xref: /linux/arch/x86/kernel/process.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
20 #include <asm/cpu.h>
21 #include <asm/apic.h>
22 #include <asm/syscalls.h>
23 #include <asm/idle.h>
24 #include <asm/uaccess.h>
25 #include <asm/i387.h>
26 #include <asm/fpu-internal.h>
27 #include <asm/debugreg.h>
28 #include <asm/nmi.h>
29 
30 /*
31  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
32  * no more per-task TSS's. The TSS size is kept cacheline-aligned
33  * so they are allowed to end up in the .data..cacheline_aligned
34  * section. Since TSS's are completely CPU-local, we want them
35  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
36  */
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
38 
39 #ifdef CONFIG_X86_64
40 static DEFINE_PER_CPU(unsigned char, is_idle);
41 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
42 
43 void idle_notifier_register(struct notifier_block *n)
44 {
45 	atomic_notifier_chain_register(&idle_notifier, n);
46 }
47 EXPORT_SYMBOL_GPL(idle_notifier_register);
48 
49 void idle_notifier_unregister(struct notifier_block *n)
50 {
51 	atomic_notifier_chain_unregister(&idle_notifier, n);
52 }
53 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
54 #endif
55 
56 struct kmem_cache *task_xstate_cachep;
57 EXPORT_SYMBOL_GPL(task_xstate_cachep);
58 
59 /*
60  * this gets called so that we can store lazy state into memory and copy the
61  * current task into the new thread.
62  */
63 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
64 {
65 	int ret;
66 
67 	unlazy_fpu(src);
68 
69 	*dst = *src;
70 	if (fpu_allocated(&src->thread.fpu)) {
71 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 		ret = fpu_alloc(&dst->thread.fpu);
73 		if (ret)
74 			return ret;
75 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
76 	}
77 	return 0;
78 }
79 
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 	fpu_free(&tsk->thread.fpu);
83 }
84 
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 	free_thread_xstate(tsk);
88 }
89 
90 void arch_task_cache_init(void)
91 {
92         task_xstate_cachep =
93         	kmem_cache_create("task_xstate", xstate_size,
94 				  __alignof__(union thread_xstate),
95 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97 
98 static inline void drop_fpu(struct task_struct *tsk)
99 {
100 	/*
101 	 * Forget coprocessor state..
102 	 */
103 	tsk->fpu_counter = 0;
104 	clear_fpu(tsk);
105 	clear_used_math();
106 }
107 
108 /*
109  * Free current thread data structures etc..
110  */
111 void exit_thread(void)
112 {
113 	struct task_struct *me = current;
114 	struct thread_struct *t = &me->thread;
115 	unsigned long *bp = t->io_bitmap_ptr;
116 
117 	if (bp) {
118 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
119 
120 		t->io_bitmap_ptr = NULL;
121 		clear_thread_flag(TIF_IO_BITMAP);
122 		/*
123 		 * Careful, clear this in the TSS too:
124 		 */
125 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
126 		t->io_bitmap_max = 0;
127 		put_cpu();
128 		kfree(bp);
129 	}
130 
131 	drop_fpu(me);
132 }
133 
134 void show_regs_common(void)
135 {
136 	const char *vendor, *product, *board;
137 
138 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
139 	if (!vendor)
140 		vendor = "";
141 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
142 	if (!product)
143 		product = "";
144 
145 	/* Board Name is optional */
146 	board = dmi_get_system_info(DMI_BOARD_NAME);
147 
148 	printk(KERN_CONT "\n");
149 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
150 		current->pid, current->comm, print_tainted(),
151 		init_utsname()->release,
152 		(int)strcspn(init_utsname()->version, " "),
153 		init_utsname()->version);
154 	printk(KERN_CONT " %s %s", vendor, product);
155 	if (board)
156 		printk(KERN_CONT "/%s", board);
157 	printk(KERN_CONT "\n");
158 }
159 
160 void flush_thread(void)
161 {
162 	struct task_struct *tsk = current;
163 
164 	flush_ptrace_hw_breakpoint(tsk);
165 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
166 	drop_fpu(tsk);
167 }
168 
169 static void hard_disable_TSC(void)
170 {
171 	write_cr4(read_cr4() | X86_CR4_TSD);
172 }
173 
174 void disable_TSC(void)
175 {
176 	preempt_disable();
177 	if (!test_and_set_thread_flag(TIF_NOTSC))
178 		/*
179 		 * Must flip the CPU state synchronously with
180 		 * TIF_NOTSC in the current running context.
