 } 569 570 static int __init idle_setup(char *str) 571 { 572 if (!str) 573 return -EINVAL; 574 575 if (!strcmp(str, "poll")) { 576 printk("using polling idle threads.\n"); 577 pm_idle = poll_idle; 578 } else if (!strcmp(str, "mwait")) 579 force_mwait = 1; 580 else if (!strcmp(str, "halt")) { 581 /* 582 * When the boot option of idle=halt is added, halt is 583 * forced to be used for CPU idle. In such case CPU C2/C3 584 * won't be used again. 585 * To continue to load the CPU idle driver, don't touch 586 * the boot_option_idle_override. 587 */ 588 pm_idle = default_idle; 589 idle_halt = 1; 590 return 0; 591 } else if (!strcmp(str, "nomwait")) { 592 /* 593 * If the boot option of "idle=nomwait" is added, 594 * it means that mwait will be disabled for CPU C2/C3 595 * states. In such case it won't touch the variable 596 * of boot_option_idle_override. 597 */ 598 idle_nomwait = 1; 599 return 0; 600 } else 601 return -1; 602 603 boot_option_idle_override = 1; 604 return 0; 605 } 606 early_param("idle", idle_setup); 607 608 unsigned long arch_align_stack(unsigned long sp) 609 { 610 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 611 sp -= get_random_int() % 8192; 612 return sp & ~0xf; 613 } 614 615 unsigned long arch_randomize_brk(struct mm_struct *mm) 616 { 617 unsigned long range_end = mm->brk + 0x02000000; 618 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 619 } 620 621