xref: /linux/arch/x86/kernel/nmi.c (revision 681e4a5e13c1c8315694eb4f44e0cdd84c9082d2)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/delay.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 
22 #include <linux/mca.h>
23 
24 #if defined(CONFIG_EDAC)
25 #include <linux/edac.h>
26 #endif
27 
28 #include <linux/atomic.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 
34 #define NMI_MAX_NAMELEN	16
35 struct nmiaction {
36 	struct list_head list;
37 	nmi_handler_t handler;
38 	unsigned int flags;
39 	char *name;
40 };
41 
42 struct nmi_desc {
43 	spinlock_t lock;
44 	struct list_head head;
45 };
46 
47 static struct nmi_desc nmi_desc[NMI_MAX] =
48 {
49 	{
50 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
51 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
52 	},
53 	{
54 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
55 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
56 	},
57 
58 };
59 
60 struct nmi_stats {
61 	unsigned int normal;
62 	unsigned int unknown;
63 	unsigned int external;
64 	unsigned int swallow;
65 };
66 
67 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
68 
69 static int ignore_nmis;
70 
71 int unknown_nmi_panic;
72 /*
73  * Prevent NMI reason port (0x61) being accessed simultaneously, can
74  * only be used in NMI handler.
75  */
76 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
77 
78 static int __init setup_unknown_nmi_panic(char *str)
79 {
80 	unknown_nmi_panic = 1;
81 	return 1;
82 }
83 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
84 
85 #define nmi_to_desc(type) (&nmi_desc[type])
86 
87 static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
88 {
89 	struct nmi_desc *desc = nmi_to_desc(type);
90 	struct nmiaction *a;
91 	int handled=0;
92 
93 	rcu_read_lock();
94 
95 	/*
96 	 * NMIs are edge-triggered, which means if you have enough
97 	 * of them concurrently, you can lose some because only one
98 	 * can be latched at any given time.  Walk the whole list
99 	 * to handle those situations.
100 	 */
101 	list_for_each_entry_rcu(a, &desc->head, list)
102 		handled += a->handler(type, regs);
103 
104 	rcu_read_unlock();
105 
106 	/* return total number of NMI events handled */
107 	return handled;
108 }
109 
110 static int __setup_nmi(unsigned int type, struct nmiaction *action)
111 {
112 	struct nmi_desc *desc = nmi_to_desc(type);
113 	unsigned long flags;
114 
115 	spin_lock_irqsave(&desc->lock, flags);
116 
117 	/*
118 	 * most handlers of type NMI_UNKNOWN never return because
119 	 * they just assume the NMI is theirs.  Just a sanity check
120 	 * to manage expectations
121 	 */
122 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
123 
124 	/*
125 	 * some handlers need to be executed first otherwise a fake
126 	 * event confuses some handlers (kdump uses this flag)
127 	 */
128 	if (action->flags & NMI_FLAG_FIRST)
129 		list_add_rcu(&action->list, &desc->head);
130 	else
131 		list_add_tail_rcu(&action->list, &desc->head);
132 
133 	spin_unlock_irqrestore(&desc->lock, flags);
134 	return 0;
135 }
136 
137 static struct nmiaction *__free_nmi(unsigned int type, const char *name)
138 {
139 	struct nmi_desc *desc = nmi_to_desc(type);
140 	struct nmiaction *n;
141 	unsigned long flags;
142 
143 	spin_lock_irqsave(&desc->lock, flags);
144 
145 	list_for_each_entry_rcu(n, &desc->head, list) {
146 		/*
147 		 * the name passed in to describe the nmi handler
148 		 * is used as the lookup key
149 		 */
150 		if (!strcmp(n->name, name)) {
151 			WARN(in_nmi(),
152 				"Trying to free NMI (%s) from NMI context!\n", n->name);
153 			list_del_rcu(&n->list);
154 			break;
155 		}
156 	}
157 
158 	spin_unlock_irqrestore(&desc->lock, flags);
159 	synchronize_rcu();
160 	return (n);
161 }
162 
163 int register_nmi_handler(unsigned int type, nmi_handler_t handler,
164 			unsigned long nmiflags, const char *devname)
165 {
166 	struct nmiaction *action;
167 	int retval = -ENOMEM;
168 
169 	if (!handler)
170 		return -EINVAL;
171 
172 	action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL);
173 	if (!action)
174 		goto fail_action;
175 
176 	action->handler = handler;
177 	action->flags = nmiflags;
178 	action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL);
179 	if (!action->name)
180 		goto fail_action_name;
181 
182 	retval = __setup_nmi(type, action);
183 
184 	if (retval)
185 		goto fail_setup_nmi;
186 
187 	return retval;
188 
189 fail_setup_nmi:
190 	kfree(action->name);
191 fail_action_name:
192 	kfree(action);
193 fail_action:
194 
195 	return retval;
196 }
197 EXPORT_SYMBOL_GPL(register_nmi_handler);
198 
199 void unregister_nmi_handler(unsigned int type, const char *name)
200 {
201 	struct nmiaction *a;
202 
203 	a = __free_nmi(type, name);
204 	if (a) {
205 		kfree(a->name);
206 		kfree(a);
207 	}
208 }
209 
210 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
211 
212 static notrace __kprobes void
213 pci_serr_error(unsigned char reason, struct pt_regs *regs)
214 {
215 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
216 		 reason, smp_processor_id());
217 
218 	/*
219 	 * On some machines, PCI SERR line is used to report memory
220 	 * errors. EDAC makes use of it.
