1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 #include <asm/set_memory.h> 31 32 #ifdef CONFIG_KEXEC_FILE 33 const struct kexec_file_ops * const kexec_file_loaders[] = { 34 &kexec_bzImage64_ops, 35 NULL 36 }; 37 #endif 38 39 static void free_transition_pgtable(struct kimage *image) 40 { 41 free_page((unsigned long)image->arch.p4d); 42 image->arch.p4d = NULL; 43 free_page((unsigned long)image->arch.pud); 44 image->arch.pud = NULL; 45 free_page((unsigned long)image->arch.pmd); 46 image->arch.pmd = NULL; 47 free_page((unsigned long)image->arch.pte); 48 image->arch.pte = NULL; 49 } 50 51 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 52 { 53 p4d_t *p4d; 54 pud_t *pud; 55 pmd_t *pmd; 56 pte_t *pte; 57 unsigned long vaddr, paddr; 58 int result = -ENOMEM; 59 60 vaddr = (unsigned long)relocate_kernel; 61 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 62 pgd += pgd_index(vaddr); 63 if (!pgd_present(*pgd)) { 64 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 65 if (!p4d) 66 goto err; 67 image->arch.p4d = p4d; 68 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 69 } 70 p4d = p4d_offset(pgd, vaddr); 71 if (!p4d_present(*p4d)) { 72 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 73 if (!pud) 74 goto err; 75 image->arch.pud = pud; 76 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 77 } 78 pud = pud_offset(p4d, vaddr); 79 if (!pud_present(*pud)) { 80 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 81 if (!pmd) 82 goto err; 83 image->arch.pmd = pmd; 84 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 85 } 86 pmd = pmd_offset(pud, vaddr); 87 if (!pmd_present(*pmd)) { 88 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 89 if (!pte) 90 goto err; 91 image->arch.pte = pte; 92 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 93 } 94 pte = pte_offset_kernel(pmd, vaddr); 95 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC)); 96 return 0; 97 err: 98 return result; 99 } 100 101 static void *alloc_pgt_page(void *data) 102 { 103 struct kimage *image = (struct kimage *)data; 104 struct page *page; 105 void *p = NULL; 106 107 page = kimage_alloc_control_pages(image, 0); 108 if (page) { 109 p = page_address(page); 110 clear_page(p); 111 } 112 113 return p; 114 } 115 116 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 117 { 118 struct x86_mapping_info info = { 119 .alloc_pgt_page = alloc_pgt_page, 120 .context = image, 121 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 122 .kernpg_flag = _KERNPG_TABLE_NOENC, 123 }; 124 unsigned long mstart, mend; 125 pgd_t *level4p; 126 int result; 127 int i; 128 129 level4p = (pgd_t *)__va(start_pgtable); 130 clear_page(level4p); 131 132 if (direct_gbpages) 133 info.direct_gbpages = true; 134 135 for (i = 0; i < nr_pfn_mapped; i++) { 136 mstart = pfn_mapped[i].start << PAGE_SHIFT; 137 mend = pfn_mapped[i].end << PAGE_SHIFT; 138 139 result = kernel_ident_mapping_init(&info, 140 level4p, mstart, mend); 141 if (result) 142 return result; 143 } 144 145 /* 146 * segments's mem ranges could be outside 0 ~ max_pfn, 147 * for example when jump back to original kernel from kexeced kernel. 148 * or first kernel is booted with user mem map, and second kernel 149 * could be loaded out of that range. 