xref: /linux/arch/x86/kernel/nmi.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/delay.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 
22 #if defined(CONFIG_EDAC)
23 #include <linux/edac.h>
24 #endif
25 
26 #include <linux/atomic.h>
27 #include <asm/traps.h>
28 #include <asm/mach_traps.h>
29 #include <asm/nmi.h>
30 #include <asm/x86_init.h>
31 
32 struct nmi_desc {
33 	spinlock_t lock;
34 	struct list_head head;
35 };
36 
37 static struct nmi_desc nmi_desc[NMI_MAX] =
38 {
39 	{
40 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
41 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
42 	},
43 	{
44 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
45 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
46 	},
47 	{
48 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
49 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
50 	},
51 	{
52 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
53 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
54 	},
55 
56 };
57 
58 struct nmi_stats {
59 	unsigned int normal;
60 	unsigned int unknown;
61 	unsigned int external;
62 	unsigned int swallow;
63 };
64 
65 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
66 
67 static int ignore_nmis;
68 
69 int unknown_nmi_panic;
70 /*
71  * Prevent NMI reason port (0x61) being accessed simultaneously, can
72  * only be used in NMI handler.
73  */
74 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
75 
76 static int __init setup_unknown_nmi_panic(char *str)
77 {
78 	unknown_nmi_panic = 1;
79 	return 1;
80 }
81 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
82 
83 #define nmi_to_desc(type) (&nmi_desc[type])
84 
85 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
86 {
87 	struct nmi_desc *desc = nmi_to_desc(type);
88 	struct nmiaction *a;
89 	int handled=0;
90 
91 	rcu_read_lock();
92 
93 	/*
94 	 * NMIs are edge-triggered, which means if you have enough
95 	 * of them concurrently, you can lose some because only one
96 	 * can be latched at any given time.  Walk the whole list
97 	 * to handle those situations.
98 	 */
99 	list_for_each_entry_rcu(a, &desc->head, list)
100 		handled += a->handler(type, regs);
101 
102 	rcu_read_unlock();
103 
104 	/* return total number of NMI events handled */
105 	return handled;
106 }
107 
108 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
109 {
110 	struct nmi_desc *desc = nmi_to_desc(type);
111 	unsigned long flags;
112 
113 	if (!action->handler)
114 		return -EINVAL;
115 
116 	spin_lock_irqsave(&desc->lock, flags);
117 
118 	/*
119 	 * most handlers of type NMI_UNKNOWN never return because
120 	 * they just assume the NMI is theirs.  Just a sanity check
121 	 * to manage expectations
122 	 */
123 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
124 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
125 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
126 
127 	/*
128 	 * some handlers need to be executed first otherwise a fake
129 	 * event confuses some handlers (kdump uses this flag)
130 	 */
131 	if (action->flags & NMI_FLAG_FIRST)
132 		list_add_rcu(&action->list, &desc->head);
133 	else
134 		list_add_tail_rcu(&action->list, &desc->head);
135 
136 	spin_unlock_irqrestore(&desc->lock, flags);
137 	return 0;
138 }
139 EXPORT_SYMBOL(__register_nmi_handler);
140 
141 void unregister_nmi_handler(unsigned int type, const char *name)
142 {
143 	struct nmi_desc *desc = nmi_to_desc(type);
144 	struct nmiaction *n;
145 	unsigned long flags;
146 
147 	spin_lock_irqsave(&desc->lock, flags);
148 
149 	list_for_each_entry_rcu(n, &desc->head, list) {
150 		/*
151 		 * the name passed in to describe the nmi handler
152 		 * is used as the lookup key
153 		 */
154 		if (!strcmp(n->name, name)) {
155 			WARN(in_nmi(),
156 				"Trying to free NMI (%s) from NMI context!\n", n->name);
157 			list_del_rcu(&n->list);
158 			break;
159 		}
160 	}
161 
162 	spin_unlock_irqrestore(&desc->lock, flags);
163 	synchronize_rcu();
164 }
165 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
166 
167 static __kprobes void
168 pci_serr_error(unsigned char reason, struct pt_regs *regs)
169 {
170 	/* check to see if anyone registered against these types of errors */
171 	if (nmi_handle(NMI_SERR, regs, false))
172 		return;
173 
174 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
175 		 reason, smp_processor_id());
176 
177 	/*
178 	 * On some machines, PCI SERR line is used to report memory
179 	 * errors. EDAC makes use of it.