181 		 */
182 		hard_disable_TSC();
183 	preempt_enable();
184 }
185 
186 static void hard_enable_TSC(void)
187 {
188 	write_cr4(read_cr4() & ~X86_CR4_TSD);
189 }
190 
191 static void enable_TSC(void)
192 {
193 	preempt_disable();
194 	if (test_and_clear_thread_flag(TIF_NOTSC))
195 		/*
196 		 * Must flip the CPU state synchronously with
197 		 * TIF_NOTSC in the current running context.
198 		 */
199 		hard_enable_TSC();
200 	preempt_enable();
201 }
202 
203 int get_tsc_mode(unsigned long adr)
204 {
205 	unsigned int val;
206 
207 	if (test_thread_flag(TIF_NOTSC))
208 		val = PR_TSC_SIGSEGV;
209 	else
210 		val = PR_TSC_ENABLE;
211 
212 	return put_user(val, (unsigned int __user *)adr);
213 }
214 
215 int set_tsc_mode(unsigned int val)
216 {
217 	if (val == PR_TSC_SIGSEGV)
218 		disable_TSC();
219 	else if (val == PR_TSC_ENABLE)
220 		enable_TSC();
221 	else
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
228 		      struct tss_struct *tss)
229 {
230 	struct thread_struct *prev, *next;
231 
232 	prev = &prev_p->thread;
233 	next = &next_p->thread;
234 
235 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
236 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
237 		unsigned long debugctl = get_debugctlmsr();
238 
239 		debugctl &= ~DEBUGCTLMSR_BTF;
240 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
241 			debugctl |= DEBUGCTLMSR_BTF;
242 
243 		update_debugctlmsr(debugctl);
244 	}
245 
246 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
247 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
248 		/* prev and next are different */
249 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
250 			hard_disable_TSC();
251 		else
252 			hard_enable_TSC();
253 	}
254 
255 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
256 		/*
257 		 * Copy the relevant range of the IO bitmap.
258 		 * Normally this is 128 bytes or less:
259 		 */
260 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261 		       max(prev->io_bitmap_max, next->io_bitmap_max));
262 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
263 		/*
264 		 * Clear any possible leftover bits:
265 		 */
266 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
267 	}
268 	propagate_user_return_notify(prev_p, next_p);
269 }
270 
271 int sys_fork(struct pt_regs *regs)
272 {
273 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
274 }
275 
276 /*
277  * This is trivial, and on the face of it looks like it
278  * could equally well be done in user mode.
279  *
280  * Not so, for quite unobvious reasons - register pressure.
281  * In user mode vfork() cannot have a stack frame, and if
282  * done by calling the "clone()" system call directly, you
283  * do not have enough call-clobbered registers to hold all
284  * the information you need.
285  */
286 int sys_vfork(struct pt_regs *regs)
287 {
288 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
289 		       NULL, NULL);
290 }
291 
292 long
293 sys_clone(unsigned long clone_flags, unsigned long newsp,
294 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
295 {
296 	if (!newsp)
297 		newsp = regs->sp;
298 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
299 }
300 
301 /*
302  * This gets run with %si containing the
303  * function to call, and %di containing
304  * the "args".
305  */
306 extern void kernel_thread_helper(void);
307 
308 /*
309  * Create a kernel thread
310  */
311 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
312 {
313 	struct pt_regs regs;
314 
315 	memset(&regs, 0, sizeof(regs));
316 
317 	regs.si = (unsigned long) fn;
318 	regs.di = (unsigned long) arg;
319 
320 #ifdef CONFIG_X86_32
321 	regs.ds = __USER_DS;
322 	regs.es = __USER_DS;
323 	regs.fs = __KERNEL_PERCPU;
324 	regs.gs = __KERNEL_STACK_CANARY;
325 #else
326 	regs.ss = __KERNEL_DS;
327 #endif
328 
329 	regs.orig_ax = -1;
330 	regs.ip = (unsigned long) kernel_thread_helper;
331 	regs.cs = __KERNEL_CS | get_kernel_rpl();
332 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
333 
334 	/* Ok, create the new process.. */
335 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
336 }
337 EXPORT_SYMBOL(kernel_thread);
338 
339 /*
340  * sys_execve() executes a new program.
