xref: /linux/arch/x86/kernel/nmi.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
6  *
7  *  Pentium III FXSR, SSE support
8  *	Gareth Hughes <gareth@valinux.com>, May 2000
9  */
10 
11 /*
12  * Handle hardware traps and faults.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
27 
28 #include <asm/cpu_entry_area.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
36 #include <asm/microcode.h>
37 #include <asm/sev.h>
38 #include <asm/fred.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/nmi.h>
42 
43 struct nmi_desc {
44 	raw_spinlock_t lock;
45 	struct list_head head;
46 };
47 
48 static struct nmi_desc nmi_desc[NMI_MAX] =
49 {
50 	{
51 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
52 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
53 	},
54 	{
55 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
56 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
57 	},
58 	{
59 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
60 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
61 	},
62 	{
63 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
64 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
65 	},
66 
67 };
68 
69 struct nmi_stats {
70 	unsigned int normal;
71 	unsigned int unknown;
72 	unsigned int external;
73 	unsigned int swallow;
74 	unsigned long recv_jiffies;
75 	unsigned long idt_seq;
76 	unsigned long idt_nmi_seq;
77 	unsigned long idt_ignored;
78 	atomic_long_t idt_calls;
79 	unsigned long idt_seq_snap;
80 	unsigned long idt_nmi_seq_snap;
81 	unsigned long idt_ignored_snap;
82 	long idt_calls_snap;
83 };
84 
85 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
86 
87 static int ignore_nmis __read_mostly;
88 
89 int unknown_nmi_panic;
90 /*
91  * Prevent NMI reason port (0x61) being accessed simultaneously, can
92  * only be used in NMI handler.
93  */
94 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
95 
96 static int __init setup_unknown_nmi_panic(char *str)
97 {
98 	unknown_nmi_panic = 1;
99 	return 1;
100 }
101 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
102 
103 #define nmi_to_desc(type) (&nmi_desc[type])
104 
105 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
106 
107 static int __init nmi_warning_debugfs(void)
108 {
109 	debugfs_create_u64("nmi_longest_ns", 0644,
110 			arch_debugfs_dir, &nmi_longest_ns);
111 	return 0;
112 }
113 fs_initcall(nmi_warning_debugfs);
114 
115 static void nmi_check_duration(struct nmiaction *action, u64 duration)
116 {
117 	int remainder_ns, decimal_msecs;
118 
119 	if (duration < nmi_longest_ns || duration < action->max_duration)
120 		return;
121 
122 	action->max_duration = duration;
123 
124 	remainder_ns = do_div(duration, (1000 * 1000));
125 	decimal_msecs = remainder_ns / 1000;
126 
127 	printk_ratelimited(KERN_INFO
128 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
129 		action->handler, duration, decimal_msecs);
130 }
131 
132 static int nmi_handle(unsigned int type, struct pt_regs *regs)
133 {
134 	struct nmi_desc *desc = nmi_to_desc(type);
135 	struct nmiaction *a;
136 	int handled=0;
137 
138 	rcu_read_lock();
139 
140 	/*
141 	 * NMIs are edge-triggered, which means if you have enough
142 	 * of them concurrently, you can lose some because only one
143 	 * can be latched at any given time.  Walk the whole list
144 	 * to handle those situations.
145 	 */
146 	list_for_each_entry_rcu(a, &desc->head, list) {
147 		int thishandled;
148 		u64 delta;
149 
150 		delta = sched_clock();
151 		thishandled = a->handler(type, regs);
152 		handled += thishandled;
153 		delta = sched_clock() - delta;
154 		trace_nmi_handler(a->handler, (int)delta, thishandled);
155 
156 		nmi_check_duration(a, delta);
157 	}
158 
159 	rcu_read_unlock();
160 
161 	/* return total number of NMI events handled */
162 	return handled;
163 }
164 NOKPROBE_SYMBOL(nmi_handle);
165 
166 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
167 {
168 	struct nmi_desc *desc = nmi_to_desc(type);
169 	unsigned long flags;
170 
171 	if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
172 		return -EINVAL;
173 
174 	raw_spin_lock_irqsave(&desc->lock, flags);
175 
176 	/*
177 	 * Indicate if there are multiple registrations on the
178 	 * internal NMI handler call chains (SERR and IO_CHECK).
