1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 21 #include <asm/init.h> 22 #include <asm/tlbflush.h> 23 #include <asm/mmu_context.h> 24 #include <asm/io_apic.h> 25 #include <asm/debugreg.h> 26 #include <asm/kexec-bzimage64.h> 27 #include <asm/setup.h> 28 #include <asm/set_memory.h> 29 30 #ifdef CONFIG_ACPI 31 /* 32 * Used while adding mapping for ACPI tables. 33 * Can be reused when other iomem regions need be mapped 34 */ 35 struct init_pgtable_data { 36 struct x86_mapping_info *info; 37 pgd_t *level4p; 38 }; 39 40 static int mem_region_callback(struct resource *res, void *arg) 41 { 42 struct init_pgtable_data *data = arg; 43 unsigned long mstart, mend; 44 45 mstart = res->start; 46 mend = mstart + resource_size(res) - 1; 47 48 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend); 49 } 50 51 static int 52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 53 { 54 struct init_pgtable_data data; 55 unsigned long flags; 56 int ret; 57 58 data.info = info; 59 data.level4p = level4p; 60 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 61 62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 63 &data, mem_region_callback); 64 if (ret && ret != -EINVAL) 65 return ret; 66 67 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 69 &data, mem_region_callback); 70 if (ret && ret != -EINVAL) 71 return ret; 72 73 return 0; 74 } 75 #else 76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 77 #endif 78 79 #ifdef CONFIG_KEXEC_FILE 80 const struct kexec_file_ops * const kexec_file_loaders[] = { 81 &kexec_bzImage64_ops, 82 NULL 83 }; 84 #endif 85 86 static int 87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 88 { 89 #ifdef CONFIG_EFI 90 unsigned long mstart, mend; 91 92 if (!efi_enabled(EFI_BOOT)) 93 return 0; 94 95 mstart = (boot_params.efi_info.efi_systab | 96 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 97 98 if (efi_enabled(EFI_64BIT)) 99 mend = mstart + sizeof(efi_system_table_64_t); 100 else 101 mend = mstart + sizeof(efi_system_table_32_t); 102 103 if (!mstart) 104 return 0; 105 106 return kernel_ident_mapping_init(info, level4p, mstart, mend); 107 #endif 108 return 0; 109 } 110 111 static void free_transition_pgtable(struct kimage *image) 112 { 113 free_page((unsigned long)image->arch.p4d); 114 image->arch.p4d = NULL; 115 free_page((unsigned long)image->arch.pud); 116 image->arch.pud = NULL; 117 free_page((unsigned long)image->arch.pmd); 118 image->arch.pmd = NULL; 119 free_page((unsigned long)image->arch.pte); 120 image->arch.pte = NULL; 121 } 122 123 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 124 { 125 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 126 unsigned long vaddr, paddr; 127 int result = -ENOMEM; 128 p4d_t *p4d; 129 pud_t *pud; 130 pmd_t *pmd; 131 pte_t *pte; 132 133 vaddr = (unsigned long)relocate_kernel; 134 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 135 pgd += pgd_index(vaddr); 136 if (!pgd_present(*pgd)) { 137 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 138 if (!p4d) 139 goto err; 140 image->arch.p4d = p4d; 141 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 142 } 143 p4d = p4d_offset(pgd, vaddr); 144 if (!p4d_present(*p4d)) { 145 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 146 if (!pud) 147 goto err; 148 image->arch.pud = pud; 149 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 150 } 151 pud = pud_offset(p4d, vaddr); 152 if (!pud_present(*pud)) { 153 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 154 if (!pmd) 155 goto err; 156 image->arch.pmd = pmd; 157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 158 } 159 pmd = pmd_offset(pud, vaddr); 160 if (!pmd_present(*pmd)) { 161 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 162 if (!pte) 163 goto err; 164 image->arch.pte = pte; 165 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 166 } 167 pte = pte_offset_kernel(pmd, vaddr); 168 169 if (sev_active()) 170 prot = PAGE_KERNEL_EXEC; 171 172 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 173 return 0; 174 err: 175 return result; 176 } 177 178 