341  */
342 long sys_execve(const char __user *name,
343 		const char __user *const __user *argv,
344 		const char __user *const __user *envp, struct pt_regs *regs)
345 {
346 	long error;
347 	char *filename;
348 
349 	filename = getname(name);
350 	error = PTR_ERR(filename);
351 	if (IS_ERR(filename))
352 		return error;
353 	error = do_execve(filename, argv, envp, regs);
354 
355 #ifdef CONFIG_X86_32
356 	if (error == 0) {
357 		/* Make sure we don't return using sysenter.. */
358                 set_thread_flag(TIF_IRET);
359         }
360 #endif
361 
362 	putname(filename);
363 	return error;
364 }
365 
366 /*
367  * Idle related variables and functions
368  */
369 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
370 EXPORT_SYMBOL(boot_option_idle_override);
371 
372 /*
373  * Powermanagement idle function, if any..
374  */
375 void (*pm_idle)(void);
376 #ifdef CONFIG_APM_MODULE
377 EXPORT_SYMBOL(pm_idle);
378 #endif
379 
380 static inline int hlt_use_halt(void)
381 {
382 	return 1;
383 }
384 
385 #ifndef CONFIG_SMP
386 static inline void play_dead(void)
387 {
388 	BUG();
389 }
390 #endif
391 
392 #ifdef CONFIG_X86_64
393 void enter_idle(void)
394 {
395 	this_cpu_write(is_idle, 1);
396 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
397 }
398 
399 static void __exit_idle(void)
400 {
401 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
402 		return;
403 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
404 }
405 
406 /* Called from interrupts to signify idle end */
407 void exit_idle(void)
408 {
409 	/* idle loop has pid 0 */
410 	if (current->pid)
411 		return;
412 	__exit_idle();
413 }
414 #endif
415 
416 /*
417  * The idle thread. There's no useful work to be
418  * done, so just try to conserve power and have a
419  * low exit latency (ie sit in a loop waiting for
420  * somebody to say that they'd like to reschedule)
421  */
422 void cpu_idle(void)
423 {
424 	/*
425 	 * If we're the non-boot CPU, nothing set the stack canary up
426 	 * for us.  CPU0 already has it initialized but no harm in
427 	 * doing it again.  This is a good place for updating it, as
428 	 * we wont ever return from this function (so the invalid
429 	 * canaries already on the stack wont ever trigger).
430 	 */
431 	boot_init_stack_canary();
432 	current_thread_info()->status |= TS_POLLING;
433 
434 	while (1) {
435 		tick_nohz_idle_enter();
436 
437 		while (!need_resched()) {
438 			rmb();
439 
440 			if (cpu_is_offline(smp_processor_id()))
441 				play_dead();
442 
443 			/*
444 			 * Idle routines should keep interrupts disabled
445 			 * from here on, until they go to idle.
446 			 * Otherwise, idle callbacks can misfire.
447 			 */
448 			local_touch_nmi();
449 			local_irq_disable();
450 
451 			enter_idle();
452 
453 			/* Don't trace irqs off for idle */
454 			stop_critical_timings();
455 
456 			/* enter_idle() needs rcu for notifiers */
457 			rcu_idle_enter();
458 
459 			if (cpuidle_idle_call())
460 				pm_idle();
461 
462 			rcu_idle_exit();
463 			start_critical_timings();
464 
465 			/* In many cases the interrupt that ended idle
466 			   has already called exit_idle. But some idle
467 			   loops can be woken up without interrupt. */
468 			__exit_idle();
469 		}
470 
471 		tick_nohz_idle_exit();
472 		preempt_enable_no_resched();
473 		schedule();
474 		preempt_disable();
475 	}
476 }
477 
478 /*
479  * We use this if we don't have any better
480  * idle routine..