179 	 */
180 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
181 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
182 
183 	/*
184 	 * some handlers need to be executed first otherwise a fake
185 	 * event confuses some handlers (kdump uses this flag)
186 	 */
187 	if (action->flags & NMI_FLAG_FIRST)
188 		list_add_rcu(&action->list, &desc->head);
189 	else
190 		list_add_tail_rcu(&action->list, &desc->head);
191 
192 	raw_spin_unlock_irqrestore(&desc->lock, flags);
193 	return 0;
194 }
195 EXPORT_SYMBOL(__register_nmi_handler);
196 
197 void unregister_nmi_handler(unsigned int type, const char *name)
198 {
199 	struct nmi_desc *desc = nmi_to_desc(type);
200 	struct nmiaction *n, *found = NULL;
201 	unsigned long flags;
202 
203 	raw_spin_lock_irqsave(&desc->lock, flags);
204 
205 	list_for_each_entry_rcu(n, &desc->head, list) {
206 		/*
207 		 * the name passed in to describe the nmi handler
208 		 * is used as the lookup key
209 		 */
210 		if (!strcmp(n->name, name)) {
211 			WARN(in_nmi(),
212 				"Trying to free NMI (%s) from NMI context!\n", n->name);
213 			list_del_rcu(&n->list);
214 			found = n;
215 			break;
216 		}
217 	}
218 
219 	raw_spin_unlock_irqrestore(&desc->lock, flags);
220 	if (found) {
221 		synchronize_rcu();
222 		INIT_LIST_HEAD(&found->list);
223 	}
224 }
225 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
226 
227 static void
228 pci_serr_error(unsigned char reason, struct pt_regs *regs)
229 {
230 	/* check to see if anyone registered against these types of errors */
231 	if (nmi_handle(NMI_SERR, regs))
232 		return;
233 
234 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
235 		 reason, smp_processor_id());
236 
237 	if (panic_on_unrecovered_nmi)
238 		nmi_panic(regs, "NMI: Not continuing");
239 
240 	pr_emerg("Dazed and confused, but trying to continue\n");
241 
242 	/* Clear and disable the PCI SERR error line. */
243 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
244 	outb(reason, NMI_REASON_PORT);
245 }
246 NOKPROBE_SYMBOL(pci_serr_error);
247 
248 static void
249 io_check_error(unsigned char reason, struct pt_regs *regs)
250 {
251 	unsigned long i;
252 
253 	/* check to see if anyone registered against these types of errors */
254 	if (nmi_handle(NMI_IO_CHECK, regs))
255 		return;
256 
257 	pr_emerg(
258 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
259 		 reason, smp_processor_id());
260 	show_regs(regs);
261 
262 	if (panic_on_io_nmi) {
263 		nmi_panic(regs, "NMI IOCK error: Not continuing");
264 
265 		/*
266 		 * If we end up here, it means we have received an NMI while
267 		 * processing panic(). Simply return without delaying and
268 		 * re-enabling NMIs.
269 		 */
270 		return;
271 	}
272 
273 	/* Re-enable the IOCK line, wait for a few seconds */
274 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
275 	outb(reason, NMI_REASON_PORT);
276 
277 	i = 20000;
278 	while (--i) {
279 		touch_nmi_watchdog();
280 		udelay(100);
281 	}
282 
283 	reason &= ~NMI_REASON_CLEAR_IOCHK;
284 	outb(reason, NMI_REASON_PORT);
285 }
286 NOKPROBE_SYMBOL(io_check_error);
287 
288 static void
289 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
290 {
291 	int handled;
292 
293 	/*
294 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
295 	 * Of course this makes having multiple 'unknown' handlers useless
296 	 * as only the first one is ever run (unless it can actually determine
297 	 * if it caused the NMI)
298 	 */
299 	handled = nmi_handle(NMI_UNKNOWN, regs);
300 	if (handled) {
301 		__this_cpu_add(nmi_stats.unknown, handled);
302 		return;
303 	}
304 
305 	__this_cpu_add(nmi_stats.unknown, 1);
306 
307 	pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308 			     reason, smp_processor_id());
309 
310 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
311 		nmi_panic(regs, "NMI: Not continuing");
312 
313 	pr_emerg_ratelimited("Dazed and confused, but trying to continue\n");
314 }
315 NOKPROBE_SYMBOL(unknown_nmi_error);
316 
317 static DEFINE_PER_CPU(bool, swallow_nmi);
318 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
319 
320 static noinstr void default_do_nmi(struct pt_regs *regs)
321 {
322 	unsigned char reason = 0;
323 	int handled;
324 	bool b2b = false;
325 
326 	/*
327 	 * CPU-specific NMI must be processed before non-CPU-specific
328 	 * NMI, otherwise we may lose it, because the CPU-specific
329 	 * NMI can not be detected/processed on other CPUs.
