1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 5 * 6 * Pentium III FXSR, SSE support 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 10 /* 11 * Handle hardware traps and faults. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/kprobes.h> 15 #include <linux/kdebug.h> 16 #include <linux/nmi.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/hardirq.h> 20 #include <linux/slab.h> 21 #include <linux/export.h> 22 23 #if defined(CONFIG_EDAC) 24 #include <linux/edac.h> 25 #endif 26 27 #include <linux/atomic.h> 28 #include <asm/traps.h> 29 #include <asm/mach_traps.h> 30 #include <asm/nmi.h> 31 #include <asm/x86_init.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/nmi.h> 35 36 struct nmi_desc { 37 spinlock_t lock; 38 struct list_head head; 39 }; 40 41 static struct nmi_desc nmi_desc[NMI_MAX] = 42 { 43 { 44 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 45 .head = LIST_HEAD_INIT(nmi_desc[0].head), 46 }, 47 { 48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 49 .head = LIST_HEAD_INIT(nmi_desc[1].head), 50 }, 51 { 52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 53 .head = LIST_HEAD_INIT(nmi_desc[2].head), 54 }, 55 { 56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 57 .head = LIST_HEAD_INIT(nmi_desc[3].head), 58 }, 59 60 }; 61 62 struct nmi_stats { 63 unsigned int normal; 64 unsigned int unknown; 65 unsigned int external; 66 unsigned int swallow; 67 }; 68 69 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 70 71 static int ignore_nmis; 72 73 int unknown_nmi_panic; 74 /* 75 * Prevent NMI reason port (0x61) being accessed simultaneously, can 76 * only be used in NMI handler. 77 */ 78 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 79 80 static int __init setup_unknown_nmi_panic(char *str) 81 { 82 unknown_nmi_panic = 1; 83 return 1; 84 } 85 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 86 87 #define nmi_to_desc(type) (&nmi_desc[type]) 88 89 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 90 static int __init nmi_warning_debugfs(void) 91 { 92 debugfs_create_u64("nmi_longest_ns", 0644, 93 arch_debugfs_dir, &nmi_longest_ns); 94 return 0; 95 } 96 fs_initcall(nmi_warning_debugfs); 97 98 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b) 99 { 100 struct nmi_desc *desc = nmi_to_desc(type); 101 struct nmiaction *a; 102 int handled=0; 103 104 rcu_read_lock(); 105 106 /* 107 * NMIs are edge-triggered, which means if you have enough 108 * of them concurrently, you can lose some because only one 109 * can be latched at any given time. Walk the whole list 110 * to handle those situations. 111 */ 112 list_for_each_entry_rcu(a, &desc->head, list) { 113 u64 before, delta, whole_msecs; 114 int decimal_msecs, thishandled; 115 116 before = local_clock(); 117 thishandled = a->handler(type, regs); 118 handled += thishandled; 119 delta = local_clock() - before; 120 trace_nmi_handler(a->handler, (int)delta, thishandled); 121 122 if (delta < nmi_longest_ns) 123 continue; 124 125 nmi_longest_ns = delta; 126 whole_msecs = do_div(delta, (1000 * 1000)); 127 decimal_msecs = do_div(delta, 1000) % 1000; 128 printk_ratelimited(KERN_INFO 129 "INFO: NMI handler (%ps) took too long to run: " 130 "%lld.%03d msecs\n", a->handler, whole_msecs, 131 decimal_msecs); 132 } 133 134 rcu_read_unlock(); 135 136 /* return total number of NMI events handled */ 137 return handled; 138 } 139 140 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 141 { 142 struct nmi_desc *desc = nmi_to_desc(type); 143 unsigned long flags; 144 145 if (!action->handler) 146 return -EINVAL; 147 148 spin_lock_irqsave(&desc->lock, flags); 149 150 /* 151 * most handlers of type NMI_UNKNOWN never return because 152 * they just assume the NMI is theirs. Just a sanity check 153 * to manage expectations 154 */ 155 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); 156 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 157 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 158 159 /* 160 * some handlers need to be executed first otherwise a fake 161 * event confuses some handlers (kdump uses this flag) 162 */ 163 if (action->flags & NMI_FLAG_FIRST) 164 list_add_rcu(&action->list, &desc->head); 165 else 166 list_add_tail_rcu(&action->list, &desc->head); 167 168 spin_unlock_irqrestore(&desc->lock, flags); 169 return 0; 170 } 171 EXPORT_SYMBOL(__register_nmi_handler); 172 173 void unregister_nmi_handler(unsigned int type, const char *name) 174 { 175 struct nmi_desc *desc = nmi_to_desc(type); 176 struct nmiaction *n; 177 unsigned long flags; 178 179 spin_lock_irqsave(&desc->lock, flags); 180 181 list_for_each_entry_rcu(n, &desc->head, list) { 182 /* 183 * the name passed in to describe the nmi handler 184 * is used as the lookup key 185 */ 186 if (!strcmp(n->name, name)) { 187 WARN(in_nmi(), 188 "Trying to free NMI (%s) from NMI context!