481  */
482 void default_idle(void)
483 {
484 	if (hlt_use_halt()) {
485 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
486 		trace_cpu_idle_rcuidle(1, smp_processor_id());
487 		current_thread_info()->status &= ~TS_POLLING;
488 		/*
489 		 * TS_POLLING-cleared state must be visible before we
490 		 * test NEED_RESCHED:
491 		 */
492 		smp_mb();
493 
494 		if (!need_resched())
495 			safe_halt();	/* enables interrupts racelessly */
496 		else
497 			local_irq_enable();
498 		current_thread_info()->status |= TS_POLLING;
499 		trace_power_end_rcuidle(smp_processor_id());
500 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
501 	} else {
502 		local_irq_enable();
503 		/* loop is done by the caller */
504 		cpu_relax();
505 	}
506 }
507 #ifdef CONFIG_APM_MODULE
508 EXPORT_SYMBOL(default_idle);
509 #endif
510 
511 bool set_pm_idle_to_default(void)
512 {
513 	bool ret = !!pm_idle;
514 
515 	pm_idle = default_idle;
516 
517 	return ret;
518 }
519 void stop_this_cpu(void *dummy)
520 {
521 	local_irq_disable();
522 	/*
523 	 * Remove this CPU:
524 	 */
525 	set_cpu_online(smp_processor_id(), false);
526 	disable_local_APIC();
527 
528 	for (;;) {
529 		if (hlt_works(smp_processor_id()))
530 			halt();
531 	}
532 }
533 
534 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
535 static void mwait_idle(void)
536 {
537 	if (!need_resched()) {
538 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
539 		trace_cpu_idle_rcuidle(1, smp_processor_id());
540 		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
541 			clflush((void *)&current_thread_info()->flags);
542 
543 		__monitor((void *)&current_thread_info()->flags, 0, 0);
544 		smp_mb();
545 		if (!need_resched())
546 			__sti_mwait(0, 0);
547 		else
548 			local_irq_enable();
549 		trace_power_end_rcuidle(smp_processor_id());
550 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
551 	} else
552 		local_irq_enable();
553 }
554 
555 /*
556  * On SMP it's slightly faster (but much more power-consuming!)
557  * to poll the ->work.need_resched flag instead of waiting for the
558  * cross-CPU IPI to arrive. Use this option with caution.
559  */
560 static void poll_idle(void)
561 {
562 	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
563 	trace_cpu_idle_rcuidle(0, smp_processor_id());
564 	local_irq_enable();
565 	while (!need_resched())
566 		cpu_relax();
567 	trace_power_end_rcuidle(smp_processor_id());
568 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
569 }
570 
571 /*
572  * mwait selection logic:
573  *
574  * It depends on the CPU. For AMD CPUs that support MWAIT this is
575  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
576  * then depend on a clock divisor and current Pstate of the core. If
577  * all cores of a processor are in halt state (C1) the processor can
578  * enter the C1E (C1 enhanced) state. If mwait is used this will never
579  * happen.
580  *
581  * idle=mwait overrides this decision and forces the usage of mwait.