static void *alloc_pgt_page(void *data) 179 { 180 struct kimage *image = (struct kimage *)data; 181 struct page *page; 182 void *p = NULL; 183 184 page = kimage_alloc_control_pages(image, 0); 185 if (page) { 186 p = page_address(page); 187 clear_page(p); 188 } 189 190 return p; 191 } 192 193 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 194 { 195 struct x86_mapping_info info = { 196 .alloc_pgt_page = alloc_pgt_page, 197 .context = image, 198 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 199 .kernpg_flag = _KERNPG_TABLE_NOENC, 200 }; 201 unsigned long mstart, mend; 202 pgd_t *level4p; 203 int result; 204 int i; 205 206 level4p = (pgd_t *)__va(start_pgtable); 207 clear_page(level4p); 208 209 if (sev_active()) { 210 info.page_flag |= _PAGE_ENC; 211 info.kernpg_flag |= _PAGE_ENC; 212 } 213 214 if (direct_gbpages) 215 info.direct_gbpages = true; 216 217 for (i = 0; i < nr_pfn_mapped; i++) { 218 mstart = pfn_mapped[i].start << PAGE_SHIFT; 219 mend = pfn_mapped[i].end << PAGE_SHIFT; 220 221 result = kernel_ident_mapping_init(&info, 222 level4p, mstart, mend); 223 if (result) 224 return result; 225 } 226 227 /* 228 * segments's mem ranges could be outside 0 ~ max_pfn, 229 * for example when jump back to original kernel from kexeced kernel. 230 * or first kernel is booted with user mem map, and second kernel 231 * could be loaded out of that range. 232 */ 233 for (i = 0; i < image->nr_segments; i++) { 234 mstart = image->segment[i].mem; 235 mend = mstart + image->segment[i].memsz; 236 237 result = kernel_ident_mapping_init(&info, 238 level4p, mstart, mend); 239 240 if (result) 241 return result; 242 } 243 244 /* 245 * Prepare EFI systab and ACPI tables for kexec kernel since they are 246 * not covered by pfn_mapped. 247 */ 248 result = map_efi_systab(&info, level4p); 249 if (result) 250 return result; 251 252 result = map_acpi_tables(&info, level4p); 253 if (result) 254 return result; 255 256 return init_transition_pgtable(image, level4p); 257 } 258 259 static void set_idt(void *newidt, u16 limit) 260 { 261 struct desc_ptr curidt; 262 263 /* x86-64 supports unaligned loads & stores */ 264 curidt.size = limit; 265 curidt.address = (unsigned long)newidt; 266 267 __asm__ __volatile__ ( 268 "lidtq %0\n" 269 : : "m" (curidt) 270 ); 271 }; 272 273 274 static void set_gdt(void *newgdt, u16 limit) 275 { 276 struct desc_ptr curgdt; 277 278 /* x86-64 supports unaligned loads & stores */ 279 curgdt.size = limit; 280 curgdt.address = (unsigned long)newgdt; 281 282 __asm__ __volatile__ ( 283 "lgdtq %0\n" 284 : : "m" (curgdt) 285 ); 286 }; 287 288 static void load_segments(void) 289 { 290 __asm__ __volatile__ ( 291 "\tmovl %0,%%ds\n" 292 "\tmovl %0,%%es\n" 293 "\tmovl %0,%%ss\n" 294 "\tmovl %0,%%fs\n" 295 "\tmovl %0,%%gs\n" 296 : : "a" (__KERNEL_DS) : "memory" 297 ); 298 } 299 300 int machine_kexec_prepare(struct kimage *image) 301 { 302 unsigned long start_pgtable; 303 int result; 304 305 /* Calculate the offsets */ 306 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 307 308 /* Setup the identity mapped 64bit page table */ 309 result = init_pgtable(image, start_pgtable); 310 if (result) 311 return result; 312 313 return 0; 314 } 315 316 void machine_kexec_cleanup(struct kimage *image) 317 { 318 free_transition_pgtable(image); 319 } 320 321 /* 322 * Do not allocate memory (or fail in any way) in machine_kexec(). 323 * We are past the point of no return, committed to rebooting now. 324 */ 325 void machine_kexec(struct kimage *image) 326 { 327 unsigned long page_list[PAGES_NR]; 328 void *control_page; 329 int save_ftrace_enabled; 330 331 #ifdef CONFIG_KEXEC_JUMP 332 if (image->preserve_context) 333 save_processor_state(); 334 #endif 335 336 save_ftrace_enabled = __ftrace_enabled_save(); 337 338 /* Interrupts aren't acceptable while we reboot */ 339 local_irq_disable(); 340 hw_breakpoint_disable(); 341 342 if (image->preserve_context) { 343 #ifdef CONFIG_X86_IO_APIC 344 /* 345 * We need to put APICs in legacy mode so that we can 346 * get timer interrupts in second kernel. kexec/kdump 