\n", n->name); 189 list_del_rcu(&n->list); 190 break; 191 } 192 } 193 194 spin_unlock_irqrestore(&desc->lock, flags); 195 synchronize_rcu(); 196 } 197 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 198 199 static __kprobes void 200 pci_serr_error(unsigned char reason, struct pt_regs *regs) 201 { 202 /* check to see if anyone registered against these types of errors */ 203 if (nmi_handle(NMI_SERR, regs, false)) 204 return; 205 206 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 207 reason, smp_processor_id()); 208 209 /* 210 * On some machines, PCI SERR line is used to report memory 211 * errors. EDAC makes use of it. 212 */ 213 #if defined(CONFIG_EDAC) 214 if (edac_handler_set()) { 215 edac_atomic_assert_error(); 216 return; 217 } 218 #endif 219 220 if (panic_on_unrecovered_nmi) 221 panic("NMI: Not continuing"); 222 223 pr_emerg("Dazed and confused, but trying to continue\n"); 224 225 /* Clear and disable the PCI SERR error line. */ 226 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 227 outb(reason, NMI_REASON_PORT); 228 } 229 230 static __kprobes void 231 io_check_error(unsigned char reason, struct pt_regs *regs) 232 { 233 unsigned long i; 234 235 /* check to see if anyone registered against these types of errors */ 236 if (nmi_handle(NMI_IO_CHECK, regs, false)) 237 return; 238 239 pr_emerg( 240 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 241 reason, smp_processor_id()); 242 show_regs(regs); 243 244 if (panic_on_io_nmi) 245 panic("NMI IOCK error: Not continuing"); 246 247 /* Re-enable the IOCK line, wait for a few seconds */ 248 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 249 outb(reason, NMI_REASON_PORT); 250 251 i = 20000; 252 while (--i) { 253 touch_nmi_watchdog(); 254 udelay(100); 255 } 256 257 reason &= ~NMI_REASON_CLEAR_IOCHK; 258 outb(reason, NMI_REASON_PORT); 259 } 260 261 static __kprobes void 262 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 263 { 264 int handled; 265 266 /* 267 * Use 'false' as back-to-back NMIs are dealt with one level up. 268 * Of course this makes having multiple 'unknown' handlers useless 269 * as only the first one is ever run (unless it can actually determine 270 * if it caused the NMI) 271 */ 272 handled = nmi_handle(NMI_UNKNOWN, regs, false); 273 if (handled) { 274 __this_cpu_add(nmi_stats.unknown, handled); 275 return; 276 } 277 278 __this_cpu_add(nmi_stats.unknown, 1); 279 280 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 281 reason, smp_processor_id()); 282 283 pr_emerg("Do you have a strange power saving mode enabled?\n"); 284 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 285 panic("NMI: Not continuing"); 286 287 pr_emerg("Dazed and confused, but trying to continue\n"); 288 } 289 290 static DEFINE_PER_CPU(bool, swallow_nmi); 291 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 292 293 static __kprobes void default_do_nmi(struct pt_regs *regs) 294 { 295 unsigned char reason = 0; 296 int handled; 297 bool b2b = false; 298 299 /* 300 * CPU-specific NMI must be processed before non-CPU-specific 301 * NMI, otherwise we may lose it, because the CPU-specific 302 * NMI can not be detected/processed on other CPUs. 303 */ 304 305 /* 306 * Back-to-back NMIs are interesting because they can either 307 * be two NMI or more than two NMIs (any thing over two is dropped 308 * due to NMI being edge-triggered). If this is the second half 309 * of the back-to-back NMI, assume we dropped things and process 310 * more handlers. Otherwise reset the 'swallow' NMI behaviour 311 */ 312 if (regs->ip == __this_cpu_read(last_nmi_rip)) 313 b2b = true; 314 else 315 __this_cpu_write(swallow_nmi, false); 316 317 __this_cpu_write(last_nmi_rip, regs->ip); 318 319 handled = nmi_handle(NMI_LOCAL, regs, b2b); 320 __this_cpu_add(nmi_stats.normal, handled); 321 if (handled) { 322 /* 323 * There are cases when a NMI handler handles multiple 324 * events in the current NMI. One of these events may 325 * be queued for in the next NMI. Because the event is 326 * already handled, the next NMI will result in an unknown 327 * NMI. Instead lets flag this for a potential NMI to 328 * swallow. 