1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 5 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 6 * 7 * Pentium III FXSR, SSE support 8 * Gareth Hughes <gareth@valinux.com>, May 2000 9 */ 10 11 /* 12 * Handle hardware traps and faults. 13 */ 14 #include <linux/spinlock.h> 15 #include <linux/kprobes.h> 16 #include <linux/kdebug.h> 17 #include <linux/sched/debug.h> 18 #include <linux/nmi.h> 19 #include <linux/debugfs.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/ratelimit.h> 23 #include <linux/slab.h> 24 #include <linux/export.h> 25 #include <linux/atomic.h> 26 #include <linux/sched/clock.h> 27 28 #include <asm/cpu_entry_area.h> 29 #include <asm/traps.h> 30 #include <asm/mach_traps.h> 31 #include <asm/nmi.h> 32 #include <asm/x86_init.h> 33 #include <asm/reboot.h> 34 #include <asm/cache.h> 35 #include <asm/nospec-branch.h> 36 #include <asm/sev.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/nmi.h> 40 41 struct nmi_desc { 42 raw_spinlock_t lock; 43 struct list_head head; 44 }; 45 46 static struct nmi_desc nmi_desc[NMI_MAX] = 47 { 48 { 49 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 50 .head = LIST_HEAD_INIT(nmi_desc[0].head), 51 }, 52 { 53 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 54 .head = LIST_HEAD_INIT(nmi_desc[1].head), 55 }, 56 { 57 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 58 .head = LIST_HEAD_INIT(nmi_desc[2].head), 59 }, 60 { 61 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 62 .head = LIST_HEAD_INIT(nmi_desc[3].head), 63 }, 64 65 }; 66 67 struct nmi_stats { 68 unsigned int normal; 69 unsigned int unknown; 70 unsigned int external; 71 unsigned int swallow; 72 }; 73 74 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 75 76 static int ignore_nmis __read_mostly; 77 78 int unknown_nmi_panic; 79 /* 80 * Prevent NMI reason port (0x61) being accessed simultaneously, can 81 * only be used in NMI handler. 82 */ 83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 84 85 static int __init setup_unknown_nmi_panic(char *str) 86 { 87 unknown_nmi_panic = 1; 88 return 1; 89 } 90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 91 92 #define nmi_to_desc(type) (&nmi_desc[type]) 93 94 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 95 96 static int __init nmi_warning_debugfs(void) 97 { 98 debugfs_create_u64("nmi_longest_ns", 0644, 99 arch_debugfs_dir, &nmi_longest_ns); 100 return 0; 101 } 102 fs_initcall(nmi_warning_debugfs); 103 104 static void nmi_check_duration(struct nmiaction *action, u64 duration) 105 { 106 int remainder_ns, decimal_msecs; 107 108 if (duration < nmi_longest_ns || duration < action->max_duration) 109 return; 110 111 action->max_duration = duration; 112 113 remainder_ns = do_div(duration, (1000 * 1000)); 114 decimal_msecs = remainder_ns / 1000; 115 116 printk_ratelimited(KERN_INFO 117 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 118 action->handler, duration, decimal_msecs); 119 } 120 121 static int nmi_handle(unsigned int type, struct pt_regs *regs) 122 { 123 struct nmi_desc *desc = nmi_to_desc(type); 124 struct nmiaction *a; 125 int handled=0; 126 127 rcu_read_lock(); 128 129 /* 130 * NMIs are edge-triggered, which means if you have enough 131 * of them concurrently, you can lose some because only one 132 * can be latched at any given time. Walk the whole list 133 * to handle those situations. 134 */ 135 list_for_each_entry_rcu(a, &desc->head, list) { 136 int thishandled; 137 u64 delta; 138 139 delta = sched_clock(); 140 thishandled = a->handler(type, regs); 141 handled += thishandled; 142 delta = sched_clock() - delta; 143 trace_nmi_handler(a->handler, (int)delta, thishandled); 144 145 nmi_check_duration(a, delta); 146 } 147 148 rcu_read_unlock(); 149 150 /* return total number of NMI events handled */ 151 return handled; 152 } 153 NOKPROBE_SYMBOL(nmi_handle); 154 155 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 156 { 157 struct nmi_desc *desc = nmi_to_desc(type); 158 unsigned long flags; 159 160 if (!action->handler) 161 return -EINVAL; 162 163 raw_spin_lock_irqsave(&desc->lock, flags); 164 165 /* 166 * Indicate if there are multiple registrations on the 167 * internal NMI handler call chains (SERR and IO_CHECK). 