xref: /linux/arch/x86/kernel/nmi.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22 
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26 
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/nmi.h>
35 
36 struct nmi_desc {
37 	spinlock_t lock;
38 	struct list_head head;
39 };
40 
41 static struct nmi_desc nmi_desc[NMI_MAX] =
42 {
43 	{
44 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
45 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
46 	},
47 	{
48 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
49 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
50 	},
51 	{
52 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
53 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
54 	},
55 	{
56 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
57 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
58 	},
59 
60 };
61 
62 struct nmi_stats {
63 	unsigned int normal;
64 	unsigned int unknown;
65 	unsigned int external;
66 	unsigned int swallow;
67 };
68 
69 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
70 
71 static int ignore_nmis;
72 
73 int unknown_nmi_panic;
74 /*
75  * Prevent NMI reason port (0x61) being accessed simultaneously, can
76  * only be used in NMI handler.
77  */
78 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
79 
80 static int __init setup_unknown_nmi_panic(char *str)
81 {
82 	unknown_nmi_panic = 1;
83 	return 1;
84 }
85 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
86 
87 #define nmi_to_desc(type) (&nmi_desc[type])
88 
89 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
90 static int __init nmi_warning_debugfs(void)
91 {
92 	debugfs_create_u64("nmi_longest_ns", 0644,
93 			arch_debugfs_dir, &nmi_longest_ns);
94 	return 0;
95 }
96 fs_initcall(nmi_warning_debugfs);
97 
98 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
99 {
100 	struct nmi_desc *desc = nmi_to_desc(type);
101 	struct nmiaction *a;
102 	int handled=0;
103 
104 	rcu_read_lock();
105 
106 	/*
107 	 * NMIs are edge-triggered, which means if you have enough
108 	 * of them concurrently, you can lose some because only one
109 	 * can be latched at any given time.  Walk the whole list
110 	 * to handle those situations.
111 	 */
112 	list_for_each_entry_rcu(a, &desc->head, list) {
113 		u64 before, delta, whole_msecs;
114 		int decimal_msecs, thishandled;
115 
116 		before = local_clock();
117 		thishandled = a->handler(type, regs);
118 		handled += thishandled;
119 		delta = local_clock() - before;
120 		trace_nmi_handler(a->handler, (int)delta, thishandled);
121 
122 		if (delta < nmi_longest_ns)
123 			continue;
124 
125 		nmi_longest_ns = delta;
126 		whole_msecs = do_div(delta, (1000 * 1000));
127 		decimal_msecs = do_div(delta, 1000) % 1000;
128 		printk_ratelimited(KERN_INFO
129 			"INFO: NMI handler (%ps) took too long to run: "
130 			"%lld.%03d msecs\n", a->handler, whole_msecs,
131 			decimal_msecs);
132 	}
133 
134 	rcu_read_unlock();
135 
136 	/* return total number of NMI events handled */
137 	return handled;
138 }
139 
140 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
141 {
142 	struct nmi_desc *desc = nmi_to_desc(type);
143 	unsigned long flags;
144 
145 	if (!action->handler)
146 		return -EINVAL;
147 
148 	spin_lock_irqsave(&desc->lock, flags);
149 
150 	/*
151 	 * most handlers of type NMI_UNKNOWN never return because
152 	 * they just assume the NMI is theirs.  Just a sanity check
153 	 * to manage expectations
154 	 */
155 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
156 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
157 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
158 
159 	/*
160 	 * some handlers need to be executed first otherwise a fake
161 	 * event confuses some handlers (kdump uses this flag)
162 	 */
163 	if (action->flags & NMI_FLAG_FIRST)
164 		list_add_rcu(&action->list, &desc->head);
165 	else
166 		list_add_tail_rcu(&action->list, &desc->head);
167 
168 	spin_unlock_irqrestore(&desc->lock, flags);
169 	return 0;
170 }
171 EXPORT_SYMBOL(__register_nmi_handler);
172 
173 void unregister_nmi_handler(unsigned int type, const char *name)
174 {
175 	struct nmi_desc *desc = nmi_to_desc(type);
176 	struct nmiaction *n;
177 	unsigned long flags;
178 
179 	spin_lock_irqsave(&desc->lock, flags);
180 
181 	list_for_each_entry_rcu(n, &desc->head, list) {
182 		/*
183 		 * the name passed in to describe the nmi handler
184 		 * is used as the lookup key
185 		 */
186 		if (!strcmp(n->name, name)) {
187 			WARN(in_nmi(),
188 				"Trying to free NMI (%s) from NMI context!\n", n->name);
189 			list_del_rcu(&n->list);
190 			break;
191 		}
192 	}
193 
194 	spin_unlock_irqrestore(&desc->lock, flags);
195 	synchronize_rcu();
196 }
197 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
198 
199 static __kprobes void
200 pci_serr_error(unsigned char reason, struct pt_regs *regs)
201 {
202 	/* check to see if anyone registered against these types of errors */
203 	if (nmi_handle(NMI_SERR, regs, false))
204 		return;
205 
206 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
207 		 reason, smp_processor_id());
208 
209 	/*
210 	 * On some machines, PCI SERR line is used to report memory
211 	 * errors. EDAC makes use of it.