330 	 */
331 
332 	/*
333 	 * Back-to-back NMIs are interesting because they can either
334 	 * be two NMI or more than two NMIs (any thing over two is dropped
335 	 * due to NMI being edge-triggered).  If this is the second half
336 	 * of the back-to-back NMI, assume we dropped things and process
337 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
338 	 */
339 	if (regs->ip == __this_cpu_read(last_nmi_rip))
340 		b2b = true;
341 	else
342 		__this_cpu_write(swallow_nmi, false);
343 
344 	__this_cpu_write(last_nmi_rip, regs->ip);
345 
346 	instrumentation_begin();
347 
348 	if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
349 		goto out;
350 
351 	handled = nmi_handle(NMI_LOCAL, regs);
352 	__this_cpu_add(nmi_stats.normal, handled);
353 	if (handled) {
354 		/*
355 		 * There are cases when a NMI handler handles multiple
356 		 * events in the current NMI.  One of these events may
357 		 * be queued for in the next NMI.  Because the event is
358 		 * already handled, the next NMI will result in an unknown
359 		 * NMI.  Instead lets flag this for a potential NMI to
360 		 * swallow.
361 		 */
362 		if (handled > 1)
363 			__this_cpu_write(swallow_nmi, true);
364 		goto out;
365 	}
366 
367 	/*
368 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
369 	 *
370 	 * Another CPU may be processing panic routines while holding
371 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
372 	 * and if so, call its callback directly.  If there is no CPU preparing
373 	 * crash dump, we simply loop here.
374 	 */
375 	while (!raw_spin_trylock(&nmi_reason_lock)) {
376 		run_crash_ipi_callback(regs);
377 		cpu_relax();
378 	}
379 
380 	reason = x86_platform.get_nmi_reason();
381 
382 	if (reason & NMI_REASON_MASK) {
383 		if (reason & NMI_REASON_SERR)
384 			pci_serr_error(reason, regs);
385 		else if (reason & NMI_REASON_IOCHK)
386 			io_check_error(reason, regs);
387 #ifdef CONFIG_X86_32
388 		/*
389 		 * Reassert NMI in case it became active
390 		 * meanwhile as it's edge-triggered:
391 		 */
392 		reassert_nmi();
393 #endif
394 		__this_cpu_add(nmi_stats.external, 1);
395 		raw_spin_unlock(&nmi_reason_lock);
396 		goto out;
397 	}
398 	raw_spin_unlock(&nmi_reason_lock);
399 
400 	/*
401 	 * Only one NMI can be latched at a time.  To handle
402 	 * this we may process multiple nmi handlers at once to
403 	 * cover the case where an NMI is dropped.  The downside
404 	 * to this approach is we may process an NMI prematurely,
405 	 * while its real NMI is sitting latched.  This will cause
406 	 * an unknown NMI on the next run of the NMI processing.
407 	 *
408 	 * We tried to flag that condition above, by setting the
409 	 * swallow_nmi flag when we process more than one event.
410 	 * This condition is also only present on the second half
411 	 * of a back-to-back NMI, so we flag that condition too.
412 	 *
413 	 * If both are true, we assume we already processed this
414 	 * NMI previously and we swallow it.  Otherwise we reset
415 	 * the logic.
416 	 *
417 	 * There are scenarios where we may accidentally swallow
418 	 * a 'real' unknown NMI.  For example, while processing
419 	 * a perf NMI another perf NMI comes in along with a
420 	 * 'real' unknown NMI.  These two NMIs get combined into
421 	 * one (as described above).  When the next NMI gets
422 	 * processed, it will be flagged by perf as handled, but
423 	 * no one will know that there was a 'real' unknown NMI sent
424 	 * also.  As a result it gets swallowed.  Or if the first
425 	 * perf NMI returns two events handled then the second
426 	 * NMI will get eaten by the logic below, again losing a
427 	 * 'real' unknown NMI.  But this is the best we can do
428 	 * for now.
429 	 */
430 	if (b2b && __this_cpu_read(swallow_nmi))
431 		__this_cpu_add(nmi_stats.swallow, 1);
432 	else
433 		unknown_nmi_error(reason, regs);
434 
435 out:
436 	instrumentation_end();
437 }
438 
439 /*
440  * NMIs can page fault or hit breakpoints which will cause it to lose
441  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
442  *
443  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
444  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
445  * if the outer NMI came from kernel mode, but we can still nest if the
446  * outer NMI came from user mode.
