1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 #include <linux/cc_platform.h> 21 22 #include <asm/init.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io_apic.h> 26 #include <asm/debugreg.h> 27 #include <asm/kexec-bzimage64.h> 28 #include <asm/setup.h> 29 #include <asm/set_memory.h> 30 #include <asm/cpu.h> 31 #include <asm/efi.h> 32 33 #ifdef CONFIG_ACPI 34 /* 35 * Used while adding mapping for ACPI tables. 36 * Can be reused when other iomem regions need be mapped 37 */ 38 struct init_pgtable_data { 39 struct x86_mapping_info *info; 40 pgd_t *level4p; 41 }; 42 43 static int mem_region_callback(struct resource *res, void *arg) 44 { 45 struct init_pgtable_data *data = arg; 46 47 return kernel_ident_mapping_init(data->info, data->level4p, 48 res->start, res->end + 1); 49 } 50 51 static int 52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 53 { 54 struct init_pgtable_data data; 55 unsigned long flags; 56 int ret; 57 58 data.info = info; 59 data.level4p = level4p; 60 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 61 62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 63 &data, mem_region_callback); 64 if (ret && ret != -EINVAL) 65 return ret; 66 67 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 69 &data, mem_region_callback); 70 if (ret && ret != -EINVAL) 71 return ret; 72 73 return 0; 74 } 75 #else 76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 77 #endif 78 79 #ifdef CONFIG_KEXEC_FILE 80 const struct kexec_file_ops * const kexec_file_loaders[] = { 81 &kexec_bzImage64_ops, 82 NULL 83 }; 84 #endif 85 86 static int 87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 88 { 89 #ifdef CONFIG_EFI 90 unsigned long mstart, mend; 91 void *kaddr; 92 int ret; 93 94 if (!efi_enabled(EFI_BOOT)) 95 return 0; 96 97 mstart = (boot_params.efi_info.efi_systab | 98 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 99 100 if (efi_enabled(EFI_64BIT)) 101 mend = mstart + sizeof(efi_system_table_64_t); 102 else 103 mend = mstart + sizeof(efi_system_table_32_t); 104 105 if (!mstart) 106 return 0; 107 108 ret = kernel_ident_mapping_init(info, level4p, mstart, mend); 109 if (ret) 110 return ret; 111 112 kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB); 113 if (!kaddr) { 114 pr_err("Could not map UEFI system table\n"); 115 return -ENOMEM; 116 } 117 118 mstart = efi_config_table; 119 120 if (efi_enabled(EFI_64BIT)) { 121 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr; 122 123 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables; 124 } else { 125 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr; 126 127 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables; 128 } 129 130 memunmap(kaddr); 131 132 return kernel_ident_mapping_init(info, level4p, mstart, mend); 133 #endif 134 return 0; 135 } 136 137 static void free_transition_pgtable(struct kimage *image) 138 { 139 free_page((unsigned long)image->arch.p4d); 140 image->arch.p4d = NULL; 141 free_page((unsigned long)image->arch.pud); 142 image->arch.pud = NULL; 143 free_page((unsigned long)image->arch.pmd); 144 image->arch.pmd = NULL; 145 free_page((unsigned long)image->arch.pte); 146 image->arch.pte = NULL; 147 } 148 149 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 150 { 151 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 152 unsigned long vaddr, paddr; 153 int result = -ENOMEM; 154 p4d_t *p4d; 155 pud_t *pud; 156 pmd_t *pmd; 157 pte_t *pte; 158 159 vaddr = (unsigned long)relocate_kernel; 160 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 161 pgd += pgd_index(vaddr); 162 if (!pgd_present(*pgd)) { 163 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 164 if (!p4d) 165 goto err; 166 image->arch.p4d = p4d; 167 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 168 } 169 p4d = p4d_offset(pgd, vaddr); 170 if (!p4d_present(*p4d)) { 171 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 172 if (!pud) 173 goto err; 174 image->arch.pud = pud; 175 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 176 } 177 pud = pud_offset(p4d, vaddr); 178 if (!pud_present(*pud)) { 179 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 180 if (!pmd) 181 goto err; 