168 */ 169 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 170 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 171 172 /* 173 * some handlers need to be executed first otherwise a fake 174 * event confuses some handlers (kdump uses this flag) 175 */ 176 if (action->flags & NMI_FLAG_FIRST) 177 list_add_rcu(&action->list, &desc->head); 178 else 179 list_add_tail_rcu(&action->list, &desc->head); 180 181 raw_spin_unlock_irqrestore(&desc->lock, flags); 182 return 0; 183 } 184 EXPORT_SYMBOL(__register_nmi_handler); 185 186 void unregister_nmi_handler(unsigned int type, const char *name) 187 { 188 struct nmi_desc *desc = nmi_to_desc(type); 189 struct nmiaction *n; 190 unsigned long flags; 191 192 raw_spin_lock_irqsave(&desc->lock, flags); 193 194 list_for_each_entry_rcu(n, &desc->head, list) { 195 /* 196 * the name passed in to describe the nmi handler 197 * is used as the lookup key 198 */ 199 if (!strcmp(n->name, name)) { 200 WARN(in_nmi(), 201 "Trying to free NMI (%s) from NMI context!\n", n->name); 202 list_del_rcu(&n->list); 203 break; 204 } 205 } 206 207 raw_spin_unlock_irqrestore(&desc->lock, flags); 208 synchronize_rcu(); 209 } 210 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 211 212 static void 213 pci_serr_error(unsigned char reason, struct pt_regs *regs) 214 { 215 /* check to see if anyone registered against these types of errors */ 216 if (nmi_handle(NMI_SERR, regs)) 217 return; 218 219 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 220 reason, smp_processor_id()); 221 222 if (panic_on_unrecovered_nmi) 223 nmi_panic(regs, "NMI: Not continuing"); 224 225 pr_emerg("Dazed and confused, but trying to continue\n"); 226 227 /* Clear and disable the PCI SERR error line. */ 228 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 229 outb(reason, NMI_REASON_PORT); 230 } 231 NOKPROBE_SYMBOL(pci_serr_error); 232 233 static void 234 io_check_error(unsigned char reason, struct pt_regs *regs) 235 { 236 unsigned long i; 237 238 /* check to see if anyone registered against these types of errors */ 239 if (nmi_handle(NMI_IO_CHECK, regs)) 240 return; 241 242 pr_emerg( 243 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 244 reason, smp_processor_id()); 245 show_regs(regs); 246 247 if (panic_on_io_nmi) { 248 nmi_panic(regs, "NMI IOCK error: Not continuing"); 249 250 /* 251 * If we end up here, it means we have received an NMI while 252 * processing panic(). Simply return without delaying and 253 * re-enabling NMIs. 254 */ 255 return; 256 } 257 258 /* Re-enable the IOCK line, wait for a few seconds */ 259 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 260 outb(reason, NMI_REASON_PORT); 261 262 i = 20000; 263 while (--i) { 264 touch_nmi_watchdog(); 265 udelay(100); 266 } 267 268 reason &= ~NMI_REASON_CLEAR_IOCHK; 269 outb(reason, NMI_REASON_PORT); 270 } 271 NOKPROBE_SYMBOL(io_check_error); 272 273 static void 274 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 275 { 276 int handled; 277 278 /* 279 * Use 'false' as back-to-back NMIs are dealt with one level up. 280 * Of course this makes having multiple 'unknown' handlers useless 281 * as only the first one is ever run (unless it can actually determine 282 * if it caused the NMI) 283 */ 284 handled = nmi_handle(NMI_UNKNOWN, regs); 285 if (handled) { 286 __this_cpu_add(nmi_stats.unknown, handled); 287 return; 288 } 289 290 __this_cpu_add(nmi_stats.unknown, 1); 291 292 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 293 reason, smp_processor_id()); 294 295 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 296 nmi_panic(regs, "NMI: Not continuing"); 297 298 pr_emerg("Dazed and confused, but trying to continue\n"); 299 } 300 NOKPROBE_SYMBOL(unknown_nmi_error); 301 302 static DEFINE_PER_CPU(bool, swallow_nmi); 303 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 304 305 static noinstr void default_do_nmi(struct pt_regs *regs) 306 { 307 unsigned char reason = 0; 308 int handled; 309 bool b2b = false; 310 311 /* 312 * CPU-specific NMI