221 	 */
222 #if defined(CONFIG_EDAC)
223 	if (edac_handler_set()) {
224 		edac_atomic_assert_error();
225 		return;
226 	}
227 #endif
228 
229 	if (panic_on_unrecovered_nmi)
230 		panic("NMI: Not continuing");
231 
232 	pr_emerg("Dazed and confused, but trying to continue\n");
233 
234 	/* Clear and disable the PCI SERR error line. */
235 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
236 	outb(reason, NMI_REASON_PORT);
237 }
238 
239 static notrace __kprobes void
240 io_check_error(unsigned char reason, struct pt_regs *regs)
241 {
242 	unsigned long i;
243 
244 	pr_emerg(
245 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
246 		 reason, smp_processor_id());
247 	show_registers(regs);
248 
249 	if (panic_on_io_nmi)
250 		panic("NMI IOCK error: Not continuing");
251 
252 	/* Re-enable the IOCK line, wait for a few seconds */
253 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
254 	outb(reason, NMI_REASON_PORT);
255 
256 	i = 20000;
257 	while (--i) {
258 		touch_nmi_watchdog();
259 		udelay(100);
260 	}
261 
262 	reason &= ~NMI_REASON_CLEAR_IOCHK;
263 	outb(reason, NMI_REASON_PORT);
264 }
265 
266 static notrace __kprobes void
267 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
268 {
269 	int handled;
270 
271 	/*
272 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
273 	 * Of course this makes having multiple 'unknown' handlers useless
274 	 * as only the first one is ever run (unless it can actually determine
275 	 * if it caused the NMI)
276 	 */
277 	handled = nmi_handle(NMI_UNKNOWN, regs, false);
278 	if (handled) {
279 		__this_cpu_add(nmi_stats.unknown, handled);
280 		return;
281 	}
282 
283 	__this_cpu_add(nmi_stats.unknown, 1);
284 
285 #ifdef CONFIG_MCA
286 	/*
287 	 * Might actually be able to figure out what the guilty party
288 	 * is:
289 	 */
290 	if (MCA_bus) {
291 		mca_handle_nmi();
292 		return;
293 	}
294 #endif
295 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
296 		 reason, smp_processor_id());
297 
298 	pr_emerg("Do you have a strange power saving mode enabled?\n");
299 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300 		panic("NMI: Not continuing");
301 
302 	pr_emerg("Dazed and confused, but trying to continue\n");
303 }
304 
305 static DEFINE_PER_CPU(bool, swallow_nmi);
306 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
307 
308 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
309 {
310 	unsigned char reason = 0;
311 	int handled;
312 	bool b2b = false;
313 
314 	/*
315 	 * CPU-specific NMI must be processed before non-CPU-specific
316 	 * NMI, otherwise we may lose it, because the CPU-specific
317 	 * NMI can not be detected/processed on other CPUs.
