xref: /linux/arch/x86/kernel/process.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <asm/idle.h>
27 #include <asm/uaccess.h>
28 #include <asm/mwait.h>
29 #include <asm/fpu/internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mce.h>
34 #include <asm/vm86.h>
35 
36 /*
37  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
38  * no more per-task TSS's. The TSS size is kept cacheline-aligned
39  * so they are allowed to end up in the .data..cacheline_aligned
40  * section. Since TSS's are completely CPU-local, we want them
41  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42  */
43 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
44 	.x86_tss = {
45 		.sp0 = TOP_OF_INIT_STACK,
46 #ifdef CONFIG_X86_32
47 		.ss0 = __KERNEL_DS,
48 		.ss1 = __KERNEL_CS,
49 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
50 #endif
51 	 },
52 #ifdef CONFIG_X86_32
53 	 /*
54 	  * Note that the .io_bitmap member must be extra-big. This is because
55 	  * the CPU will access an additional byte beyond the end of the IO
56 	  * permission bitmap. The extra byte must be all 1 bits, and must
57 	  * be within the limit.
58 	  */
59 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
60 #endif
61 #ifdef CONFIG_X86_32
62 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
63 #endif
64 };
65 EXPORT_PER_CPU_SYMBOL(cpu_tss);
66 
67 #ifdef CONFIG_X86_64
68 static DEFINE_PER_CPU(unsigned char, is_idle);
69 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
70 
71 void idle_notifier_register(struct notifier_block *n)
72 {
73 	atomic_notifier_chain_register(&idle_notifier, n);
74 }
75 EXPORT_SYMBOL_GPL(idle_notifier_register);
76 
77 void idle_notifier_unregister(struct notifier_block *n)
78 {
79 	atomic_notifier_chain_unregister(&idle_notifier, n);
80 }
81 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
82 #endif
83 
84 /*
85  * this gets called so that we can store lazy state into memory and copy the
86  * current task into the new thread.
87  */
88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
89 {
90 	memcpy(dst, src, arch_task_struct_size);
91 #ifdef CONFIG_VM86
92 	dst->thread.vm86 = NULL;
93 #endif
94 
95 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
96 }
97 
98 /*
99  * Free current thread data structures etc..
100  */
101 void exit_thread(struct task_struct *tsk)
102 {
103 	struct thread_struct *t = &tsk->thread;
104 	unsigned long *bp = t->io_bitmap_ptr;
105 	struct fpu *fpu = &t->fpu;
106 
107 	if (bp) {
108 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
109 
110 		t->io_bitmap_ptr = NULL;
111 		clear_thread_flag(TIF_IO_BITMAP);
112 		/*
113 		 * Careful, clear this in the TSS too:
114 		 */
115 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 		t->io_bitmap_max = 0;
117 		put_cpu();
118 		kfree(bp);
119 	}
120 
121 	free_vm86(t);
122 
123 	fpu__drop(fpu);
124 }
125 
126 void flush_thread(void)
127 {
128 	struct task_struct *tsk = current;
129 
130 	flush_ptrace_hw_breakpoint(tsk);
131 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132 
133 	fpu__clear(&tsk->thread.fpu);
134 }
135 
136 static void hard_disable_TSC(void)
137 {
138 	cr4_set_bits(X86_CR4_TSD);
139 }
140 
141 void disable_TSC(void)
142 {
143 	preempt_disable();
144 	if (!test_and_set_thread_flag(TIF_NOTSC))
145 		/*
146 		 * Must flip the CPU state synchronously with
147 		 * TIF_NOTSC in the current running context.
148 		 */
149 		hard_disable_TSC();
150 	preempt_enable();
151 }
152 
153 static void hard_enable_TSC(void)
154 {
155 	cr4_clear_bits(X86_CR4_TSD);
156 }
157 
158 static void enable_TSC(void)
159 {
160 	preempt_disable();
161 	if (test_and_clear_thread_flag(TIF_NOTSC))
162 		/*
163 		 * Must flip the CPU state synchronously with
164 		 * TIF_NOTSC in the current running context.
165 		 */
166 		hard_enable_TSC();
167 	preempt_enable();
168 }
169 
170 int get_tsc_mode(unsigned long adr)
171 {
172 	unsigned int val;
173 
174 	if (test_thread_flag(TIF_NOTSC))
175 		val = PR_TSC_SIGSEGV;
176 	else
177 		val = PR_TSC_ENABLE;
178 
179 	return put_user(val, (unsigned int __user *)adr);
180 }
181 
182 int set_tsc_mode(unsigned int val)
183 {
184 	if (val == PR_TSC_SIGSEGV)
185 		disable_TSC();
186 	else if (val == PR_TSC_ENABLE)
187 		enable_TSC();
188 	else
189 		return -EINVAL;
190 
191 	return 0;
192 }
193 
194 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195 		      struct tss_struct *tss)
196 {
197 	struct thread_struct *prev, *next;
198 
199 	prev = &prev_p->thread;
200 	next = &next_p->thread;
201 
202 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204 		unsigned long debugctl = get_debugctlmsr();
205 
206 		debugctl &= ~DEBUGCTLMSR_BTF;
207 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208 			debugctl |= DEBUGCTLMSR_BTF;
209 
210 		update_debugctlmsr(debugctl);
211 	}
212 
213 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215 		/* prev and next are different */
216 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217 			hard_disable_TSC();
218 		else
219 			hard_enable_TSC();
220 	}
221 
222 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
223 		/*
224 		 * Copy the relevant range of the IO bitmap.