329 */ 330 if (handled > 1) 331 __this_cpu_write(swallow_nmi, true); 332 return; 333 } 334 335 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */ 336 raw_spin_lock(&nmi_reason_lock); 337 reason = x86_platform.get_nmi_reason(); 338 339 if (reason & NMI_REASON_MASK) { 340 if (reason & NMI_REASON_SERR) 341 pci_serr_error(reason, regs); 342 else if (reason & NMI_REASON_IOCHK) 343 io_check_error(reason, regs); 344 #ifdef CONFIG_X86_32 345 /* 346 * Reassert NMI in case it became active 347 * meanwhile as it's edge-triggered: 348 */ 349 reassert_nmi(); 350 #endif 351 __this_cpu_add(nmi_stats.external, 1); 352 raw_spin_unlock(&nmi_reason_lock); 353 return; 354 } 355 raw_spin_unlock(&nmi_reason_lock); 356 357 /* 358 * Only one NMI can be latched at a time. To handle 359 * this we may process multiple nmi handlers at once to 360 * cover the case where an NMI is dropped. The downside 361 * to this approach is we may process an NMI prematurely, 362 * while its real NMI is sitting latched. This will cause 363 * an unknown NMI on the next run of the NMI processing. 364 * 365 * We tried to flag that condition above, by setting the 366 * swallow_nmi flag when we process more than one event. 367 * This condition is also only present on the second half 368 * of a back-to-back NMI, so we flag that condition too. 369 * 370 * If both are true, we assume we already processed this 371 * NMI previously and we swallow it. Otherwise we reset 372 * the logic. 373 * 374 * There are scenarios where we may accidentally swallow 375 * a 'real' unknown NMI. For example, while processing 376 * a perf NMI another perf NMI comes in along with a 377 * 'real' unknown NMI. These two NMIs get combined into 378 * one (as descibed above). When the next NMI gets 379 * processed, it will be flagged by perf as handled, but 380 * noone will know that there was a 'real' unknown NMI sent 381 * also. As a result it gets swallowed. Or if the first 382 * perf NMI returns two events handled then the second 383 * NMI will get eaten by the logic below, again losing a 384 * 'real' unknown NMI. But this is the best we can do 385 * for now. 386 */ 387 if (b2b && __this_cpu_read(swallow_nmi)) 388 __this_cpu_add(nmi_stats.swallow, 1); 389 else 390 unknown_nmi_error(reason, regs); 391 } 392 393 /* 394 * NMIs can hit breakpoints which will cause it to lose its 395 * NMI context with the CPU when the breakpoint does an iret. 396 */ 397 #ifdef CONFIG_X86_32 398 /* 399 * For i386, NMIs use the same stack as the kernel, and we can 400 * add a workaround to the iret problem in C (preventing nested 401 * NMIs if an NMI takes a trap). Simply have 3 states the NMI 402 * can be in: 403 * 404 * 1) not running 405 * 2) executing 406 * 3) latched 407 * 408 * When no NMI is in progress, it is in the "not running" state. 409 * When an NMI comes in, it goes into the "executing" state. 410 * Normally, if another NMI is triggered, it does not interrupt 411 * the running NMI and the HW will simply latch it so that when 412 * the first NMI finishes, it will restart the second NMI. 413 * (Note, the latch is binary, thus multiple NMIs triggering, 414 * when one is running, are ignored. Only one NMI is restarted.) 415 * 416 * If an NMI hits a breakpoint that executes an iret, another 417 * NMI can preempt it. We do not want to allow this new NMI 418 * to run, but we want to execute it when the first one finishes. 