150 */ 151 for (i = 0; i < image->nr_segments; i++) { 152 mstart = image->segment[i].mem; 153 mend = mstart + image->segment[i].memsz; 154 155 result = kernel_ident_mapping_init(&info, 156 level4p, mstart, mend); 157 158 if (result) 159 return result; 160 } 161 162 return init_transition_pgtable(image, level4p); 163 } 164 165 static void set_idt(void *newidt, u16 limit) 166 { 167 struct desc_ptr curidt; 168 169 /* x86-64 supports unaliged loads & stores */ 170 curidt.size = limit; 171 curidt.address = (unsigned long)newidt; 172 173 __asm__ __volatile__ ( 174 "lidtq %0\n" 175 : : "m" (curidt) 176 ); 177 }; 178 179 180 static void set_gdt(void *newgdt, u16 limit) 181 { 182 struct desc_ptr curgdt; 183 184 /* x86-64 supports unaligned loads & stores */ 185 curgdt.size = limit; 186 curgdt.address = (unsigned long)newgdt; 187 188 __asm__ __volatile__ ( 189 "lgdtq %0\n" 190 : : "m" (curgdt) 191 ); 192 }; 193 194 static void load_segments(void) 195 { 196 __asm__ __volatile__ ( 197 "\tmovl %0,%%ds\n" 198 "\tmovl %0,%%es\n" 199 "\tmovl %0,%%ss\n" 200 "\tmovl %0,%%fs\n" 201 "\tmovl %0,%%gs\n" 202 : : "a" (__KERNEL_DS) : "memory" 203 ); 204 } 205 206 #ifdef CONFIG_KEXEC_FILE 207 /* Update purgatory as needed after various image segments have been prepared */ 208 static int arch_update_purgatory(struct kimage *image) 209 { 210 int ret = 0; 211 212 if (!image->file_mode) 213 return 0; 214 215 /* Setup copying of backup region */ 216 if (image->type == KEXEC_TYPE_CRASH) { 217 ret = kexec_purgatory_get_set_symbol(image, 218 "purgatory_backup_dest", 219 &image->arch.backup_load_addr, 220 sizeof(image->arch.backup_load_addr), 0); 221 if (ret) 222 return ret; 223 224 ret = kexec_purgatory_get_set_symbol(image, 225 "purgatory_backup_src", 226 &image->arch.backup_src_start, 227 sizeof(image->arch.backup_src_start), 0); 228 if (ret) 229 return ret; 230 231 ret = kexec_purgatory_get_set_symbol(image, 232 "purgatory_backup_sz", 233 &image->arch.backup_src_sz, 234 sizeof(image->arch.backup_src_sz), 0); 235 if (ret) 236 return ret; 237 } 238 239 return ret; 240 } 241 #else /* !CONFIG_KEXEC_FILE */ 242 static inline int arch_update_purgatory(struct kimage *image) 243 { 244 return 0; 245 } 246 #endif /* CONFIG_KEXEC_FILE */ 247 248 int machine_kexec_prepare(struct kimage *image) 249 { 250 unsigned long start_pgtable; 251 int result; 252 253 /* Calculate the offsets */ 254 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 255 256 /* Setup the identity mapped 64bit page table */ 257 result = init_pgtable(image, start_pgtable); 258 if (result) 259 return result; 260 261 /* update purgatory as needed */ 262 result = arch_update_purgatory(image); 263 if (result) 264 return result; 265 266 return 0; 267 } 268 269 void machine_kexec_cleanup(struct kimage *image) 270 { 271 free_transition_pgtable(image); 272 } 273 274 /* 275 * Do not allocate memory (or fail in any way) in machine_kexec(). 276 * We are past the point of no return, committed to rebooting now. 277 */ 278 void machine_kexec(struct kimage *image) 279 { 280 unsigned long page_list[PAGES_NR]; 281 void *control_page; 282 int save_ftrace_enabled; 283 284 #ifdef CONFIG_KEXEC_JUMP 285 if (image->preserve_context) 286 save_processor_state(); 287 #endif 288 289 save_ftrace_enabled = __ftrace_enabled_save(); 290 291 /* Interrupts aren't acceptable while we reboot */ 292 local_irq_disable(); 293 hw_breakpoint_disable(); 294 295 if (image->preserve_context) { 296 #ifdef CONFIG_X86_IO_APIC 297 /* 298 * We need to put APICs in legacy mode so that we can 299 * get timer interrupts in second kernel. kexec/kdump 300 * paths already have calls to restore_boot_irq_mode() 301 * in one form or other. kexec jump path also need one. 302 */ 303 clear_IO_APIC(); 304 restore_boot_irq_mode(); 305 #endif 306 } 307 308 control_page = page_address(image->control_code_page) + PAGE_SIZE; 309 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 310 311 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 312 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 313 page_list[PA_TABLE_PAGE] = 314 (unsigned long)__pa(page_address(image->control_code_page)); 315 316 if (image->type == KEXEC_TYPE_DEFAULT) 317 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 318 << PAGE_SHIFT); 319 320 /* 321 * The segment registers are funny things, they have both a 322 * visible and an invisible part. Whenever the visible part is 323 * set to a specific selector, the invisible part is loaded 324 * with from a table in memory. At no other time is the 325 * descriptor table in memory accessed. 