447  *
448  * To handle these nested NMIs, we have three states:
449  *
450  *  1) not running
451  *  2) executing
452  *  3) latched
453  *
454  * When no NMI is in progress, it is in the "not running" state.
455  * When an NMI comes in, it goes into the "executing" state.
456  * Normally, if another NMI is triggered, it does not interrupt
457  * the running NMI and the HW will simply latch it so that when
458  * the first NMI finishes, it will restart the second NMI.
459  * (Note, the latch is binary, thus multiple NMIs triggering,
460  *  when one is running, are ignored. Only one NMI is restarted.)
461  *
462  * If an NMI executes an iret, another NMI can preempt it. We do not
463  * want to allow this new NMI to run, but we want to execute it when the
464  * first one finishes.  We set the state to "latched", and the exit of
465  * the first NMI will perform a dec_return, if the result is zero
466  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
467  * dec_return would have set the state to NMI_EXECUTING (what we want it
468  * to be when we are running). In this case, we simply jump back to
469  * rerun the NMI handler again, and restart the 'latched' NMI.
470  *
471  * No trap (breakpoint or page fault) should be hit before nmi_restart,
472  * thus there is no race between the first check of state for NOT_RUNNING
473  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
474  * at this point.
475  *
476  * In case the NMI takes a page fault, we need to save off the CR2
477  * because the NMI could have preempted another page fault and corrupt
478  * the CR2 that is about to be read. As nested NMIs must be restarted
479  * and they can not take breakpoints or page faults, the update of the
480  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
481  * Otherwise, there would be a race of another nested NMI coming in
482  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
483  */
484 enum nmi_states {
485 	NMI_NOT_RUNNING = 0,
486 	NMI_EXECUTING,
487 	NMI_LATCHED,
488 };
489 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
490 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
491 static DEFINE_PER_CPU(unsigned long, nmi_dr7);
492 
493 DEFINE_IDTENTRY_RAW(exc_nmi)
494 {
495 	irqentry_state_t irq_state;
496 	struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
497 
498 	/*
499 	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
500 	 * cause nested NMIs, but those can be handled safely.
501 	 */
502 	sev_es_nmi_complete();
503 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
504 		raw_atomic_long_inc(&nsp->idt_calls);
505 
506 	if (arch_cpu_is_offline(smp_processor_id())) {
507 		if (microcode_nmi_handler_enabled())
508 			microcode_offline_nmi_handler();
509 		return;
510 	}
511 
512 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
513 		this_cpu_write(nmi_state, NMI_LATCHED);
514 		return;
515 	}
516 	this_cpu_write(nmi_state, NMI_EXECUTING);
517 	this_cpu_write(nmi_cr2, read_cr2());
518 
519 nmi_restart:
520 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
521 		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
522 		WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
523 		WRITE_ONCE(nsp->recv_jiffies, jiffies);
524 	}
525 
526 	/*
527 	 * Needs to happen before DR7 is accessed, because the hypervisor can
528 	 * intercept DR7 reads/writes, turning those into #VC exceptions.
