xref: /linux/arch/x86/kernel/nmi.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
6  *
7  *  Pentium III FXSR, SSE support
8  *	Gareth Hughes <gareth@valinux.com>, May 2000
9  */
10 
11 /*
12  * Handle hardware traps and faults.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
27 
28 #include <asm/cpu_entry_area.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
36 #include <asm/microcode.h>
37 #include <asm/sev.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/nmi.h>
41 
42 struct nmi_desc {
43 	raw_spinlock_t lock;
44 	struct list_head head;
45 };
46 
47 static struct nmi_desc nmi_desc[NMI_MAX] =
48 {
49 	{
50 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
51 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
52 	},
53 	{
54 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
55 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
56 	},
57 	{
58 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
59 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
60 	},
61 	{
62 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
63 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
64 	},
65 
66 };
67 
68 struct nmi_stats {
69 	unsigned int normal;
70 	unsigned int unknown;
71 	unsigned int external;
72 	unsigned int swallow;
73 	unsigned long recv_jiffies;
74 	unsigned long idt_seq;
75 	unsigned long idt_nmi_seq;
76 	unsigned long idt_ignored;
77 	atomic_long_t idt_calls;
78 	unsigned long idt_seq_snap;
79 	unsigned long idt_nmi_seq_snap;
80 	unsigned long idt_ignored_snap;
81 	long idt_calls_snap;
82 };
83 
84 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
85 
86 static int ignore_nmis __read_mostly;
87 
88 int unknown_nmi_panic;
89 /*
90  * Prevent NMI reason port (0x61) being accessed simultaneously, can
91  * only be used in NMI handler.
92  */
93 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
94 
95 static int __init setup_unknown_nmi_panic(char *str)
96 {
97 	unknown_nmi_panic = 1;
98 	return 1;
99 }
100 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
101 
102 #define nmi_to_desc(type) (&nmi_desc[type])
103 
104 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
105 
106 static int __init nmi_warning_debugfs(void)
107 {
108 	debugfs_create_u64("nmi_longest_ns", 0644,
109 			arch_debugfs_dir, &nmi_longest_ns);
110 	return 0;
111 }
112 fs_initcall(nmi_warning_debugfs);
113 
114 static void nmi_check_duration(struct nmiaction *action, u64 duration)
115 {
116 	int remainder_ns, decimal_msecs;
117 
118 	if (duration < nmi_longest_ns || duration < action->max_duration)
119 		return;
120 
121 	action->max_duration = duration;
122 
123 	remainder_ns = do_div(duration, (1000 * 1000));
124 	decimal_msecs = remainder_ns / 1000;
125 
126 	printk_ratelimited(KERN_INFO
127 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
128 		action->handler, duration, decimal_msecs);
129 }
130 
131 static int nmi_handle(unsigned int type, struct pt_regs *regs)
132 {
133 	struct nmi_desc *desc = nmi_to_desc(type);
134 	struct nmiaction *a;
135 	int handled=0;
136 
137 	rcu_read_lock();
138 
139 	/*
140 	 * NMIs are edge-triggered, which means if you have enough
141 	 * of them concurrently, you can lose some because only one
142 	 * can be latched at any given time.  Walk the whole list
143 	 * to handle those situations.
144 	 */
145 	list_for_each_entry_rcu(a, &desc->head, list) {
146 		int thishandled;
147 		u64 delta;
148 
149 		delta = sched_clock();
150 		thishandled = a->handler(type, regs);
151 		handled += thishandled;
152 		delta = sched_clock() - delta;
153 		trace_nmi_handler(a->handler, (int)delta, thishandled);
154 
155 		nmi_check_duration(a, delta);
156 	}
157 
158 	rcu_read_unlock();
159 
160 	/* return total number of NMI events handled */
161 	return handled;
162 }
163 NOKPROBE_SYMBOL(nmi_handle);
164 
165 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
166 {
167 	struct nmi_desc *desc = nmi_to_desc(type);
168 	unsigned long flags;
169 
170 	if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
171 		return -EINVAL;
172 
173 	raw_spin_lock_irqsave(&desc->lock, flags);
174 
175 	/*
176 	 * Indicate if there are multiple registrations on the
177 	 * internal NMI handler call chains (SERR and IO_CHECK).