326 * 327 * I take advantage of this here by force loading the 328 * segments, before I zap the gdt with an invalid value. 329 */ 330 load_segments(); 331 /* 332 * The gdt & idt are now invalid. 333 * If you want to load them you must set up your own idt & gdt. 334 */ 335 set_gdt(phys_to_virt(0), 0); 336 set_idt(phys_to_virt(0), 0); 337 338 /* now call it */ 339 image->start = relocate_kernel((unsigned long)image->head, 340 (unsigned long)page_list, 341 image->start, 342 image->preserve_context, 343 sme_active()); 344 345 #ifdef CONFIG_KEXEC_JUMP 346 if (image->preserve_context) 347 restore_processor_state(); 348 #endif 349 350 __ftrace_enabled_restore(save_ftrace_enabled); 351 } 352 353 void arch_crash_save_vmcoreinfo(void) 354 { 355 VMCOREINFO_NUMBER(phys_base); 356 VMCOREINFO_SYMBOL(init_top_pgt); 357 vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n", 358 pgtable_l5_enabled()); 359 360 #ifdef CONFIG_NUMA 361 VMCOREINFO_SYMBOL(node_data); 362 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 363 #endif 364 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 365 kaslr_offset()); 366 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 367 } 368 369 /* arch-dependent functionality related to kexec file-based syscall */ 370 371 #ifdef CONFIG_KEXEC_FILE 372 void *arch_kexec_kernel_image_load(struct kimage *image) 373 { 374 vfree(image->arch.elf_headers); 375 image->arch.elf_headers = NULL; 376 377 if (!image->fops || !image->fops->load) 378 return ERR_PTR(-ENOEXEC); 379 380 return image->fops->load(image, image->kernel_buf, 381 image->kernel_buf_len, image->initrd_buf, 382 image->initrd_buf_len, image->cmdline_buf, 383 image->cmdline_buf_len); 384 } 385 386 /* 387 * Apply purgatory relocations. 388 * 389 * @pi: Purgatory to be relocated. 390 * @section: Section relocations applying to. 391 * @relsec: Section containing RELAs. 392 * @symtabsec: Corresponding symtab. 393 * 394 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 395 */ 396 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 397 Elf_Shdr *section, const Elf_Shdr *relsec, 398 const Elf_Shdr *symtabsec) 399 { 400 unsigned int i; 401 Elf64_Rela *rel; 402 Elf64_Sym *sym; 403 void *location; 404 unsigned long address, sec_base, value; 405 const char *strtab, *name, *shstrtab; 406 const Elf_Shdr *sechdrs; 407 408 /* String & section header string table */ 409 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 410 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 411 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 412 413 rel = (void *)pi->ehdr + relsec->sh_offset; 414 415 pr_debug("Applying relocate section %s to %u\n", 416 shstrtab + relsec->sh_name, relsec->sh_info); 417 418 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 419 420 /* 421 * rel[i].r_offset contains byte offset from beginning 422 * of section to the storage unit affected. 423 * 424 * This is location to update. This is temporary buffer 425 * where section is currently loaded. This will finally be 426 * loaded to a different address later, pointed to by 427 * ->sh_addr. kexec takes care of moving it 428 * (kexec_load_segment()). 429 */ 430 location = pi->purgatory_buf; 431 location += section->sh_offset; 432 location += rel[i].r_offset; 433 434 /* Final address of the location */ 435 address = section->sh_addr + rel[i].r_offset; 436 437 /* 438 * rel[i].r_info contains information about symbol table index 439 * w.r.t which relocation must be made and type of relocation 440 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 441 * these respectively. 