180 	 */
181 #if defined(CONFIG_EDAC)
182 	if (edac_handler_set()) {
183 		edac_atomic_assert_error();
184 		return;
185 	}
186 #endif
187 
188 	if (panic_on_unrecovered_nmi)
189 		panic("NMI: Not continuing");
190 
191 	pr_emerg("Dazed and confused, but trying to continue\n");
192 
193 	/* Clear and disable the PCI SERR error line. */
194 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
195 	outb(reason, NMI_REASON_PORT);
196 }
197 
198 static __kprobes void
199 io_check_error(unsigned char reason, struct pt_regs *regs)
200 {
201 	unsigned long i;
202 
203 	/* check to see if anyone registered against these types of errors */
204 	if (nmi_handle(NMI_IO_CHECK, regs, false))
205 		return;
206 
207 	pr_emerg(
208 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
209 		 reason, smp_processor_id());
210 	show_regs(regs);
211 
212 	if (panic_on_io_nmi)
213 		panic("NMI IOCK error: Not continuing");
214 
215 	/* Re-enable the IOCK line, wait for a few seconds */
216 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
217 	outb(reason, NMI_REASON_PORT);
218 
219 	i = 20000;
220 	while (--i) {
221 		touch_nmi_watchdog();
222 		udelay(100);
223 	}
224 
225 	reason &= ~NMI_REASON_CLEAR_IOCHK;
226 	outb(reason, NMI_REASON_PORT);
227 }
228 
229 static __kprobes void
230 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
231 {
232 	int handled;
233 
234 	/*
235 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
236 	 * Of course this makes having multiple 'unknown' handlers useless
237 	 * as only the first one is ever run (unless it can actually determine
238 	 * if it caused the NMI)
239 	 */
240 	handled = nmi_handle(NMI_UNKNOWN, regs, false);
241 	if (handled) {
242 		__this_cpu_add(nmi_stats.unknown, handled);
243 		return;
244 	}
245 
246 	__this_cpu_add(nmi_stats.unknown, 1);
247 
248 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
249 		 reason, smp_processor_id());
250 
251 	pr_emerg("Do you have a strange power saving mode enabled?\n");
252 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
253 		panic("NMI: Not continuing");
254 
255 	pr_emerg("Dazed and confused, but trying to continue\n");
256 }
257 
258 static DEFINE_PER_CPU(bool, swallow_nmi);
259 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
260 
261 static __kprobes void default_do_nmi(struct pt_regs *regs)
262 {
263 	unsigned char reason = 0;
264 	int handled;
265 	bool b2b = false;
266 
267 	/*
268 	 * CPU-specific NMI must be processed before non-CPU-specific
269 	 * NMI, otherwise we may lose it, because the CPU-specific
270 	 * NMI can not be detected/processed on other CPUs.
271 	 */
272 
273 	/*
274 	 * Back-to-back NMIs are interesting because they can either
275 	 * be two NMI or more than two NMIs (any thing over two is dropped
276 	 * due to NMI being edge-triggered).  If this is the second half
277 	 * of the back-to-back NMI, assume we dropped things and process
278 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
279 	 */
280 	if (regs->ip == __this_cpu_read(last_nmi_rip))
281 		b2b = true;
282 	else
283 		__this_cpu_write(swallow_nmi, false);
284 
285 	__this_cpu_write(last_nmi_rip, regs->ip);
286 
287 	handled = nmi_handle(NMI_LOCAL, regs, b2b);
288 	__this_cpu_add(nmi_stats.normal, handled);
289 	if (handled) {
290 		/*
291 		 * There are cases when a NMI handler handles multiple
292 		 * events in the current NMI.  One of these events may
293 		 * be queued for in the next NMI.  Because the event is
294 		 * already handled, the next NMI will result in an unknown
295 		 * NMI.  Instead lets flag this for a potential NMI to
296 		 * swallow.