225 		 * Normally this is 128 bytes or less:
226 		 */
227 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228 		       max(prev->io_bitmap_max, next->io_bitmap_max));
229 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
230 		/*
231 		 * Clear any possible leftover bits:
232 		 */
233 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
234 	}
235 	propagate_user_return_notify(prev_p, next_p);
236 }
237 
238 /*
239  * Idle related variables and functions
240  */
241 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
242 EXPORT_SYMBOL(boot_option_idle_override);
243 
244 static void (*x86_idle)(void);
245 
246 #ifndef CONFIG_SMP
247 static inline void play_dead(void)
248 {
249 	BUG();
250 }
251 #endif
252 
253 #ifdef CONFIG_X86_64
254 void enter_idle(void)
255 {
256 	this_cpu_write(is_idle, 1);
257 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
258 }
259 
260 static void __exit_idle(void)
261 {
262 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
263 		return;
264 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
265 }
266 
267 /* Called from interrupts to signify idle end */
268 void exit_idle(void)
269 {
270 	/* idle loop has pid 0 */
271 	if (current->pid)
272 		return;
273 	__exit_idle();
274 }
275 #endif
276 
277 void arch_cpu_idle_enter(void)
278 {
279 	local_touch_nmi();
280 	enter_idle();
281 }
282 
283 void arch_cpu_idle_exit(void)
284 {
285 	__exit_idle();
286 }
287 
288 void arch_cpu_idle_dead(void)
289 {
290 	play_dead();
291 }
292 
293 /*
294  * Called from the generic idle code.
295  */
296 void arch_cpu_idle(void)
297 {
298 	x86_idle();
299 }
300 
301 /*
302  * We use this if we don't have any better idle routine..
303  */
304 void default_idle(void)
305 {
306 	trace_cpu_idle_rcuidle(1, smp_processor_id());
307 	safe_halt();
308 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
309 }
310 #ifdef CONFIG_APM_MODULE
311 EXPORT_SYMBOL(default_idle);
312 #endif
313 
314 #ifdef CONFIG_XEN
315 bool xen_set_default_idle(void)
316 {
317 	bool ret = !!x86_idle;
318 
319 	x86_idle = default_idle;
320 
321 	return ret;
322 }
323 #endif
324 void stop_this_cpu(void *dummy)
325 {
326 	local_irq_disable();
327 	/*
328 	 * Remove this CPU:
329 	 */
330 	set_cpu_online(smp_processor_id(), false);
331 	disable_local_APIC();
332 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
333 
334 	for (;;)
335 		halt();
336 }
337 
338 bool amd_e400_c1e_detected;
339 EXPORT_SYMBOL(amd_e400_c1e_detected);
340 
341 static cpumask_var_t amd_e400_c1e_mask;
342 
343 void amd_e400_remove_cpu(int cpu)
344 {
345 	if (amd_e400_c1e_mask != NULL)
346 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
347 }
348 
349 /*
350  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351  * pending message MSR. If we detect C1E, then we handle it the same
352  * way as C3 power states (local apic timer and TSC stop)
353  */
354 static void amd_e400_idle(void)
355 {
356 	if (!amd_e400_c1e_detected) {
357 		u32 lo, hi;
358 
359 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
360 
361 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
362 			amd_e400_c1e_detected = true;
363 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
364 				mark_tsc_unstable("TSC halt in AMD C1E");
365 			pr_info("System has AMD C1E enabled\n");
366 		}
367 	}
368 
369 	if (amd_e400_c1e_detected) {
370 		int cpu = smp_processor_id();
371 
372 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
373 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
374 			/* Force broadcast so ACPI can not interfere. */
375 			tick_broadcast_force();
376 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
377 		}
378 		tick_broadcast_enter();
379 
380 		default_idle();
381 
382 		/*
383 		 * The switch back from broadcast mode needs to be
384 		 * called with interrupts disabled.
385 		 */
386 		local_irq_disable();
387 		tick_broadcast_exit();
388 		local_irq_enable();
389 	} else
390 		default_idle();
391 }
392 
393 /*
394  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395  * We can't rely on cpuidle installing MWAIT, because it will not load
396  * on systems that support only C1 -- so the boot default must be MWAIT.
397  *
398  * Some AMD machines are the opposite, they depend on using HALT.
399  *
400  * So for default C1, which is used during boot until cpuidle loads,
401  * use MWAIT-C1 on Intel HW that has it, else use HALT.