178 	 */
179 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
180 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
181 
182 	/*
183 	 * some handlers need to be executed first otherwise a fake
184 	 * event confuses some handlers (kdump uses this flag)
185 	 */
186 	if (action->flags & NMI_FLAG_FIRST)
187 		list_add_rcu(&action->list, &desc->head);
188 	else
189 		list_add_tail_rcu(&action->list, &desc->head);
190 
191 	raw_spin_unlock_irqrestore(&desc->lock, flags);
192 	return 0;
193 }
194 EXPORT_SYMBOL(__register_nmi_handler);
195 
196 void unregister_nmi_handler(unsigned int type, const char *name)
197 {
198 	struct nmi_desc *desc = nmi_to_desc(type);
199 	struct nmiaction *n, *found = NULL;
200 	unsigned long flags;
201 
202 	raw_spin_lock_irqsave(&desc->lock, flags);
203 
204 	list_for_each_entry_rcu(n, &desc->head, list) {
205 		/*
206 		 * the name passed in to describe the nmi handler
207 		 * is used as the lookup key
208 		 */
209 		if (!strcmp(n->name, name)) {
210 			WARN(in_nmi(),
211 				"Trying to free NMI (%s) from NMI context!\n", n->name);
212 			list_del_rcu(&n->list);
213 			found = n;
214 			break;
215 		}
216 	}
217 
218 	raw_spin_unlock_irqrestore(&desc->lock, flags);
219 	if (found) {
220 		synchronize_rcu();
221 		INIT_LIST_HEAD(&found->list);
222 	}
223 }
224 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
225 
226 static void
227 pci_serr_error(unsigned char reason, struct pt_regs *regs)
228 {
229 	/* check to see if anyone registered against these types of errors */
230 	if (nmi_handle(NMI_SERR, regs))
231 		return;
232 
233 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
234 		 reason, smp_processor_id());
235 
236 	if (panic_on_unrecovered_nmi)
237 		nmi_panic(regs, "NMI: Not continuing");
238 
239 	pr_emerg("Dazed and confused, but trying to continue\n");
240 
241 	/* Clear and disable the PCI SERR error line. */
242 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
243 	outb(reason, NMI_REASON_PORT);
244 }
245 NOKPROBE_SYMBOL(pci_serr_error);
246 
247 static void
248 io_check_error(unsigned char reason, struct pt_regs *regs)
249 {
250 	unsigned long i;
251 
252 	/* check to see if anyone registered against these types of errors */
253 	if (nmi_handle(NMI_IO_CHECK, regs))
254 		return;
255 
256 	pr_emerg(
257 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
258 		 reason, smp_processor_id());
259 	show_regs(regs);
260 
261 	if (panic_on_io_nmi) {
262 		nmi_panic(regs, "NMI IOCK error: Not continuing");
263 
264 		/*
265 		 * If we end up here, it means we have received an NMI while
266 		 * processing panic(). Simply return without delaying and
267 		 * re-enabling NMIs.
268 		 */
269 		return;
270 	}
271 
272 	/* Re-enable the IOCK line, wait for a few seconds */
273 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
274 	outb(reason, NMI_REASON_PORT);
275 
276 	i = 20000;
277 	while (--i) {
278 		touch_nmi_watchdog();
279 		udelay(100);
280 	}
281 
282 	reason &= ~NMI_REASON_CLEAR_IOCHK;
283 	outb(reason, NMI_REASON_PORT);
284 }
285 NOKPROBE_SYMBOL(io_check_error);
286 
287 static void
288 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
289 {
290 	int handled;
291 
292 	/*
293 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
294 	 * Of course this makes having multiple 'unknown' handlers useless
295 	 * as only the first one is ever run (unless it can actually determine
296 	 * if it caused the NMI)
297 	 */
298 	handled = nmi_handle(NMI_UNKNOWN, regs);
299 	if (handled) {
300 		__this_cpu_add(nmi_stats.unknown, handled);
301 		return;
302 	}
303 
304 	__this_cpu_add(nmi_stats.unknown, 1);
305 
306 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
307 		 reason, smp_processor_id());
308 
309 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
310 		nmi_panic(regs, "NMI: Not continuing");
311 
312 	pr_emerg("Dazed and confused, but trying to continue\n");
313 }
314 NOKPROBE_SYMBOL(unknown_nmi_error);
315 
316 static DEFINE_PER_CPU(bool, swallow_nmi);
317 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
318 
319 static noinstr void default_do_nmi(struct pt_regs *regs)
320 {
321 	unsigned char reason = 0;
322 	int handled;
323 	bool b2b = false;
324 
325 	/*
326 	 * CPU-specific NMI must be processed before non-CPU-specific
327 	 * NMI, otherwise we may lose it, because the CPU-specific
328 	 * NMI can not be detected/processed on other CPUs.