582  */
583 
584 #define MWAIT_INFO			0x05
585 #define MWAIT_ECX_EXTENDED_INFO		0x01
586 #define MWAIT_EDX_C1			0xf0
587 
588 int mwait_usable(const struct cpuinfo_x86 *c)
589 {
590 	u32 eax, ebx, ecx, edx;
591 
592 	/* Use mwait if idle=mwait boot option is given */
593 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
594 		return 1;
595 
596 	/*
597 	 * Any idle= boot option other than idle=mwait means that we must not
598 	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
599 	 */
600 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
601 		return 0;
602 
603 	if (c->cpuid_level < MWAIT_INFO)
604 		return 0;
605 
606 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
607 	/* Check, whether EDX has extended info about MWAIT */
608 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
609 		return 1;
610 
611 	/*
612 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
613 	 * C1  supports MWAIT
614 	 */
615 	return (edx & MWAIT_EDX_C1);
616 }
617 
618 bool amd_e400_c1e_detected;
619 EXPORT_SYMBOL(amd_e400_c1e_detected);
620 
621 static cpumask_var_t amd_e400_c1e_mask;
622 
623 void amd_e400_remove_cpu(int cpu)
624 {
625 	if (amd_e400_c1e_mask != NULL)
626 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
627 }
628 
629 /*
630  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
631  * pending message MSR. If we detect C1E, then we handle it the same
632  * way as C3 power states (local apic timer and TSC stop)
633  */
634 static void amd_e400_idle(void)
635 {
636 	if (need_resched())
637 		return;
638 
639 	if (!amd_e400_c1e_detected) {
640 		u32 lo, hi;
641 
642 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
643 
644 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
645 			amd_e400_c1e_detected = true;
646 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
647 				mark_tsc_unstable("TSC halt in AMD C1E");
648 			printk(KERN_INFO "System has AMD C1E enabled\n");
649 		}
650 	}
651 
652 	if (amd_e400_c1e_detected) {
653 		int cpu = smp_processor_id();
654 
655 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
656 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
657 			/*
658 			 * Force broadcast so ACPI can not interfere.
659 			 */
660 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
661 					   &cpu);
662 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
663 			       cpu);
664 		}
665 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
666 
667 		default_idle();
668 
669 		/*
670 		 * The switch back from broadcast mode needs to be
671 		 * called with interrupts disabled.
672 		 */
673 		 local_irq_disable();
674 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
675 		 local_irq_enable();
676 	} else
677 		default_idle();
678 }
679 
680 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
681 {
682 #ifdef CONFIG_SMP
683 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
684 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
685 			" performance may degrade.\n");
686 	}
687 #endif
688 	if (pm_idle)
689 		return;
690 
691 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
692 		/*
693 		 * One CPU supports mwait => All CPUs supports mwait
694 		 */
695 		printk(KERN_INFO "using mwait in idle threads.\n");
696 		pm_idle = mwait_idle;
697 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
698 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
699 		printk(KERN_INFO "using AMD E400 aware idle routine\n");
700 		pm_idle = amd_e400_idle;
701 	} else
702 		pm_idle = default_idle;
703 }
704 
705 void __init init_amd_e400_c1e_mask(void)
706 {
707 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
708 	if (pm_idle == amd_e400_idle)
709 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
710 }
711 
712 static int __init idle_setup(char *str)
713 {
714 	if (!str)
715 		return -EINVAL;
716 
717 	if (!strcmp(str, "poll")) {
718 		printk("using polling idle threads.\n");
719 		pm_idle = poll_idle;
720 		boot_option_idle_override = IDLE_POLL;
721 	} else if (!strcmp(str, "mwait")) {
722 		boot_option_idle_override = IDLE_FORCE_MWAIT;
723 		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
724 	} else if (!strcmp(str, "halt")) {
725 		/*
726 		 * When the boot option of idle=halt is added, halt is
727 		 * forced to be used for CPU idle. In such case CPU C2/C3
728 		 * won't be used again.
729 		 * To continue to load the CPU idle driver, don't touch
730 		 * the boot_option_idle_override.
731 		 */
732 		pm_idle = default_idle;
733 		boot_option_idle_override = IDLE_HALT;
734 	} else if (!strcmp(str, "nomwait")) {
735 		/*
736 		 * If the boot option of "idle=nomwait" is added,
737 		 * it means that mwait will be disabled for CPU C2/C3
738 		 * states. In such case it won't touch the variable
739 		 * of boot_option_idle_override.
740 		 */
741 		boot_option_idle_override = IDLE_NOMWAIT;
742 	} else
743 		return -1;
744 
745 	return 0;
746 }
747 early_param("idle", idle_setup);
748 
749 unsigned long arch_align_stack(unsigned long sp)
750 {
751 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
752 		sp -= get_random_int() % 8192;
753 	return sp & ~0xf;
754 }
755 
756 unsigned long arch_randomize_brk(struct mm_struct *mm)
757 {
758 	unsigned long range_end = mm->brk + 0x02000000;
759 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
760 }
761 
762