must be processed before non-CPU-specific 313 * NMI, otherwise we may lose it, because the CPU-specific 314 * NMI can not be detected/processed on other CPUs. 315 */ 316 317 /* 318 * Back-to-back NMIs are interesting because they can either 319 * be two NMI or more than two NMIs (any thing over two is dropped 320 * due to NMI being edge-triggered). If this is the second half 321 * of the back-to-back NMI, assume we dropped things and process 322 * more handlers. Otherwise reset the 'swallow' NMI behaviour 323 */ 324 if (regs->ip == __this_cpu_read(last_nmi_rip)) 325 b2b = true; 326 else 327 __this_cpu_write(swallow_nmi, false); 328 329 __this_cpu_write(last_nmi_rip, regs->ip); 330 331 instrumentation_begin(); 332 333 handled = nmi_handle(NMI_LOCAL, regs); 334 __this_cpu_add(nmi_stats.normal, handled); 335 if (handled) { 336 /* 337 * There are cases when a NMI handler handles multiple 338 * events in the current NMI. One of these events may 339 * be queued for in the next NMI. Because the event is 340 * already handled, the next NMI will result in an unknown 341 * NMI. Instead lets flag this for a potential NMI to 342 * swallow. 343 */ 344 if (handled > 1) 345 __this_cpu_write(swallow_nmi, true); 346 goto out; 347 } 348 349 /* 350 * Non-CPU-specific NMI: NMI sources can be processed on any CPU. 351 * 352 * Another CPU may be processing panic routines while holding 353 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, 354 * and if so, call its callback directly. If there is no CPU preparing 355 * crash dump, we simply loop here. 356 */ 357 while (!raw_spin_trylock(&nmi_reason_lock)) { 358 run_crash_ipi_callback(regs); 359 cpu_relax(); 360 } 361 362 reason = x86_platform.get_nmi_reason(); 363 364 if (reason & NMI_REASON_MASK) { 365 if (reason & NMI_REASON_SERR) 366 pci_serr_error(reason, regs); 367 else if (reason & NMI_REASON_IOCHK) 368 io_check_error(reason, regs); 369 #ifdef CONFIG_X86_32 370 /* 371 * Reassert NMI in case it became active 372 * meanwhile as it's edge-triggered: 373 */ 374 reassert_nmi(); 375 #endif 376 __this_cpu_add(nmi_stats.external, 1); 377 raw_spin_unlock(&nmi_reason_lock); 378 goto out; 379 } 380 raw_spin_unlock(&nmi_reason_lock); 381 382 /* 383 * Only one NMI can be latched at a time. To handle 384 * this we may process multiple nmi handlers at once to 385 * cover the case where an NMI is dropped. The downside 386 * to this approach is we may process an NMI prematurely, 387 * while its real NMI is sitting latched. This will cause 388 * an unknown NMI on the next run of the NMI processing. 389 * 390 * We tried to flag that condition above, by setting the 391 * swallow_nmi flag when we process more than one event. 392 * This condition is also only present on the second half 393 * of a back-to-back NMI, so we flag that condition too. 394 * 395 * If both are true, we assume we already processed this 396 * NMI previously and we swallow it. Otherwise we reset 397 * the logic. 398 * 399 * There are scenarios where we may accidentally swallow 400 * a 'real' unknown NMI. For example, while processing 401 * a perf NMI another perf NMI comes in along with a 402 * 'real' unknown NMI. These two NMIs get combined into 403 * one (as described above). When the next NMI gets 404 * processed, it will be flagged by perf as handled, but 405 * no one will know that there was a 'real' unknown NMI sent 406 * also. As a result it gets swallowed. Or if the first 407 * perf NMI returns two events handled then the second 408 * NMI will get eaten by the logic below, again losing a 409 * 'real' unknown NMI. But this is the best we can do 410 * for now. 411 */ 412 if (b2b && __this_cpu_read(swallow_nmi)) 413 __this_cpu_add(nmi_stats.swallow, 1); 414 else 415 unknown_nmi_error(reason, regs); 416 417 out: 418 instrumentation_end(); 419 } 420 421 /* 422 * NMIs can page fault or hit breakpoints which will cause it to lose 423 * its NMI context with the CPU when the breakpoint or page fault does an IRET. 424 * 425 * As a result, NMIs can nest if NMIs get unmasked due an IRET during 426 * NMI processing. On x86_64, the asm glue protects us from nested NMIs 427 * if the outer NMI came from kernel mode, but we can still nest if the 428 * outer NMI came from user mode. 429 * 430 * To handle these nested NMIs, we have three states: 431 * 432 * 1) not running 433 * 2) executing 434 * 3) latched 435 * 436 * When no NMI is in progress, it is in the "not running" state. 