297 		 */
298 		if (handled > 1)
299 			__this_cpu_write(swallow_nmi, true);
300 		return;
301 	}
302 
303 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
304 	raw_spin_lock(&nmi_reason_lock);
305 	reason = x86_platform.get_nmi_reason();
306 
307 	if (reason & NMI_REASON_MASK) {
308 		if (reason & NMI_REASON_SERR)
309 			pci_serr_error(reason, regs);
310 		else if (reason & NMI_REASON_IOCHK)
311 			io_check_error(reason, regs);
312 #ifdef CONFIG_X86_32
313 		/*
314 		 * Reassert NMI in case it became active
315 		 * meanwhile as it's edge-triggered:
316 		 */
317 		reassert_nmi();
318 #endif
319 		__this_cpu_add(nmi_stats.external, 1);
320 		raw_spin_unlock(&nmi_reason_lock);
321 		return;
322 	}
323 	raw_spin_unlock(&nmi_reason_lock);
324 
325 	/*
326 	 * Only one NMI can be latched at a time.  To handle
327 	 * this we may process multiple nmi handlers at once to
328 	 * cover the case where an NMI is dropped.  The downside
329 	 * to this approach is we may process an NMI prematurely,
330 	 * while its real NMI is sitting latched.  This will cause
331 	 * an unknown NMI on the next run of the NMI processing.
332 	 *
333 	 * We tried to flag that condition above, by setting the
334 	 * swallow_nmi flag when we process more than one event.
335 	 * This condition is also only present on the second half
336 	 * of a back-to-back NMI, so we flag that condition too.
337 	 *
338 	 * If both are true, we assume we already processed this
339 	 * NMI previously and we swallow it.  Otherwise we reset
340 	 * the logic.
341 	 *
342 	 * There are scenarios where we may accidentally swallow
343 	 * a 'real' unknown NMI.  For example, while processing
344 	 * a perf NMI another perf NMI comes in along with a
345 	 * 'real' unknown NMI.  These two NMIs get combined into
346 	 * one (as descibed above).  When the next NMI gets
347 	 * processed, it will be flagged by perf as handled, but
348 	 * noone will know that there was a 'real' unknown NMI sent
349 	 * also.  As a result it gets swallowed.  Or if the first
350 	 * perf NMI returns two events handled then the second
351 	 * NMI will get eaten by the logic below, again losing a
352 	 * 'real' unknown NMI.  But this is the best we can do
353 	 * for now.
354 	 */
355 	if (b2b && __this_cpu_read(swallow_nmi))
356 		__this_cpu_add(nmi_stats.swallow, 1);
357 	else
358 		unknown_nmi_error(reason, regs);
359 }
360 
361 /*
362  * NMIs can hit breakpoints which will cause it to lose its
363  * NMI context with the CPU when the breakpoint does an iret.
364  */
365 #ifdef CONFIG_X86_32
366 /*
367  * For i386, NMIs use the same stack as the kernel, and we can
368  * add a workaround to the iret problem in C. Simply have 3 states
369  * the NMI can be in.
370  *
371  *  1) not running
372  *  2) executing
373  *  3) latched
374  *
375  * When no NMI is in progress, it is in the "not running" state.
376  * When an NMI comes in, it goes into the "executing" state.
377  * Normally, if another NMI is triggered, it does not interrupt
378  * the running NMI and the HW will simply latch it so that when
379  * the first NMI finishes, it will restart the second NMI.
380  * (Note, the latch is binary, thus multiple NMIs triggering,
381  *  when one is running, are ignored. Only one NMI is restarted.)
382  *
383  * If an NMI hits a breakpoint that executes an iret, another
384  * NMI can preempt it. We do not want to allow this new NMI
385  * to run, but we want to execute it when the first one finishes.
