1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 #include <linux/cc_platform.h> 21 22 #include <asm/init.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io_apic.h> 26 #include <asm/debugreg.h> 27 #include <asm/kexec-bzimage64.h> 28 #include <asm/setup.h> 29 #include <asm/set_memory.h> 30 #include <asm/cpu.h> 31 #include <asm/efi.h> 32 33 #ifdef CONFIG_ACPI 34 /* 35 * Used while adding mapping for ACPI tables. 36 * Can be reused when other iomem regions need be mapped 37 */ 38 struct init_pgtable_data { 39 struct x86_mapping_info *info; 40 pgd_t *level4p; 41 }; 42 43 static int mem_region_callback(struct resource *res, void *arg) 44 { 45 struct init_pgtable_data *data = arg; 46 47 return kernel_ident_mapping_init(data->info, data->level4p, 48 res->start, res->end + 1); 49 } 50 51 static int 52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 53 { 54 struct init_pgtable_data data; 55 unsigned long flags; 56 int ret; 57 58 data.info = info; 59 data.level4p = level4p; 60 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 61 62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 63 &data, mem_region_callback); 64 if (ret && ret != -EINVAL) 65 return ret; 66 67 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 69 &data, mem_region_callback); 70 if (ret && ret != -EINVAL) 71 return ret; 72 73 return 0; 74 } 75 #else 76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 77 #endif 78 79 #ifdef CONFIG_KEXEC_FILE 80 const struct kexec_file_ops * const kexec_file_loaders[] = { 81 &kexec_bzImage64_ops, 82 NULL 83 }; 84 #endif 85 86 static int 87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 88 { 89 #ifdef CONFIG_EFI 90 unsigned long mstart, mend; 91 void *kaddr; 92 int ret; 93 94 if (!efi_enabled(EFI_BOOT)) 95 return 0; 96 97 mstart = (boot_params.efi_info.efi_systab | 98 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 99 100 if (efi_enabled(EFI_64BIT)) 101 mend = mstart + sizeof(efi_system_table_64_t); 102 else 103 mend = mstart + sizeof(efi_system_table_32_t); 104 105 if (!mstart) 106 return 0; 107 108 ret = kernel_ident_mapping_init(info, level4p, mstart, mend); 109 if (ret) 110 return ret; 111 112 kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB); 113 if (!kaddr) { 114 pr_err("Could not map UEFI system table\n"); 115 return -ENOMEM; 116 } 117 118 mstart = efi_config_table; 119 120 if (efi_enabled(EFI_64BIT)) { 121 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr; 122 123 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables; 124 } else { 125 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr; 126 127 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables; 128 } 129 130 memunmap(kaddr); 131 132 return kernel_ident_mapping_init(info, level4p, mstart, mend); 133 #endif 134 return 0; 135 } 136 137 static void free_transition_pgtable(struct kimage *image) 138 { 139 free_page((unsigned long)image->arch.p4d); 140 image->arch.p4d = NULL; 141 free_page((unsigned long)image->arch.pud); 142 image->arch.pud = NULL; 143 free_page((unsigned long)image->arch.pmd); 144 image->arch.pmd = NULL; 145 free_page((unsigned long)image->arch.pte); 146 image->arch.pte = NULL; 147 } 148 149 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd, 150 unsigned long control_page) 151 { 152 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 153 unsigned long vaddr, paddr; 154 int result = -ENOMEM; 155 p4d_t *p4d; 156 pud_t *pud; 157 pmd_t *pmd; 158 pte_t *pte; 159 160 /* 161 * For the transition to the identity mapped page tables, the control 162 * code page also needs to be mapped at the virtual address it starts 163 * off running from. 164 */ 165 vaddr = (unsigned long)__va(control_page); 166 paddr = control_page; 167 pgd += pgd_index(vaddr); 168 if (!pgd_present(*pgd)) { 169 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 170 if (!p4d) 171 goto err; 172 image->arch.p4d = p4d; 173 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 174 } 175 p4d = p4d_offset(pgd, vaddr); 176 if (!p4d_present(*p4d)) { 177 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 178 if (!pud) 179 goto err; 180 image->arch.pud = pud; 181 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 182 } 183 pud = pud_offset(p4d, vaddr); 184 if (!pud_present(*pud)) { 185 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 186 if (!pmd) 187 goto err; 188 image->arch.pmd = pmd; 189 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 190 } 191 pmd = pmd_offset(pud, vaddr); 192 if (!pmd_present(*pmd)) { 193 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 194 if (!pte) 195 goto err; 196 image->arch.pte = pte; 197 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 198 } 199 pte = pte_offset_kernel(pmd, vaddr); 200 201 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 202 prot = PAGE_KERNEL_EXEC; 203 204 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 205 return 0; 206 err: 207 return result; 208 } 209 210 static void *alloc_pgt_page(void *data) 211 { 212 struct kimage *image = (struct kimage *)data; 213 struct page *page; 214 void *p = NULL; 215 216 page = kimage_alloc_control_pages(image, 0); 217 if (page) { 218 p = page_address(page); 219 clear_page(p); 220 } 221 222 return p; 223 } 224 225 static int init_pgtable(struct kimage *image, unsigned long control_page) 226 { 227 struct x86_mapping_info info = { 228 .alloc_pgt_page = alloc_pgt_page, 229 .context = image, 230 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 231 .kernpg_flag = _KERNPG_TABLE_NOENC, 232 }; 233 unsigned long mstart, mend; 234 int result; 235 int i; 236 237 image->arch.pgd = alloc_pgt_page(image); 238 if (!image->arch.pgd) 239 return -ENOMEM; 240 241 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 242 info.page_flag |= _PAGE_ENC; 243 info.kernpg_flag |= _PAGE_ENC; 244 } 245 246 if (direct_gbpages) 247 info.direct_gbpages = true; 248 249 for (i = 0; i < nr_pfn_mapped; i++) { 250 mstart = pfn_mapped[i].start << PAGE_SHIFT; 251 mend = pfn_mapped[i].end << PAGE_SHIFT; 252 253 result = kernel_ident_mapping_init(&info, image->arch.pgd, 254 mstart, mend); 255 if (result) 256 return result; 257 } 258 259 /* 260 * segments's mem ranges could be outside 0 ~ max_pfn, 261 * for example when jump back to original kernel from kexeced kernel. 262 * or first kernel is booted with user mem map, and second kernel 263 * could be loaded out of that range. 264 */ 265 for (i = 0; i < image->nr_segments; i++) { 266 mstart = image->segment[i].mem; 267 mend = mstart + image->segment[i].memsz; 268 269 result = kernel_ident_mapping_init(&info, image->arch.pgd, 270 mstart, mend); 271 272 if (result) 273 return result; 274 } 275 276 /* 277 * Prepare EFI systab and ACPI tables for kexec kernel since they are 278 * not covered by pfn_mapped. 279 */ 280 result = map_efi_systab(&info, image->arch.pgd); 281 if (result) 282 return result; 283 284 result = map_acpi_tables(&info, image->arch.pgd); 285 if (result) 286 return result; 287 288 /* 289 * This must be last because the intermediate page table pages it 290 * allocates will not be control pages and may overlap the image. 