329 	 */
330 
331 	/*
332 	 * Back-to-back NMIs are interesting because they can either
333 	 * be two NMI or more than two NMIs (any thing over two is dropped
334 	 * due to NMI being edge-triggered).  If this is the second half
335 	 * of the back-to-back NMI, assume we dropped things and process
336 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
337 	 */
338 	if (regs->ip == __this_cpu_read(last_nmi_rip))
339 		b2b = true;
340 	else
341 		__this_cpu_write(swallow_nmi, false);
342 
343 	__this_cpu_write(last_nmi_rip, regs->ip);
344 
345 	instrumentation_begin();
346 
347 	if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
348 		goto out;
349 
350 	handled = nmi_handle(NMI_LOCAL, regs);
351 	__this_cpu_add(nmi_stats.normal, handled);
352 	if (handled) {
353 		/*
354 		 * There are cases when a NMI handler handles multiple
355 		 * events in the current NMI.  One of these events may
356 		 * be queued for in the next NMI.  Because the event is
357 		 * already handled, the next NMI will result in an unknown
358 		 * NMI.  Instead lets flag this for a potential NMI to
359 		 * swallow.
360 		 */
361 		if (handled > 1)
362 			__this_cpu_write(swallow_nmi, true);
363 		goto out;
364 	}
365 
366 	/*
367 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
368 	 *
369 	 * Another CPU may be processing panic routines while holding
370 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
371 	 * and if so, call its callback directly.  If there is no CPU preparing
372 	 * crash dump, we simply loop here.
373 	 */
374 	while (!raw_spin_trylock(&nmi_reason_lock)) {
375 		run_crash_ipi_callback(regs);
376 		cpu_relax();
377 	}
378 
379 	reason = x86_platform.get_nmi_reason();
380 
381 	if (reason & NMI_REASON_MASK) {
382 		if (reason & NMI_REASON_SERR)
383 			pci_serr_error(reason, regs);
384 		else if (reason & NMI_REASON_IOCHK)
385 			io_check_error(reason, regs);
386 #ifdef CONFIG_X86_32
387 		/*
388 		 * Reassert NMI in case it became active
389 		 * meanwhile as it's edge-triggered:
390 		 */
391 		reassert_nmi();
392 #endif
393 		__this_cpu_add(nmi_stats.external, 1);
394 		raw_spin_unlock(&nmi_reason_lock);
395 		goto out;
396 	}
397 	raw_spin_unlock(&nmi_reason_lock);
398 
399 	/*
400 	 * Only one NMI can be latched at a time.  To handle
401 	 * this we may process multiple nmi handlers at once to
402 	 * cover the case where an NMI is dropped.  The downside
403 	 * to this approach is we may process an NMI prematurely,
404 	 * while its real NMI is sitting latched.  This will cause
405 	 * an unknown NMI on the next run of the NMI processing.
406 	 *
407 	 * We tried to flag that condition above, by setting the
408 	 * swallow_nmi flag when we process more than one event.
409 	 * This condition is also only present on the second half
410 	 * of a back-to-back NMI, so we flag that condition too.
411 	 *
412 	 * If both are true, we assume we already processed this
413 	 * NMI previously and we swallow it.  Otherwise we reset
414 	 * the logic.