212 	 */
213 #if defined(CONFIG_EDAC)
214 	if (edac_handler_set()) {
215 		edac_atomic_assert_error();
216 		return;
217 	}
218 #endif
219 
220 	if (panic_on_unrecovered_nmi)
221 		panic("NMI: Not continuing");
222 
223 	pr_emerg("Dazed and confused, but trying to continue\n");
224 
225 	/* Clear and disable the PCI SERR error line. */
226 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
227 	outb(reason, NMI_REASON_PORT);
228 }
229 
230 static __kprobes void
231 io_check_error(unsigned char reason, struct pt_regs *regs)
232 {
233 	unsigned long i;
234 
235 	/* check to see if anyone registered against these types of errors */
236 	if (nmi_handle(NMI_IO_CHECK, regs, false))
237 		return;
238 
239 	pr_emerg(
240 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
241 		 reason, smp_processor_id());
242 	show_regs(regs);
243 
244 	if (panic_on_io_nmi)
245 		panic("NMI IOCK error: Not continuing");
246 
247 	/* Re-enable the IOCK line, wait for a few seconds */
248 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
249 	outb(reason, NMI_REASON_PORT);
250 
251 	i = 20000;
252 	while (--i) {
253 		touch_nmi_watchdog();
254 		udelay(100);
255 	}
256 
257 	reason &= ~NMI_REASON_CLEAR_IOCHK;
258 	outb(reason, NMI_REASON_PORT);
259 }
260 
261 static __kprobes void
262 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
263 {
264 	int handled;
265 
266 	/*
267 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
268 	 * Of course this makes having multiple 'unknown' handlers useless
269 	 * as only the first one is ever run (unless it can actually determine
270 	 * if it caused the NMI)
271 	 */
272 	handled = nmi_handle(NMI_UNKNOWN, regs, false);
273 	if (handled) {
274 		__this_cpu_add(nmi_stats.unknown, handled);
275 		return;
276 	}
277 
278 	__this_cpu_add(nmi_stats.unknown, 1);
279 
280 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
281 		 reason, smp_processor_id());
282 
283 	pr_emerg("Do you have a strange power saving mode enabled?\n");
284 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
285 		panic("NMI: Not continuing");
286 
287 	pr_emerg("Dazed and confused, but trying to continue\n");
288 }
289 
290 static DEFINE_PER_CPU(bool, swallow_nmi);
291 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
292 
293 static __kprobes void default_do_nmi(struct pt_regs *regs)
294 {
295 	unsigned char reason = 0;
296 	int handled;
297 	bool b2b = false;
298 
299 	/*
300 	 * CPU-specific NMI must be processed before non-CPU-specific
301 	 * NMI, otherwise we may lose it, because the CPU-specific
302 	 * NMI can not be detected/processed on other CPUs.
303 	 */
304 
305 	/*
306 	 * Back-to-back NMIs are interesting because they can either
307 	 * be two NMI or more than two NMIs (any thing over two is dropped
308 	 * due to NMI being edge-triggered).  If this is the second half
309 	 * of the back-to-back NMI, assume we dropped things and process
310 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
311 	 */
312 	if (regs->ip == __this_cpu_read(last_nmi_rip))
313 		b2b = true;
314 	else
315 		__this_cpu_write(swallow_nmi, false);
316 
317 	__this_cpu_write(last_nmi_rip, regs->ip);
318 
319 	handled = nmi_handle(NMI_LOCAL, regs, b2b);
320 	__this_cpu_add(nmi_stats.normal, handled);
321 	if (handled) {
322 		/*
323 		 * There are cases when a NMI handler handles multiple
324 		 * events in the current NMI.  One of these events may
325 		 * be queued for in the next NMI.  Because the event is
326 		 * already handled, the next NMI will result in an unknown
327 		 * NMI.  Instead lets flag this for a potential NMI to
328 		 * swallow.