347 * paths already have calls to restore_boot_irq_mode() 348 * in one form or other. kexec jump path also need one. 349 */ 350 clear_IO_APIC(); 351 restore_boot_irq_mode(); 352 #endif 353 } 354 355 control_page = page_address(image->control_code_page) + PAGE_SIZE; 356 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 357 358 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 359 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 360 page_list[PA_TABLE_PAGE] = 361 (unsigned long)__pa(page_address(image->control_code_page)); 362 363 if (image->type == KEXEC_TYPE_DEFAULT) 364 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 365 << PAGE_SHIFT); 366 367 /* 368 * The segment registers are funny things, they have both a 369 * visible and an invisible part. Whenever the visible part is 370 * set to a specific selector, the invisible part is loaded 371 * with from a table in memory. At no other time is the 372 * descriptor table in memory accessed. 373 * 374 * I take advantage of this here by force loading the 375 * segments, before I zap the gdt with an invalid value. 376 */ 377 load_segments(); 378 /* 379 * The gdt & idt are now invalid. 380 * If you want to load them you must set up your own idt & gdt. 381 */ 382 set_gdt(phys_to_virt(0), 0); 383 set_idt(phys_to_virt(0), 0); 384 385 /* now call it */ 386 image->start = relocate_kernel((unsigned long)image->head, 387 (unsigned long)page_list, 388 image->start, 389 image->preserve_context, 390 sme_active()); 391 392 #ifdef CONFIG_KEXEC_JUMP 393 if (image->preserve_context) 394 restore_processor_state(); 395 #endif 396 397 __ftrace_enabled_restore(save_ftrace_enabled); 398 } 399 400 /* arch-dependent functionality related to kexec file-based syscall */ 401 402 #ifdef CONFIG_KEXEC_FILE 403 void *arch_kexec_kernel_image_load(struct kimage *image) 404 { 405 vfree(image->elf_headers); 406 image->elf_headers = NULL; 407 408 if (!image->fops || !image->fops->load) 409 return ERR_PTR(-ENOEXEC); 410 411 return image->fops->load(image, image->kernel_buf, 412 image->kernel_buf_len, image->initrd_buf, 413 image->initrd_buf_len, image->cmdline_buf, 414 image->cmdline_buf_len); 415 } 416 417 /* 418 * Apply purgatory relocations. 419 * 420 * @pi: Purgatory to be relocated. 421 * @section: Section relocations applying to. 422 * @relsec: Section containing RELAs. 423 * @symtabsec: Corresponding symtab. 424 * 425 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 426 */ 427 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 428 Elf_Shdr *section, const Elf_Shdr *relsec, 429 const Elf_Shdr *symtabsec) 430 { 431 unsigned int i; 432 Elf64_Rela *rel; 433 Elf64_Sym *sym; 434 void *location; 435 unsigned long address, sec_base, value; 436 const char *strtab, *name, *shstrtab; 437 const Elf_Shdr *sechdrs; 438 439 /* String & section header string table */ 440 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 441 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 442 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 443 444 rel = (void *)pi->ehdr + relsec->sh_offset; 445 446 pr_debug("Applying relocate section %s to %u\n", 447 shstrtab + relsec->sh_name, relsec->sh_info); 448 449 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 450 451 /* 452 * rel[i].r_offset contains byte offset from beginning 453 * of section to the storage unit affected. 454 * 455 * This is location to update. This is temporary buffer 456 * where section is currently loaded. This will finally be 457 * loaded to a different address later, pointed to by 458 * ->sh_addr. kexec takes care of moving it 459 * (kexec_load_segment()). 460 */ 461 location = pi->purgatory_buf; 462 location += section->sh_offset; 463 location += rel[i].r_offset; 464 465 /* Final address of the location */ 466 address = section->sh_addr + rel[i].r_offset; 467 468 /* 469 * rel[i].r_info contains information about symbol table index 470 * w.r.t which relocation must be made and type of relocation 471 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 472 * these respectively. 