415 	 *
416 	 * There are scenarios where we may accidentally swallow
417 	 * a 'real' unknown NMI.  For example, while processing
418 	 * a perf NMI another perf NMI comes in along with a
419 	 * 'real' unknown NMI.  These two NMIs get combined into
420 	 * one (as described above).  When the next NMI gets
421 	 * processed, it will be flagged by perf as handled, but
422 	 * no one will know that there was a 'real' unknown NMI sent
423 	 * also.  As a result it gets swallowed.  Or if the first
424 	 * perf NMI returns two events handled then the second
425 	 * NMI will get eaten by the logic below, again losing a
426 	 * 'real' unknown NMI.  But this is the best we can do
427 	 * for now.
428 	 */
429 	if (b2b && __this_cpu_read(swallow_nmi))
430 		__this_cpu_add(nmi_stats.swallow, 1);
431 	else
432 		unknown_nmi_error(reason, regs);
433 
434 out:
435 	instrumentation_end();
436 }
437 
438 /*
439  * NMIs can page fault or hit breakpoints which will cause it to lose
440  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
441  *
442  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
443  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
444  * if the outer NMI came from kernel mode, but we can still nest if the
445  * outer NMI came from user mode.
446  *
447  * To handle these nested NMIs, we have three states:
448  *
449  *  1) not running
450  *  2) executing
451  *  3) latched
452  *
453  * When no NMI is in progress, it is in the "not running" state.
454  * When an NMI comes in, it goes into the "executing" state.
455  * Normally, if another NMI is triggered, it does not interrupt
456  * the running NMI and the HW will simply latch it so that when
457  * the first NMI finishes, it will restart the second NMI.
458  * (Note, the latch is binary, thus multiple NMIs triggering,
459  *  when one is running, are ignored. Only one NMI is restarted.)
460  *
461  * If an NMI executes an iret, another NMI can preempt it. We do not
462  * want to allow this new NMI to run, but we want to execute it when the
463  * first one finishes.  We set the state to "latched", and the exit of
464  * the first NMI will perform a dec_return, if the result is zero
465  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
466  * dec_return would have set the state to NMI_EXECUTING (what we want it
467  * to be when we are running). In this case, we simply jump back to
468  * rerun the NMI handler again, and restart the 'latched' NMI.
469  *
470  * No trap (breakpoint or page fault) should be hit before nmi_restart,
471  * thus there is no race between the first check of state for NOT_RUNNING
472  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
473  * at this point.
474  *
475  * In case the NMI takes a page fault, we need to save off the CR2
476  * because the NMI could have preempted another page fault and corrupt
477  * the CR2 that is about to be read. As nested NMIs must be restarted
478  * and they can not take breakpoints or page faults, the update of the
479  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
480  * Otherwise, there would be a race of another nested NMI coming in
481  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
482  */
483 enum nmi_states {
484 	NMI_NOT_RUNNING = 0,
485 	NMI_EXECUTING,
486 	NMI_LATCHED,
487 };
488 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
489 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
490 static DEFINE_PER_CPU(unsigned long, nmi_dr7);
491 
492 DEFINE_IDTENTRY_RAW(exc_nmi)
493 {
494 	irqentry_state_t irq_state;
495 	struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
496 
497 	/*
498 	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
499 	 * cause nested NMIs, but those can be handled safely.
500 	 */
501 	sev_es_nmi_complete();
502 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
503 		raw_atomic_long_inc(&nsp->idt_calls);
504 
505 	if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id())) {
506 		if (microcode_nmi_handler_enabled())
507 			microcode_offline_nmi_handler();
508 		return;
509 	}
510 
511 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
512 		this_cpu_write(nmi_state, NMI_LATCHED);
513 		return;
514 	}
515 	this_cpu_write(nmi_state, NMI_EXECUTING);
516 	this_cpu_write(nmi_cr2, read_cr2());
517 
518 nmi_restart:
519 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
520 		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
521 		WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
522 		WRITE_ONCE(nsp->recv_jiffies, jiffies);
523 	}
524 
525 	/*
526 	 * Needs to happen before DR7 is accessed, because the hypervisor can
527 	 * intercept DR7 reads/writes, turning those into #VC exceptions.