318 	 */
319 
320 	/*
321 	 * Back-to-back NMIs are interesting because they can either
322 	 * be two NMI or more than two NMIs (any thing over two is dropped
323 	 * due to NMI being edge-triggered).  If this is the second half
324 	 * of the back-to-back NMI, assume we dropped things and process
325 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
326 	 */
327 	if (regs->ip == __this_cpu_read(last_nmi_rip))
328 		b2b = true;
329 	else
330 		__this_cpu_write(swallow_nmi, false);
331 
332 	__this_cpu_write(last_nmi_rip, regs->ip);
333 
334 	handled = nmi_handle(NMI_LOCAL, regs, b2b);
335 	__this_cpu_add(nmi_stats.normal, handled);
336 	if (handled) {
337 		/*
338 		 * There are cases when a NMI handler handles multiple
339 		 * events in the current NMI.  One of these events may
340 		 * be queued for in the next NMI.  Because the event is
341 		 * already handled, the next NMI will result in an unknown
342 		 * NMI.  Instead lets flag this for a potential NMI to
343 		 * swallow.
344 		 */
345 		if (handled > 1)
346 			__this_cpu_write(swallow_nmi, true);
347 		return;
348 	}
349 
350 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
351 	raw_spin_lock(&nmi_reason_lock);
352 	reason = x86_platform.get_nmi_reason();
353 
354 	if (reason & NMI_REASON_MASK) {
355 		if (reason & NMI_REASON_SERR)
356 			pci_serr_error(reason, regs);
357 		else if (reason & NMI_REASON_IOCHK)
358 			io_check_error(reason, regs);
359 #ifdef CONFIG_X86_32
360 		/*
361 		 * Reassert NMI in case it became active
362 		 * meanwhile as it's edge-triggered:
363 		 */
364 		reassert_nmi();
365 #endif
366 		__this_cpu_add(nmi_stats.external, 1);
367 		raw_spin_unlock(&nmi_reason_lock);
368 		return;
369 	}
370 	raw_spin_unlock(&nmi_reason_lock);
371 
372 	/*
373 	 * Only one NMI can be latched at a time.  To handle
374 	 * this we may process multiple nmi handlers at once to
375 	 * cover the case where an NMI is dropped.  The downside
376 	 * to this approach is we may process an NMI prematurely,
377 	 * while its real NMI is sitting latched.  This will cause
378 	 * an unknown NMI on the next run of the NMI processing.
379 	 *
380 	 * We tried to flag that condition above, by setting the
381 	 * swallow_nmi flag when we process more than one event.
382 	 * This condition is also only present on the second half
383 	 * of a back-to-back NMI, so we flag that condition too.
384 	 *
385 	 * If both are true, we assume we already processed this
386 	 * NMI previously and we swallow it.  Otherwise we reset
387 	 * the logic.
388 	 *
389 	 * There are scenarios where we may accidentally swallow
390 	 * a 'real' unknown NMI.  For example, while processing
391 	 * a perf NMI another perf NMI comes in along with a
392 	 * 'real' unknown NMI.  These two NMIs get combined into
393 	 * one (as descibed above).  When the next NMI gets
394 	 * processed, it will be flagged by perf as handled, but
395 	 * noone will know that there was a 'real' unknown NMI sent
396 	 * also.  As a result it gets swallowed.  Or if the first
397 	 * perf NMI returns two events handled then the second
398 	 * NMI will get eaten by the logic below, again losing a
399 	 * 'real' unknown NMI.  But this is the best we can do
400 	 * for now.
401 	 */
402 	if (b2b && __this_cpu_read(swallow_nmi))
403 		__this_cpu_add(nmi_stats.swallow, 1);
404 	else
405 		unknown_nmi_error(reason, regs);
406 }
407 
408 /*
409  * NMIs can hit breakpoints which will cause it to lose its
410  * NMI context with the CPU when the breakpoint does an iret.
411  */
412 #ifdef CONFIG_X86_32
413 /*
414  * For i386, NMIs use the same stack as the kernel, and we can
415  * add a workaround to the iret problem in C. Simply have 3 states
416  * the NMI can be in.
417  *
418  *  1) not running
419  *  2) executing
420  *  3) latched
421  *
422  * When no NMI is in progress, it is in the "not running" state.
423  * When an NMI comes in, it goes into the "executing" state.
424  * Normally, if another NMI is triggered, it does not interrupt
425  * the running NMI and the HW will simply latch it so that when
426  * the first NMI finishes, it will restart the second NMI.