473 */ 474 sym = (void *)pi->ehdr + symtabsec->sh_offset; 475 sym += ELF64_R_SYM(rel[i].r_info); 476 477 if (sym->st_name) 478 name = strtab + sym->st_name; 479 else 480 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 481 482 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 483 name, sym->st_info, sym->st_shndx, sym->st_value, 484 sym->st_size); 485 486 if (sym->st_shndx == SHN_UNDEF) { 487 pr_err("Undefined symbol: %s\n", name); 488 return -ENOEXEC; 489 } 490 491 if (sym->st_shndx == SHN_COMMON) { 492 pr_err("symbol '%s' in common section\n", name); 493 return -ENOEXEC; 494 } 495 496 if (sym->st_shndx == SHN_ABS) 497 sec_base = 0; 498 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 499 pr_err("Invalid section %d for symbol %s\n", 500 sym->st_shndx, name); 501 return -ENOEXEC; 502 } else 503 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 504 505 value = sym->st_value; 506 value += sec_base; 507 value += rel[i].r_addend; 508 509 switch (ELF64_R_TYPE(rel[i].r_info)) { 510 case R_X86_64_NONE: 511 break; 512 case R_X86_64_64: 513 *(u64 *)location = value; 514 break; 515 case R_X86_64_32: 516 *(u32 *)location = value; 517 if (value != *(u32 *)location) 518 goto overflow; 519 break; 520 case R_X86_64_32S: 521 *(s32 *)location = value; 522 if ((s64)value != *(s32 *)location) 523 goto overflow; 524 break; 525 case R_X86_64_PC32: 526 case R_X86_64_PLT32: 527 value -= (u64)address; 528 *(u32 *)location = value; 529 break; 530 default: 531 pr_err("Unknown rela relocation: %llu\n", 532 ELF64_R_TYPE(rel[i].r_info)); 533 return -ENOEXEC; 534 } 535 } 536 return 0; 537 538 overflow: 539 pr_err("Overflow in relocation type %d value 0x%lx\n", 540 (int)ELF64_R_TYPE(rel[i].r_info), value); 541 return -ENOEXEC; 542 } 543 #endif /* CONFIG_KEXEC_FILE */ 544 545 static int 546 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 547 { 548 struct page *page; 549 unsigned int nr_pages; 550 551 /* 552 * For physical range: [start, end]. We must skip the unassigned 553 * crashk resource with zero-valued "end" member. 554 */ 555 if (!end || start > end) 556 return 0; 557 558 page = pfn_to_page(start >> PAGE_SHIFT); 559 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 560 if (protect) 561 return set_pages_ro(page, nr_pages); 562 else 563 return set_pages_rw(page, nr_pages); 564 } 565 566 static void kexec_mark_crashkres(bool protect) 567 { 568 unsigned long control; 569 570 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 571 572 /* Don't touch the control code page used in crash_kexec().*/ 573 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 574 /* Control code page is located in the 2nd page. */ 575 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 576 control += KEXEC_CONTROL_PAGE_SIZE; 577 kexec_mark_range(control, crashk_res.end, protect); 578 } 579 580 void arch_kexec_protect_crashkres(void) 581 { 582 kexec_mark_crashkres(true); 583 } 584 585 void arch_kexec_unprotect_crashkres(void) 586 { 587 kexec_mark_crashkres(false); 588 } 589 590 /* 591 * During a traditional boot under SME, SME will encrypt the kernel, 592 * so the SME kexec kernel also needs to be un-encrypted in order to 593 * replicate a normal SME boot. 594 * 595 * During a traditional boot under SEV, the kernel has already been 596 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 597 * order to replicate a normal SEV boot. 598 */ 599 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 600 { 601 if (sev_active()) 602 return 0; 603 604 /* 605 * If SME is active we need to be sure that kexec pages are 606 * not encrypted because when we boot to the new kernel the 607 * pages won't be accessed encrypted (initially). 608 */ 609 return set_memory_decrypted((unsigned long)vaddr, pages); 610 } 611 612 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 613 { 614 if (sev_active()) 615 return; 616 617 /* 618 * If SME is active we need to reset the pages back to being 619 * an encrypted mapping before freeing them. 620 */ 621 set_memory_encrypted((unsigned long)vaddr, pages); 622 } 623