528 	 */
529 	sev_es_ist_enter(regs);
530 
531 	this_cpu_write(nmi_dr7, local_db_save());
532 
533 	irq_state = irqentry_nmi_enter(regs);
534 
535 	inc_irq_stat(__nmi_count);
536 
537 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
538 		WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
539 	} else if (!ignore_nmis) {
540 		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
541 			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
542 			WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
543 		}
544 		default_do_nmi(regs);
545 		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
546 			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
547 			WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
548 		}
549 	}
550 
551 	irqentry_nmi_exit(regs, irq_state);
552 
553 	local_db_restore(this_cpu_read(nmi_dr7));
554 
555 	sev_es_ist_exit();
556 
557 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
558 		write_cr2(this_cpu_read(nmi_cr2));
559 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
560 		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
561 		WARN_ON_ONCE(nsp->idt_seq & 0x1);
562 		WRITE_ONCE(nsp->recv_jiffies, jiffies);
563 	}
564 	if (this_cpu_dec_return(nmi_state))
565 		goto nmi_restart;
566 }
567 
568 #if IS_ENABLED(CONFIG_KVM_INTEL)
569 DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
570 {
571 	exc_nmi(regs);
572 }
573 #if IS_MODULE(CONFIG_KVM_INTEL)
574 EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
575 #endif
576 #endif
577 
578 #ifdef CONFIG_NMI_CHECK_CPU
579 
580 static char *nmi_check_stall_msg[] = {
581 /*									*/
582 /* +--------- nsp->idt_seq_snap & 0x1: CPU is in NMI handler.		*/
583 /* | +------ cpu_is_offline(cpu)					*/
584 /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls):	*/
585 /* | | |	NMI handler has been invoked.				*/
586 /* | | |								*/
587 /* V V V								*/
588 /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
589 /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
590 /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
591 /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
592 /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
593 /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
594 /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
595 /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
596 };
597 
598 void nmi_backtrace_stall_snap(const struct cpumask *btp)
599 {
600 	int cpu;
601 	struct nmi_stats *nsp;
602 
603 	for_each_cpu(cpu, btp) {
604 		nsp = per_cpu_ptr(&nmi_stats, cpu);
605 		nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
606 		nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
607 		nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
608 		nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
609 	}
610 }
611 
612 void nmi_backtrace_stall_check(const struct cpumask *btp)
613 {
614 	int cpu;
615 	int idx;
616 	unsigned long nmi_seq;
617 	unsigned long j = jiffies;
618 	char *modp;
619 	char *msgp;
620 	char *msghp;
621 	struct nmi_stats *nsp;
622 
623 	for_each_cpu(cpu, btp) {
624 		nsp = per_cpu_ptr(&nmi_stats, cpu);
625 		modp = "";
626 		msghp = "";
627 		nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
628 		if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
629 			msgp = "CPU entered NMI handler function, but has not exited";
630 		} else if ((nsp->idt_nmi_seq_snap & 0x1) != (nmi_seq & 0x1)) {
631 			msgp = "CPU is handling NMIs";
632 		} else {
633 			idx = ((nsp->idt_seq_snap & 0x1) << 2) |
634 			      (cpu_is_offline(cpu) << 1) |
635 			      (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
636 			msgp = nmi_check_stall_msg[idx];
637 			if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
638 				modp = ", but OK because ignore_nmis was set";
639 			if (nmi_seq & ~0x1)
640 				msghp = " (CPU currently in NMI handler function)";
641 			else if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
642 				msghp = " (CPU exited one NMI handler function)";
643 		}
644 		pr_alert("%s: CPU %d: %s%s%s, last activity: %lu jiffies ago.\n",
645 			 __func__, cpu, msgp, modp, msghp, j - READ_ONCE(nsp->recv_jiffies));
646 	}
647 }
648 
649 #endif
650 
651 void stop_nmi(void)
652 {
653 	ignore_nmis++;
654 }
655 
656 void restart_nmi(void)
657 {
658 	ignore_nmis--;
659 }
660 
661 /* reset the back-to-back NMI logic */
662 void local_touch_nmi(void)
663 {
664 	__this_cpu_write(last_nmi_rip, 0);
665 }
666 EXPORT_SYMBOL_GPL(local_touch_nmi);
667