427  * (Note, the latch is binary, thus multiple NMIs triggering,
428  *  when one is running, are ignored. Only one NMI is restarted.)
429  *
430  * If an NMI hits a breakpoint that executes an iret, another
431  * NMI can preempt it. We do not want to allow this new NMI
432  * to run, but we want to execute it when the first one finishes.
433  * We set the state to "latched", and the first NMI will perform
434  * an cmpxchg on the state, and if it doesn't successfully
435  * reset the state to "not running" it will restart the next
436  * NMI.
437  */
438 enum nmi_states {
439 	NMI_NOT_RUNNING,
440 	NMI_EXECUTING,
441 	NMI_LATCHED,
442 };
443 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
444 
445 #define nmi_nesting_preprocess(regs)					\
446 	do {								\
447 		if (__get_cpu_var(nmi_state) != NMI_NOT_RUNNING) {	\
448 			__get_cpu_var(nmi_state) = NMI_LATCHED;		\
449 			return;						\
450 		}							\
451 	nmi_restart:							\
452 		__get_cpu_var(nmi_state) = NMI_EXECUTING;		\
453 	} while (0)
454 
455 #define nmi_nesting_postprocess()					\
456 	do {								\
457 		if (cmpxchg(&__get_cpu_var(nmi_state),			\
458 		    NMI_EXECUTING, NMI_NOT_RUNNING) != NMI_EXECUTING)	\
459 			goto nmi_restart;				\
460 	} while (0)
461 #else /* x86_64 */
462 /*
463  * In x86_64 things are a bit more difficult. This has the same problem
464  * where an NMI hitting a breakpoint that calls iret will remove the
465  * NMI context, allowing a nested NMI to enter. What makes this more
466  * difficult is that both NMIs and breakpoints have their own stack.
467  * When a new NMI or breakpoint is executed, the stack is set to a fixed
468  * point. If an NMI is nested, it will have its stack set at that same
469  * fixed address that the first NMI had, and will start corrupting the
470  * stack. This is handled in entry_64.S, but the same problem exists with
471  * the breakpoint stack.
472  *
473  * If a breakpoint is being processed, and the debug stack is being used,
474  * if an NMI comes in and also hits a breakpoint, the stack pointer
475  * will be set to the same fixed address as the breakpoint that was
476  * interrupted, causing that stack to be corrupted. To handle this case,
477  * check if the stack that was interrupted is the debug stack, and if
478  * so, change the IDT so that new breakpoints will use the current stack
479  * and not switch to the fixed address. On return of the NMI, switch back
480  * to the original IDT.
481  */
482 static DEFINE_PER_CPU(int, update_debug_stack);
483 
484 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
485 {
486 	/*
487 	 * If we interrupted a breakpoint, it is possible that
488 	 * the nmi handler will have breakpoints too. We need to
489 	 * change the IDT such that breakpoints that happen here
490 	 * continue to use the NMI stack.
491 	 */
492 	if (unlikely(is_debug_stack(regs->sp))) {
493 		debug_stack_set_zero();
494 		__get_cpu_var(update_debug_stack) = 1;
495 	}
496 }
497 
498 static inline void nmi_nesting_postprocess(void)
499 {
500 	if (unlikely(__get_cpu_var(update_debug_stack)))
501 		debug_stack_reset();
502 }
503 #endif
504 
505 dotraplinkage notrace __kprobes void
506 do_nmi(struct pt_regs *regs, long error_code)
507 {
508 	nmi_nesting_preprocess(regs);
509 
510 	nmi_enter();
511 
512 	inc_irq_stat(__nmi_count);
513 
514 	if (!ignore_nmis)
515 		default_do_nmi(regs);
516 
517 	nmi_exit();
518 
519 	/* On i386, may loop back to preprocess */
520 	nmi_nesting_postprocess();
521 }
522 
523 void stop_nmi(void)
524 {
525 	ignore_nmis++;
526 }
527 
528 void restart_nmi(void)
529 {
530 	ignore_nmis--;
531 }
532 
533 /* reset the back-to-back NMI logic */
534 void local_touch_nmi(void)
535 {
536 	__this_cpu_write(last_nmi_rip, 0);
537 }
538