329 		 */
330 		if (handled > 1)
331 			__this_cpu_write(swallow_nmi, true);
332 		return;
333 	}
334 
335 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
336 	raw_spin_lock(&nmi_reason_lock);
337 	reason = x86_platform.get_nmi_reason();
338 
339 	if (reason & NMI_REASON_MASK) {
340 		if (reason & NMI_REASON_SERR)
341 			pci_serr_error(reason, regs);
342 		else if (reason & NMI_REASON_IOCHK)
343 			io_check_error(reason, regs);
344 #ifdef CONFIG_X86_32
345 		/*
346 		 * Reassert NMI in case it became active
347 		 * meanwhile as it's edge-triggered:
348 		 */
349 		reassert_nmi();
350 #endif
351 		__this_cpu_add(nmi_stats.external, 1);
352 		raw_spin_unlock(&nmi_reason_lock);
353 		return;
354 	}
355 	raw_spin_unlock(&nmi_reason_lock);
356 
357 	/*
358 	 * Only one NMI can be latched at a time.  To handle
359 	 * this we may process multiple nmi handlers at once to
360 	 * cover the case where an NMI is dropped.  The downside
361 	 * to this approach is we may process an NMI prematurely,
362 	 * while its real NMI is sitting latched.  This will cause
363 	 * an unknown NMI on the next run of the NMI processing.
364 	 *
365 	 * We tried to flag that condition above, by setting the
366 	 * swallow_nmi flag when we process more than one event.
367 	 * This condition is also only present on the second half
368 	 * of a back-to-back NMI, so we flag that condition too.
369 	 *
370 	 * If both are true, we assume we already processed this
371 	 * NMI previously and we swallow it.  Otherwise we reset
372 	 * the logic.
373 	 *
374 	 * There are scenarios where we may accidentally swallow
375 	 * a 'real' unknown NMI.  For example, while processing
376 	 * a perf NMI another perf NMI comes in along with a
377 	 * 'real' unknown NMI.  These two NMIs get combined into
378 	 * one (as descibed above).  When the next NMI gets
379 	 * processed, it will be flagged by perf as handled, but
380 	 * noone will know that there was a 'real' unknown NMI sent
381 	 * also.  As a result it gets swallowed.  Or if the first
382 	 * perf NMI returns two events handled then the second
383 	 * NMI will get eaten by the logic below, again losing a
384 	 * 'real' unknown NMI.  But this is the best we can do
385 	 * for now.
386 	 */
387 	if (b2b && __this_cpu_read(swallow_nmi))
388 		__this_cpu_add(nmi_stats.swallow, 1);
389 	else
390 		unknown_nmi_error(reason, regs);
391 }
392 
393 /*
394  * NMIs can hit breakpoints which will cause it to lose its
395  * NMI context with the CPU when the breakpoint does an iret.
396  */
397 #ifdef CONFIG_X86_32
398 /*
399  * For i386, NMIs use the same stack as the kernel, and we can
400  * add a workaround to the iret problem in C (preventing nested
401  * NMIs if an NMI takes a trap). Simply have 3 states the NMI
402  * can be in:
403  *
404  *  1) not running
405  *  2) executing
406  *  3) latched
407  *
408  * When no NMI is in progress, it is in the "not running" state.
409  * When an NMI comes in, it goes into the "executing" state.
410  * Normally, if another NMI is triggered, it does not interrupt
411  * the running NMI and the HW will simply latch it so that when
412  * the first NMI finishes, it will restart the second NMI.
413  * (Note, the latch is binary, thus multiple NMIs triggering,
414  *  when one is running, are ignored. Only one NMI is restarted.)
415  *
416  * If an NMI hits a breakpoint that executes an iret, another
417  * NMI can preempt it. We do not want to allow this new NMI
418  * to run, but we want to execute it when the first one finishes.
419  * We set the state to "latched", and the exit of the first NMI will
420  * perform a dec_return, if the result is zero (NOT_RUNNING), then
421  * it will simply exit the NMI handler. If not, the dec_return
422  * would have set the state to NMI_EXECUTING (what we want it to
423  * be when we are running). In this case, we simply jump back
424  * to rerun the NMI handler again, and restart the 'latched' NMI.