386  * We set the state to "latched", and the first NMI will perform
387  * an cmpxchg on the state, and if it doesn't successfully
388  * reset the state to "not running" it will restart the next
389  * NMI.
390  */
391 enum nmi_states {
392 	NMI_NOT_RUNNING,
393 	NMI_EXECUTING,
394 	NMI_LATCHED,
395 };
396 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
397 
398 #define nmi_nesting_preprocess(regs)					\
399 	do {								\
400 		if (__get_cpu_var(nmi_state) != NMI_NOT_RUNNING) {	\
401 			__get_cpu_var(nmi_state) = NMI_LATCHED;		\
402 			return;						\
403 		}							\
404 	nmi_restart:							\
405 		__get_cpu_var(nmi_state) = NMI_EXECUTING;		\
406 	} while (0)
407 
408 #define nmi_nesting_postprocess()					\
409 	do {								\
410 		if (cmpxchg(&__get_cpu_var(nmi_state),			\
411 		    NMI_EXECUTING, NMI_NOT_RUNNING) != NMI_EXECUTING)	\
412 			goto nmi_restart;				\
413 	} while (0)
414 #else /* x86_64 */
415 /*
416  * In x86_64 things are a bit more difficult. This has the same problem
417  * where an NMI hitting a breakpoint that calls iret will remove the
418  * NMI context, allowing a nested NMI to enter. What makes this more
419  * difficult is that both NMIs and breakpoints have their own stack.
420  * When a new NMI or breakpoint is executed, the stack is set to a fixed
421  * point. If an NMI is nested, it will have its stack set at that same
422  * fixed address that the first NMI had, and will start corrupting the
423  * stack. This is handled in entry_64.S, but the same problem exists with
424  * the breakpoint stack.
425  *
426  * If a breakpoint is being processed, and the debug stack is being used,
427  * if an NMI comes in and also hits a breakpoint, the stack pointer
428  * will be set to the same fixed address as the breakpoint that was
429  * interrupted, causing that stack to be corrupted. To handle this case,
430  * check if the stack that was interrupted is the debug stack, and if
431  * so, change the IDT so that new breakpoints will use the current stack
432  * and not switch to the fixed address. On return of the NMI, switch back
433  * to the original IDT.
434  */
435 static DEFINE_PER_CPU(int, update_debug_stack);
436 
437 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
438 {
439 	/*
440 	 * If we interrupted a breakpoint, it is possible that
441 	 * the nmi handler will have breakpoints too. We need to
442 	 * change the IDT such that breakpoints that happen here
443 	 * continue to use the NMI stack.
444 	 */
445 	if (unlikely(is_debug_stack(regs->sp))) {
446 		debug_stack_set_zero();
447 		this_cpu_write(update_debug_stack, 1);
448 	}
449 }
450 
451 static inline void nmi_nesting_postprocess(void)
452 {
453 	if (unlikely(this_cpu_read(update_debug_stack))) {
454 		debug_stack_reset();
455 		this_cpu_write(update_debug_stack, 0);
456 	}
457 }
458 #endif
459 
460 dotraplinkage notrace __kprobes void
461 do_nmi(struct pt_regs *regs, long error_code)
462 {
463 	nmi_nesting_preprocess(regs);
464 
465 	nmi_enter();
466 
467 	inc_irq_stat(__nmi_count);
468 
469 	if (!ignore_nmis)
470 		default_do_nmi(regs);
471 
472 	nmi_exit();
473 
474 	/* On i386, may loop back to preprocess */
475 	nmi_nesting_postprocess();
476 }
477 
478 void stop_nmi(void)
479 {
480 	ignore_nmis++;
481 }
482 
483 void restart_nmi(void)
484 {
485 	ignore_nmis--;
486 }
487 
488 /* reset the back-to-back NMI logic */
489 void local_touch_nmi(void)
490 {
491 	__this_cpu_write(last_nmi_rip, 0);
492 }
493