529 	 */
530 	sev_es_ist_enter(regs);
531 
532 	this_cpu_write(nmi_dr7, local_db_save());
533 
534 	irq_state = irqentry_nmi_enter(regs);
535 
536 	inc_irq_stat(__nmi_count);
537 
538 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
539 		WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
540 	} else if (!ignore_nmis) {
541 		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
542 			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
543 			WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
544 		}
545 		default_do_nmi(regs);
546 		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
547 			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
548 			WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
549 		}
550 	}
551 
552 	irqentry_nmi_exit(regs, irq_state);
553 
554 	local_db_restore(this_cpu_read(nmi_dr7));
555 
556 	sev_es_ist_exit();
557 
558 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
559 		write_cr2(this_cpu_read(nmi_cr2));
560 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
561 		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
562 		WARN_ON_ONCE(nsp->idt_seq & 0x1);
563 		WRITE_ONCE(nsp->recv_jiffies, jiffies);
564 	}
565 	if (this_cpu_dec_return(nmi_state))
566 		goto nmi_restart;
567 }
568 
569 #if IS_ENABLED(CONFIG_KVM_INTEL)
570 DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
571 {
572 	exc_nmi(regs);
573 }
574 #if IS_MODULE(CONFIG_KVM_INTEL)
575 EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
576 #endif
577 #endif
578 
579 #ifdef CONFIG_NMI_CHECK_CPU
580 
581 static char *nmi_check_stall_msg[] = {
582 /*									*/
583 /* +--------- nmi_seq & 0x1: CPU is currently in NMI handler.		*/
584 /* | +------ cpu_is_offline(cpu)					*/
585 /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls):	*/
586 /* | | |	NMI handler has been invoked.				*/
587 /* | | |								*/
588 /* V V V								*/
589 /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
590 /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
591 /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
592 /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
593 /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
594 /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
595 /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
596 /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
597 };
598 
599 void nmi_backtrace_stall_snap(const struct cpumask *btp)
600 {
601 	int cpu;
602 	struct nmi_stats *nsp;
603 
604 	for_each_cpu(cpu, btp) {
605 		nsp = per_cpu_ptr(&nmi_stats, cpu);
606 		nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
607 		nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
608 		nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
609 		nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
610 	}
611 }
612 
613 void nmi_backtrace_stall_check(const struct cpumask *btp)
614 {
615 	int cpu;
616 	int idx;
617 	unsigned long nmi_seq;
618 	unsigned long j = jiffies;
619 	char *modp;
620 	char *msgp;
621 	char *msghp;
622 	struct nmi_stats *nsp;
623 
624 	for_each_cpu(cpu, btp) {
625 		nsp = per_cpu_ptr(&nmi_stats, cpu);
626 		modp = "";
627 		msghp = "";
628 		nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
629 		if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
630 			msgp = "CPU entered NMI handler function, but has not exited";
631 		} else if (nsp->idt_nmi_seq_snap == nmi_seq ||
632 			   nsp->idt_nmi_seq_snap + 1 == nmi_seq) {
633 			idx = ((nmi_seq & 0x1) << 2) |
634 			      (cpu_is_offline(cpu) << 1) |
635 			      (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
636 			msgp = nmi_check_stall_msg[idx];
637 			if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
638 				modp = ", but OK because ignore_nmis was set";
639 			if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
640 				msghp = " (CPU exited one NMI handler function)";
641 			else if (nmi_seq & 0x1)
642 				msghp = " (CPU currently in NMI handler function)";
643 			else
644 				msghp = " (CPU was never in an NMI handler function)";
645 		} else {
646 			msgp = "CPU is handling NMIs";
647 		}
648 		pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp);
649 		pr_alert("%s: last activity: %lu jiffies ago.\n",
650 			 __func__, j - READ_ONCE(nsp->recv_jiffies));
651 	}
652 }
653 
654 #endif
655 
656 #ifdef CONFIG_X86_FRED
657 /*
658  * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED
659  * event delivery, i.e., there is no problem of transient states.
660  * And NMI unblocking only happens when the stack frame indicates
661  * that so should happen.
662  *
663  * Thus, the NMI entry stub for FRED is really straightforward and
664  * as simple as most exception handlers. As such, #DB is allowed
665  * during NMI handling.
666  */
667 DEFINE_FREDENTRY_NMI(exc_nmi)
668 {
669 	irqentry_state_t irq_state;
670 
671 	if (arch_cpu_is_offline(smp_processor_id())) {
672 		if (microcode_nmi_handler_enabled())
673 			microcode_offline_nmi_handler();
674 		return;
675 	}
676 
677 	/*
678 	 * Save CR2 for eventual restore to cover the case where the NMI
679 	 * hits the VMENTER/VMEXIT region where guest CR2 is life. This
680 	 * prevents guest state corruption in case that the NMI handler
681 	 * takes a page fault.
682 	 */
683 	this_cpu_write(nmi_cr2, read_cr2());
684 
685 	irq_state = irqentry_nmi_enter(regs);
686 
687 	inc_irq_stat(__nmi_count);
688 	default_do_nmi(regs);
689 
690 	irqentry_nmi_exit(regs, irq_state);
691 
692 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
693 		write_cr2(this_cpu_read(nmi_cr2));
694 }
695 #endif
696 
697 void stop_nmi(void)
698 {
699 	ignore_nmis++;
700 }
701 
702 void restart_nmi(void)
703 {
704 	ignore_nmis--;
705 }
706 
707 /* reset the back-to-back NMI logic */
708 void local_touch_nmi(void)
709 {
710 	__this_cpu_write(last_nmi_rip, 0);
711 }
712 EXPORT_SYMBOL_GPL(local_touch_nmi);
713