425  *
426  * No trap (breakpoint or page fault) should be hit before nmi_restart,
427  * thus there is no race between the first check of state for NOT_RUNNING
428  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
429  * at this point.
430  *
431  * In case the NMI takes a page fault, we need to save off the CR2
432  * because the NMI could have preempted another page fault and corrupt
433  * the CR2 that is about to be read. As nested NMIs must be restarted
434  * and they can not take breakpoints or page faults, the update of the
435  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
436  * Otherwise, there would be a race of another nested NMI coming in
437  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
438  */
439 enum nmi_states {
440 	NMI_NOT_RUNNING = 0,
441 	NMI_EXECUTING,
442 	NMI_LATCHED,
443 };
444 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
445 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
446 
447 #define nmi_nesting_preprocess(regs)					\
448 	do {								\
449 		if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {	\
450 			this_cpu_write(nmi_state, NMI_LATCHED);		\
451 			return;						\
452 		}							\
453 		this_cpu_write(nmi_state, NMI_EXECUTING);		\
454 		this_cpu_write(nmi_cr2, read_cr2());			\
455 	} while (0);							\
456 	nmi_restart:
457 
458 #define nmi_nesting_postprocess()					\
459 	do {								\
460 		if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))	\
461 			write_cr2(this_cpu_read(nmi_cr2));		\
462 		if (this_cpu_dec_return(nmi_state))			\
463 			goto nmi_restart;				\
464 	} while (0)
465 #else /* x86_64 */
466 /*
467  * In x86_64 things are a bit more difficult. This has the same problem
468  * where an NMI hitting a breakpoint that calls iret will remove the
469  * NMI context, allowing a nested NMI to enter. What makes this more
470  * difficult is that both NMIs and breakpoints have their own stack.
471  * When a new NMI or breakpoint is executed, the stack is set to a fixed
472  * point. If an NMI is nested, it will have its stack set at that same
473  * fixed address that the first NMI had, and will start corrupting the
474  * stack. This is handled in entry_64.S, but the same problem exists with
475  * the breakpoint stack.
476  *
477  * If a breakpoint is being processed, and the debug stack is being used,
478  * if an NMI comes in and also hits a breakpoint, the stack pointer
479  * will be set to the same fixed address as the breakpoint that was
480  * interrupted, causing that stack to be corrupted. To handle this case,
481  * check if the stack that was interrupted is the debug stack, and if
482  * so, change the IDT so that new breakpoints will use the current stack
483  * and not switch to the fixed address. On return of the NMI, switch back
484  * to the original IDT.
485  */
486 static DEFINE_PER_CPU(int, update_debug_stack);
487 
488 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
489 {
490 	/*
491 	 * If we interrupted a breakpoint, it is possible that
492 	 * the nmi handler will have breakpoints too. We need to
493 	 * change the IDT such that breakpoints that happen here
494 	 * continue to use the NMI stack.
495 	 */
496 	if (unlikely(is_debug_stack(regs->sp))) {
497 		debug_stack_set_zero();
498 		this_cpu_write(update_debug_stack, 1);
499 	}
500 }
501 
502 static inline void nmi_nesting_postprocess(void)
503 {
504 	if (unlikely(this_cpu_read(update_debug_stack))) {
505 		debug_stack_reset();
506 		this_cpu_write(update_debug_stack, 0);
507 	}
508 }
509 #endif
510 
511 dotraplinkage notrace __kprobes void
512 do_nmi(struct pt_regs *regs, long error_code)
513 {
514 	nmi_nesting_preprocess(regs);
515 
516 	nmi_enter();
517 
518 	inc_irq_stat(__nmi_count);
519 
520 	if (!ignore_nmis)
521 		default_do_nmi(regs);
522 
523 	nmi_exit();
524 
525 	/* On i386, may loop back to preprocess */
526 	nmi_nesting_postprocess();
527 }
528 
529 void stop_nmi(void)
530 {
531 	ignore_nmis++;
532 }
533 
534 void restart_nmi(void)
535 {
536 	ignore_nmis--;
537 }
538 
539 /* reset the back-to-back NMI logic */
540 void local_touch_nmi(void)
541 {
542 	__this_cpu_write(last_nmi_rip, 0);
543 }
544 EXPORT_SYMBOL_GPL(local_touch_nmi);
545