437 * When an NMI comes in, it goes into the "executing" state. 438 * Normally, if another NMI is triggered, it does not interrupt 439 * the running NMI and the HW will simply latch it so that when 440 * the first NMI finishes, it will restart the second NMI. 441 * (Note, the latch is binary, thus multiple NMIs triggering, 442 * when one is running, are ignored. Only one NMI is restarted.) 443 * 444 * If an NMI executes an iret, another NMI can preempt it. We do not 445 * want to allow this new NMI to run, but we want to execute it when the 446 * first one finishes. We set the state to "latched", and the exit of 447 * the first NMI will perform a dec_return, if the result is zero 448 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the 449 * dec_return would have set the state to NMI_EXECUTING (what we want it 450 * to be when we are running). In this case, we simply jump back to 451 * rerun the NMI handler again, and restart the 'latched' NMI. 452 * 453 * No trap (breakpoint or page fault) should be hit before nmi_restart, 454 * thus there is no race between the first check of state for NOT_RUNNING 455 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 456 * at this point. 457 * 458 * In case the NMI takes a page fault, we need to save off the CR2 459 * because the NMI could have preempted another page fault and corrupt 460 * the CR2 that is about to be read. As nested NMIs must be restarted 461 * and they can not take breakpoints or page faults, the update of the 462 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 463 * Otherwise, there would be a race of another nested NMI coming in 464 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 465 */ 466 enum nmi_states { 467 NMI_NOT_RUNNING = 0, 468 NMI_EXECUTING, 469 NMI_LATCHED, 470 }; 471 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 472 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 473 static DEFINE_PER_CPU(unsigned long, nmi_dr7); 474 475 DEFINE_IDTENTRY_RAW(exc_nmi) 476 { 477 irqentry_state_t irq_state; 478 479 /* 480 * Re-enable NMIs right here when running as an SEV-ES guest. This might 481 * cause nested NMIs, but those can be handled safely. 482 */ 483 sev_es_nmi_complete(); 484 485 if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id())) 486 return; 487 488 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { 489 this_cpu_write(nmi_state, NMI_LATCHED); 490 return; 491 } 492 this_cpu_write(nmi_state, NMI_EXECUTING); 493 this_cpu_write(nmi_cr2, read_cr2()); 494 nmi_restart: 495 496 /* 497 * Needs to happen before DR7 is accessed, because the hypervisor can 498 * intercept DR7 reads/writes, turning those into #VC exceptions. 499 */ 500 sev_es_ist_enter(regs); 501 502 this_cpu_write(nmi_dr7, local_db_save()); 503 504 irq_state = irqentry_nmi_enter(regs); 505 506 inc_irq_stat(__nmi_count); 507 508 if (!ignore_nmis) 509 default_do_nmi(regs); 510 511 irqentry_nmi_exit(regs, irq_state); 512 513 local_db_restore(this_cpu_read(nmi_dr7)); 514 515 sev_es_ist_exit(); 516 517 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) 518 write_cr2(this_cpu_read(nmi_cr2)); 519 if (this_cpu_dec_return(nmi_state)) 520 goto nmi_restart; 521 522 if (user_mode(regs)) 523 mds_user_clear_cpu_buffers(); 524 } 525 526 #if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL) 527 DEFINE_IDTENTRY_RAW(exc_nmi_noist) 528 { 529 exc_nmi(regs); 530 } 531 #endif 532 #if IS_MODULE(CONFIG_KVM_INTEL) 533 EXPORT_SYMBOL_GPL(asm_exc_nmi_noist); 534 #endif 535 536 void stop_nmi(void) 537 { 538 ignore_nmis++; 539 } 540 541 void restart_nmi(void) 542 { 543 ignore_nmis--; 544 } 545 546 /* reset the back-to-back NMI logic */ 547 void local_touch_nmi(void) 548 { 549 __this_cpu_write(last_nmi_rip, 0); 550 } 551 EXPORT_SYMBOL_GPL(local_touch_nmi); 552