442 */ 443 sym = (void *)pi->ehdr + symtabsec->sh_offset; 444 sym += ELF64_R_SYM(rel[i].r_info); 445 446 if (sym->st_name) 447 name = strtab + sym->st_name; 448 else 449 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 450 451 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 452 name, sym->st_info, sym->st_shndx, sym->st_value, 453 sym->st_size); 454 455 if (sym->st_shndx == SHN_UNDEF) { 456 pr_err("Undefined symbol: %s\n", name); 457 return -ENOEXEC; 458 } 459 460 if (sym->st_shndx == SHN_COMMON) { 461 pr_err("symbol '%s' in common section\n", name); 462 return -ENOEXEC; 463 } 464 465 if (sym->st_shndx == SHN_ABS) 466 sec_base = 0; 467 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 468 pr_err("Invalid section %d for symbol %s\n", 469 sym->st_shndx, name); 470 return -ENOEXEC; 471 } else 472 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 473 474 value = sym->st_value; 475 value += sec_base; 476 value += rel[i].r_addend; 477 478 switch (ELF64_R_TYPE(rel[i].r_info)) { 479 case R_X86_64_NONE: 480 break; 481 case R_X86_64_64: 482 *(u64 *)location = value; 483 break; 484 case R_X86_64_32: 485 *(u32 *)location = value; 486 if (value != *(u32 *)location) 487 goto overflow; 488 break; 489 case R_X86_64_32S: 490 *(s32 *)location = value; 491 if ((s64)value != *(s32 *)location) 492 goto overflow; 493 break; 494 case R_X86_64_PC32: 495 case R_X86_64_PLT32: 496 value -= (u64)address; 497 *(u32 *)location = value; 498 break; 499 default: 500 pr_err("Unknown rela relocation: %llu\n", 501 ELF64_R_TYPE(rel[i].r_info)); 502 return -ENOEXEC; 503 } 504 } 505 return 0; 506 507 overflow: 508 pr_err("Overflow in relocation type %d value 0x%lx\n", 509 (int)ELF64_R_TYPE(rel[i].r_info), value); 510 return -ENOEXEC; 511 } 512 #endif /* CONFIG_KEXEC_FILE */ 513 514 static int 515 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 516 { 517 struct page *page; 518 unsigned int nr_pages; 519 520 /* 521 * For physical range: [start, end]. We must skip the unassigned 522 * crashk resource with zero-valued "end" member. 523 */ 524 if (!end || start > end) 525 return 0; 526 527 page = pfn_to_page(start >> PAGE_SHIFT); 528 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 529 if (protect) 530 return set_pages_ro(page, nr_pages); 531 else 532 return set_pages_rw(page, nr_pages); 533 } 534 535 static void kexec_mark_crashkres(bool protect) 536 { 537 unsigned long control; 538 539 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 540 541 /* Don't touch the control code page used in crash_kexec().*/ 542 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 543 /* Control code page is located in the 2nd page. */ 544 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 545 control += KEXEC_CONTROL_PAGE_SIZE; 546 kexec_mark_range(control, crashk_res.end, protect); 547 } 548 549 void arch_kexec_protect_crashkres(void) 550 { 551 kexec_mark_crashkres(true); 552 } 553 554 void arch_kexec_unprotect_crashkres(void) 555 { 556 kexec_mark_crashkres(false); 557 } 558 559 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 560 { 561 /* 562 * If SME is active we need to be sure that kexec pages are 563 * not encrypted because when we boot to the new kernel the 564 * pages won't be accessed encrypted (initially). 565 */ 566 return set_memory_decrypted((unsigned long)vaddr, pages); 567 } 568 569 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 570 { 571 /* 572 * If SME is active we need to reset the pages back to being 573 * an encrypted mapping before freeing them. 574 */ 575 set_memory_encrypted((unsigned long)vaddr, pages); 576 } 577