182 image->arch.pmd = pmd; 183 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 184 } 185 pmd = pmd_offset(pud, vaddr); 186 if (!pmd_present(*pmd)) { 187 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 188 if (!pte) 189 goto err; 190 image->arch.pte = pte; 191 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 192 } 193 pte = pte_offset_kernel(pmd, vaddr); 194 195 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 196 prot = PAGE_KERNEL_EXEC; 197 198 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 199 return 0; 200 err: 201 return result; 202 } 203 204 static void *alloc_pgt_page(void *data) 205 { 206 struct kimage *image = (struct kimage *)data; 207 struct page *page; 208 void *p = NULL; 209 210 page = kimage_alloc_control_pages(image, 0); 211 if (page) { 212 p = page_address(page); 213 clear_page(p); 214 } 215 216 return p; 217 } 218 219 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 220 { 221 struct x86_mapping_info info = { 222 .alloc_pgt_page = alloc_pgt_page, 223 .context = image, 224 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 225 .kernpg_flag = _KERNPG_TABLE_NOENC, 226 }; 227 unsigned long mstart, mend; 228 pgd_t *level4p; 229 int result; 230 int i; 231 232 level4p = (pgd_t *)__va(start_pgtable); 233 clear_page(level4p); 234 235 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 236 info.page_flag |= _PAGE_ENC; 237 info.kernpg_flag |= _PAGE_ENC; 238 } 239 240 if (direct_gbpages) 241 info.direct_gbpages = true; 242 243 for (i = 0; i < nr_pfn_mapped; i++) { 244 mstart = pfn_mapped[i].start << PAGE_SHIFT; 245 mend = pfn_mapped[i].end << PAGE_SHIFT; 246 247 result = kernel_ident_mapping_init(&info, 248 level4p, mstart, mend); 249 if (result) 250 return result; 251 } 252 253 /* 254 * segments's mem ranges could be outside 0 ~ max_pfn, 255 * for example when jump back to original kernel from kexeced kernel. 256 * or first kernel is booted with user mem map, and second kernel 257 * could be loaded out of that range. 258 */ 259 for (i = 0; i < image->nr_segments; i++) { 260 mstart = image->segment[i].mem; 261 mend = mstart + image->segment[i].memsz; 262 263 result = kernel_ident_mapping_init(&info, 264 level4p, mstart, mend); 265 266 if (result) 267 return result; 268 } 269 270 /* 271 * Prepare EFI systab and ACPI tables for kexec kernel since they are 272 * not covered by pfn_mapped. 273 */ 274 result = map_efi_systab(&info, level4p); 275 if (result) 276 return result; 277 278 result = map_acpi_tables(&info, level4p); 279 if (result) 280 return result; 281 282 return init_transition_pgtable(image, level4p); 283 } 284 285 static void load_segments(void) 286 { 287 __asm__ __volatile__ ( 288 "\tmovl %0,%%ds\n" 289 "\tmovl %0,%%es\n" 290 "\tmovl %0,%%ss\n" 291 "\tmovl %0,%%fs\n" 292 "\tmovl %0,%%gs\n" 293 : : "a" (__KERNEL_DS) : "memory" 294 ); 295 } 296 297 int machine_kexec_prepare(struct kimage *image) 298 { 299 unsigned long start_pgtable; 300 int result; 301 302 /* Calculate the offsets */ 303 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 304 305 /* Setup the identity mapped 64bit page table */ 306 result = init_pgtable(image, start_pgtable); 307 if (result) 308 return result; 309 310 return 0; 311 } 312 313 void machine_kexec_cleanup(struct kimage *image) 314 { 315 free_transition_pgtable(image); 316 } 317 318 /* 319 * Do not allocate memory (or fail in any way) in machine_kexec(). 320 * We are past the point of no return, committed to rebooting now. 321 */ 322 void machine_kexec(struct kimage *image) 323 { 324 unsigned long page_list[PAGES_NR]; 325 unsigned int host_mem_enc_active; 326 int save_ftrace_enabled; 327 void *control_page; 328 329 /* 330 * This must be done before load_segments() since if call depth tracking 331 * is used then GS must be valid to make any function calls. 