419 * We set the state to "latched", and the exit of the first NMI will 420 * perform a dec_return, if the result is zero (NOT_RUNNING), then 421 * it will simply exit the NMI handler. If not, the dec_return 422 * would have set the state to NMI_EXECUTING (what we want it to 423 * be when we are running). In this case, we simply jump back 424 * to rerun the NMI handler again, and restart the 'latched' NMI. 425 * 426 * No trap (breakpoint or page fault) should be hit before nmi_restart, 427 * thus there is no race between the first check of state for NOT_RUNNING 428 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 429 * at this point. 430 * 431 * In case the NMI takes a page fault, we need to save off the CR2 432 * because the NMI could have preempted another page fault and corrupt 433 * the CR2 that is about to be read. As nested NMIs must be restarted 434 * and they can not take breakpoints or page faults, the update of the 435 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 436 * Otherwise, there would be a race of another nested NMI coming in 437 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 438 */ 439 enum nmi_states { 440 NMI_NOT_RUNNING = 0, 441 NMI_EXECUTING, 442 NMI_LATCHED, 443 }; 444 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 445 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 446 447 #define nmi_nesting_preprocess(regs) \ 448 do { \ 449 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \ 450 this_cpu_write(nmi_state, NMI_LATCHED); \ 451 return; \ 452 } \ 453 this_cpu_write(nmi_state, NMI_EXECUTING); \ 454 this_cpu_write(nmi_cr2, read_cr2()); \ 455 } while (0); \ 456 nmi_restart: 457 458 #define nmi_nesting_postprocess() \ 459 do { \ 460 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \ 461 write_cr2(this_cpu_read(nmi_cr2)); \ 462 if (this_cpu_dec_return(nmi_state)) \ 463 goto nmi_restart; \ 464 } while (0) 465 #else /* x86_64 */ 466 /* 467 * In x86_64 things are a bit more difficult. This has the same problem 468 * where an NMI hitting a breakpoint that calls iret will remove the 469 * NMI context, allowing a nested NMI to enter. What makes this more 470 * difficult is that both NMIs and breakpoints have their own stack. 471 * When a new NMI or breakpoint is executed, the stack is set to a fixed 472 * point. If an NMI is nested, it will have its stack set at that same 473 * fixed address that the first NMI had, and will start corrupting the 474 * stack. This is handled in entry_64.S, but the same problem exists with 475 * the breakpoint stack. 476 * 477 * If a breakpoint is being processed, and the debug stack is being used, 478 * if an NMI comes in and also hits a breakpoint, the stack pointer 479 * will be set to the same fixed address as the breakpoint that was 480 * interrupted, causing that stack to be corrupted. To handle this case, 481 * check if the stack that was interrupted is the debug stack, and if 482 * so, change the IDT so that new breakpoints will use the current stack 483 * and not switch to the fixed address. On return of the NMI, switch back 484 * to the original IDT. 485 */ 486 static DEFINE_PER_CPU(int, update_debug_stack); 487 488 static inline void nmi_nesting_preprocess(struct pt_regs *regs) 489 { 490 /* 491 * If we interrupted a breakpoint, it is possible that 492 * the nmi handler will have breakpoints too. We need to 493 * change the IDT such that breakpoints that happen here 494 * continue to use the NMI stack. 495 */ 496 if (unlikely(is_debug_stack(regs->sp))) { 497 debug_stack_set_zero(); 498 this_cpu_write(update_debug_stack, 1); 499 } 500 } 501 502 static inline void nmi_nesting_postprocess(void) 503 { 504 if (unlikely(this_cpu_read(update_debug_stack))) { 505 debug_stack_reset(); 506 this_cpu_write(update_debug_stack, 0); 507 } 508 } 509 #endif 510 511 dotraplinkage notrace __kprobes void 512 do_nmi(struct pt_regs *regs, long error_code) 513 { 514 nmi_nesting_preprocess(regs); 515 516 nmi_enter(); 517 518 inc_irq_stat(__nmi_count); 519 520 if (!ignore_nmis) 521 default_do_nmi(regs); 522 523 nmi_exit(); 524 525 /* On i386, may loop back to preprocess */ 526 nmi_nesting_postprocess(); 527 } 528 529 void stop_nmi(void) 530 { 531 ignore_nmis++; 532 } 533 534 void restart_nmi(void) 535 { 536 ignore_nmis--; 537 } 538 539 /* reset the back-to-back NMI logic */ 540 void local_touch_nmi(void) 541 { 542 __this_cpu_write(last_nmi_rip, 0); 543 } 544 EXPORT_SYMBOL_GPL(local_touch_nmi); 545