402  */
403 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
404 {
405 	if (c->x86_vendor != X86_VENDOR_INTEL)
406 		return 0;
407 
408 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
409 		return 0;
410 
411 	return 1;
412 }
413 
414 /*
415  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416  * with interrupts enabled and no flags, which is backwards compatible with the
417  * original MWAIT implementation.
418  */
419 static void mwait_idle(void)
420 {
421 	if (!current_set_polling_and_test()) {
422 		trace_cpu_idle_rcuidle(1, smp_processor_id());
423 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
424 			mb(); /* quirk */
425 			clflush((void *)&current_thread_info()->flags);
426 			mb(); /* quirk */
427 		}
428 
429 		__monitor((void *)&current_thread_info()->flags, 0, 0);
430 		if (!need_resched())
431 			__sti_mwait(0, 0);
432 		else
433 			local_irq_enable();
434 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
435 	} else {
436 		local_irq_enable();
437 	}
438 	__current_clr_polling();
439 }
440 
441 void select_idle_routine(const struct cpuinfo_x86 *c)
442 {
443 #ifdef CONFIG_SMP
444 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
445 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
446 #endif
447 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
448 		return;
449 
450 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
451 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
452 		pr_info("using AMD E400 aware idle routine\n");
453 		x86_idle = amd_e400_idle;
454 	} else if (prefer_mwait_c1_over_halt(c)) {
455 		pr_info("using mwait in idle threads\n");
456 		x86_idle = mwait_idle;
457 	} else
458 		x86_idle = default_idle;
459 }
460 
461 void __init init_amd_e400_c1e_mask(void)
462 {
463 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464 	if (x86_idle == amd_e400_idle)
465 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
466 }
467 
468 static int __init idle_setup(char *str)
469 {
470 	if (!str)
471 		return -EINVAL;
472 
473 	if (!strcmp(str, "poll")) {
474 		pr_info("using polling idle threads\n");
475 		boot_option_idle_override = IDLE_POLL;
476 		cpu_idle_poll_ctrl(true);
477 	} else if (!strcmp(str, "halt")) {
478 		/*
479 		 * When the boot option of idle=halt is added, halt is
480 		 * forced to be used for CPU idle. In such case CPU C2/C3
481 		 * won't be used again.
482 		 * To continue to load the CPU idle driver, don't touch
483 		 * the boot_option_idle_override.
484 		 */
485 		x86_idle = default_idle;
486 		boot_option_idle_override = IDLE_HALT;
487 	} else if (!strcmp(str, "nomwait")) {
488 		/*
489 		 * If the boot option of "idle=nomwait" is added,
490 		 * it means that mwait will be disabled for CPU C2/C3
491 		 * states. In such case it won't touch the variable
492 		 * of boot_option_idle_override.
493 		 */
494 		boot_option_idle_override = IDLE_NOMWAIT;
495 	} else
496 		return -1;
497 
498 	return 0;
499 }
500 early_param("idle", idle_setup);
501 
502 unsigned long arch_align_stack(unsigned long sp)
503 {
504 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
505 		sp -= get_random_int() % 8192;
506 	return sp & ~0xf;
507 }
508 
509 unsigned long arch_randomize_brk(struct mm_struct *mm)
510 {
511 	unsigned long range_end = mm->brk + 0x02000000;
512 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
513 }
514 
515 /*
516  * Called from fs/proc with a reference on @p to find the function
517  * which called into schedule(). This needs to be done carefully
518  * because the task might wake up and we might look at a stack
519  * changing under us.
520  */
521 unsigned long get_wchan(struct task_struct *p)
522 {
523 	unsigned long start, bottom, top, sp, fp, ip;
524 	int count = 0;
525 
526 	if (!p || p == current || p->state == TASK_RUNNING)
527 		return 0;
528 
529 	start = (unsigned long)task_stack_page(p);
530 	if (!start)
531 		return 0;
532 
533 	/*
534 	 * Layout of the stack page:
535 	 *
536 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
537 	 * PADDING
538 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
539 	 * stack
540 	 * ----------- bottom = start + sizeof(thread_info)
541 	 * thread_info
542 	 * ----------- start
543 	 *
544 	 * The tasks stack pointer points at the location where the
545 	 * framepointer is stored. The data on the stack is:
546 	 * ... IP FP ... IP FP
547 	 *
548 	 * We need to read FP and IP, so we need to adjust the upper
549 	 * bound by another unsigned long.
550 	 */
551 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
552 	top -= 2 * sizeof(unsigned long);
553 	bottom = start + sizeof(struct thread_info);
554 
555 	sp = READ_ONCE(p->thread.sp);
556 	if (sp < bottom || sp > top)
557 		return 0;
558 
559 	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
560 	do {
561 		if (fp < bottom || fp > top)
562 			return 0;
563 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
564 		if (!in_sched_functions(ip))
565 			return ip;
566 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
567 	} while (count++ < 16 && p->state != TASK_RUNNING);
568 	return 0;
569 }
570