332 */ 333 host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT); 334 335 #ifdef CONFIG_KEXEC_JUMP 336 if (image->preserve_context) 337 save_processor_state(); 338 #endif 339 340 save_ftrace_enabled = __ftrace_enabled_save(); 341 342 /* Interrupts aren't acceptable while we reboot */ 343 local_irq_disable(); 344 hw_breakpoint_disable(); 345 cet_disable(); 346 347 if (image->preserve_context) { 348 #ifdef CONFIG_X86_IO_APIC 349 /* 350 * We need to put APICs in legacy mode so that we can 351 * get timer interrupts in second kernel. kexec/kdump 352 * paths already have calls to restore_boot_irq_mode() 353 * in one form or other. kexec jump path also need one. 354 */ 355 clear_IO_APIC(); 356 restore_boot_irq_mode(); 357 #endif 358 } 359 360 control_page = page_address(image->control_code_page) + PAGE_SIZE; 361 __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 362 363 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 364 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 365 page_list[PA_TABLE_PAGE] = 366 (unsigned long)__pa(page_address(image->control_code_page)); 367 368 if (image->type == KEXEC_TYPE_DEFAULT) 369 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 370 << PAGE_SHIFT); 371 372 /* 373 * The segment registers are funny things, they have both a 374 * visible and an invisible part. Whenever the visible part is 375 * set to a specific selector, the invisible part is loaded 376 * with from a table in memory. At no other time is the 377 * descriptor table in memory accessed. 378 * 379 * I take advantage of this here by force loading the 380 * segments, before I zap the gdt with an invalid value. 381 */ 382 load_segments(); 383 /* 384 * The gdt & idt are now invalid. 385 * If you want to load them you must set up your own idt & gdt. 386 */ 387 native_idt_invalidate(); 388 native_gdt_invalidate(); 389 390 /* now call it */ 391 image->start = relocate_kernel((unsigned long)image->head, 392 (unsigned long)page_list, 393 image->start, 394 image->preserve_context, 395 host_mem_enc_active); 396 397 #ifdef CONFIG_KEXEC_JUMP 398 if (image->preserve_context) 399 restore_processor_state(); 400 #endif 401 402 __ftrace_enabled_restore(save_ftrace_enabled); 403 } 404 405 /* arch-dependent functionality related to kexec file-based syscall */ 406 407 #ifdef CONFIG_KEXEC_FILE 408 /* 409 * Apply purgatory relocations. 410 * 411 * @pi: Purgatory to be relocated. 412 * @section: Section relocations applying to. 413 * @relsec: Section containing RELAs. 414 * @symtabsec: Corresponding symtab. 415 * 416 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 417 */ 418 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 419 Elf_Shdr *section, const Elf_Shdr *relsec, 420 const Elf_Shdr *symtabsec) 421 { 422 unsigned int i; 423 Elf64_Rela *rel; 424 Elf64_Sym *sym; 425 void *location; 426 unsigned long address, sec_base, value; 427 const char *strtab, *name, *shstrtab; 428 const Elf_Shdr *sechdrs; 429 430 /* String & section header string table */ 431 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 432 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 433 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 434 435 rel = (void *)pi->ehdr + relsec->sh_offset; 436 437 pr_debug("Applying relocate section %s to %u\n", 438 shstrtab + relsec->sh_name, relsec->sh_info); 439 440 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 441 442 /* 443 * rel[i].r_offset contains byte offset from beginning 444 * of section to the storage unit affected. 445 * 446 * This is location to update. This is temporary buffer 447 * where section is currently loaded. This will finally be 448 * loaded to a different address later, pointed to by 449 * ->sh_addr. kexec takes care of moving it 450 * (kexec_load_segment()). 451 */ 452 location = pi->purgatory_buf; 453 location += section->sh_offset; 454 location += rel[i].r_offset; 455 456 /* Final address of the location */ 457 address = section->sh_addr + rel[i].r_offset; 458 459 /* 460 * rel[i].r_info contains information about symbol table index 461 * w.r.t which relocation must be made and type of relocation 462 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 463 * these respectively. 464 */ 465 sym = (void *)pi->ehdr + symtabsec->sh_offset; 466 sym += ELF64_R_SYM(rel[i].r_info); 467 468 if (sym->st_name) 469 name = strtab + sym->st_name; 470 else 471 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 472 473 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 474 name, sym->st_info, sym->st_shndx, sym->st_value, 475 sym->st_size); 476 477 if (sym->st_shndx == SHN_UNDEF) { 478 pr_err("Undefined symbol: %s\n", name); 479 return -ENOEXEC; 480 } 481 482 if (sym->st_shndx == SHN_COMMON) { 483 pr_err("symbol '%s' in common section\n", name); 484 return -ENOEXEC; 485 } 486 487 if (sym->st_shndx == SHN_ABS) 488 sec_base = 0; 489 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 490 pr_err("Invalid section %d for symbol %s\n", 491 sym->st_shndx, name); 492 return -ENOEXEC; 493 } else 494 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 495 496 value = sym->st_value; 497 value += sec_base; 498 value += rel[i].r_addend; 499 500 switch (ELF64_R_TYPE(rel[i].r_info)) { 501 case R_X86_64_NONE: 502 break; 503 case R_X86_64_64: 504 *(u64 *)location = value; 505 break; 506 case R_X86_64_32: 507 *(u32 *)location = value; 508 if (value != *(u32 *)location) 509 goto overflow; 510 break; 511 case R_X86_64_32S: 512 *(s32 *)location = value; 513 if ((s64)value != *(s32 *)location) 514 goto overflow; 515 break; 516 case R_X86_64_PC32: 517 case R_X86_64_PLT32: 518 value -= (u64)address; 519 *(u32 *)location = value; 520 break; 521 default: 522 pr_err("Unknown rela relocation: %llu\n", 523 ELF64_R_TYPE(rel[i].r_info)); 524 return -ENOEXEC; 525 } 526 } 527 return 0; 528 529 overflow: 530 pr_err("Overflow in relocation type %d value 0x%lx\n", 531 (int)ELF64_R_TYPE(rel[i].r_info), value); 532 return -ENOEXEC; 533 } 534 535 int arch_kimage_file_post_load_cleanup(struct kimage *image) 536 { 537 vfree(image->elf_headers); 538 image->elf_headers = NULL; 539 image->elf_headers_sz = 0; 540 541 return kexec_image_post_load_cleanup_default(image); 542 } 543 #endif /* CONFIG_KEXEC_FILE */ 544 545 #ifdef CONFIG_CRASH_DUMP 546 547 static int 548 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 549 { 550 struct page *page; 551 unsigned int nr_pages; 552 553 /* 554 * For physical range: [start, end]. We must skip the unassigned 555 * crashk resource with zero-valued "end" member. 556 */ 557 if (!end || start > end) 558 return 0; 559 560 page = pfn_to_page(start >> PAGE_SHIFT); 561 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 562 if (protect) 563 return set_pages_ro(page, nr_pages); 564 else 565 return set_pages_rw(page, nr_pages); 566 } 567 568 static void kexec_mark_crashkres(bool protect) 569 { 570 unsigned long control; 571 572 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 573 574 /* Don't touch the control code page used in crash_kexec().*/ 575 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 576 /* Control code page is located in the 2nd page. */ 577 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 578 control += KEXEC_CONTROL_PAGE_SIZE; 579 kexec_mark_range(control, crashk_res.end, protect); 580 } 581 582 void arch_kexec_protect_crashkres(void) 583 { 584 kexec_mark_crashkres(true); 585 } 586 587 void arch_kexec_unprotect_crashkres(void) 588 { 589 kexec_mark_crashkres(false); 590 } 591 #endif 592 593 /* 594 * During a traditional boot under SME, SME will encrypt the kernel, 595 * so the SME kexec kernel also needs to be un-encrypted in order to 596 * replicate a normal SME boot. 597 * 598 * During a traditional boot under SEV, the kernel has already been 599 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 600 * order to replicate a normal SEV boot. 601 */ 602 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 603 { 604 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 605 return 0; 606 607 /* 608 * If host memory encryption is active we need to be sure that kexec 609 * pages are not encrypted because when we boot to the new kernel the 610 * pages won't be accessed encrypted (initially). 611 */ 612 return set_memory_decrypted((unsigned long)vaddr, pages); 613 } 614 615 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 616 { 617 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 618 return; 619 620 /* 621 * If host memory encryption is active we need to reset the pages back 622 * to being an encrypted mapping before freeing them. 623 */ 624 set_memory_encrypted((unsigned long)vaddr, pages); 625 } 626