291 */ 292 return init_transition_pgtable(image, image->arch.pgd, control_page); 293 } 294 295 static void load_segments(void) 296 { 297 __asm__ __volatile__ ( 298 "\tmovl %0,%%ds\n" 299 "\tmovl %0,%%es\n" 300 "\tmovl %0,%%ss\n" 301 "\tmovl %0,%%fs\n" 302 "\tmovl %0,%%gs\n" 303 : : "a" (__KERNEL_DS) : "memory" 304 ); 305 } 306 307 int machine_kexec_prepare(struct kimage *image) 308 { 309 void *control_page = page_address(image->control_code_page); 310 unsigned long reloc_start = (unsigned long)__relocate_kernel_start; 311 unsigned long reloc_end = (unsigned long)__relocate_kernel_end; 312 int result; 313 314 /* Setup the identity mapped 64bit page table */ 315 result = init_pgtable(image, __pa(control_page)); 316 if (result) 317 return result; 318 kexec_va_control_page = (unsigned long)control_page; 319 kexec_pa_table_page = (unsigned long)__pa(image->arch.pgd); 320 321 if (image->type == KEXEC_TYPE_DEFAULT) 322 kexec_pa_swap_page = page_to_pfn(image->swap_page) << PAGE_SHIFT; 323 324 __memcpy(control_page, __relocate_kernel_start, reloc_end - reloc_start); 325 326 set_memory_rox((unsigned long)control_page, 1); 327 328 return 0; 329 } 330 331 void machine_kexec_cleanup(struct kimage *image) 332 { 333 void *control_page = page_address(image->control_code_page); 334 335 set_memory_nx((unsigned long)control_page, 1); 336 set_memory_rw((unsigned long)control_page, 1); 337 338 free_transition_pgtable(image); 339 } 340 341 /* 342 * Do not allocate memory (or fail in any way) in machine_kexec(). 343 * We are past the point of no return, committed to rebooting now. 344 */ 345 void __nocfi machine_kexec(struct kimage *image) 346 { 347 unsigned long reloc_start = (unsigned long)__relocate_kernel_start; 348 relocate_kernel_fn *relocate_kernel_ptr; 349 unsigned int host_mem_enc_active; 350 int save_ftrace_enabled; 351 void *control_page; 352 353 /* 354 * This must be done before load_segments() since if call depth tracking 355 * is used then GS must be valid to make any function calls. 356 */ 357 host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT); 358 359 #ifdef CONFIG_KEXEC_JUMP 360 if (image->preserve_context) 361 save_processor_state(); 362 #endif 363 364 save_ftrace_enabled = __ftrace_enabled_save(); 365 366 /* Interrupts aren't acceptable while we reboot */ 367 local_irq_disable(); 368 hw_breakpoint_disable(); 369 cet_disable(); 370 371 if (image->preserve_context) { 372 #ifdef CONFIG_X86_IO_APIC 373 /* 374 * We need to put APICs in legacy mode so that we can 375 * get timer interrupts in second kernel. kexec/kdump 376 * paths already have calls to restore_boot_irq_mode() 377 * in one form or other. kexec jump path also need one. 378 */ 379 clear_IO_APIC(); 380 restore_boot_irq_mode(); 381 #endif 382 } 383 384 control_page = page_address(image->control_code_page); 385 386 /* 387 * Allow for the possibility that relocate_kernel might not be at 388 * the very start of the page. 389 */ 390 relocate_kernel_ptr = control_page + (unsigned long)relocate_kernel - reloc_start; 391 392 /* 393 * The segment registers are funny things, they have both a 394 * visible and an invisible part. Whenever the visible part is 395 * set to a specific selector, the invisible part is loaded 396 * with from a table in memory. At no other time is the 397 * descriptor table in memory accessed. 398 * 399 * I take advantage of this here by force loading the 400 * segments, before I zap the gdt with an invalid value. 401 */ 402 load_segments(); 403 /* 404 * The gdt & idt are now invalid. 405 * If you want to load them you must set up your own idt & gdt. 406 */ 407 native_idt_invalidate(); 408 native_gdt_invalidate(); 409 410 /* now call it */ 411 image->start = relocate_kernel_ptr((unsigned long)image->head, 412 virt_to_phys(control_page), 413 image->start, 414 image->preserve_context, 415 host_mem_enc_active); 416 417 #ifdef CONFIG_KEXEC_JUMP 418 if (image->preserve_context) 419 restore_processor_state(); 420 #endif 421 422 __ftrace_enabled_restore(save_ftrace_enabled); 423 } 424 425 /* arch-dependent functionality related to kexec file-based syscall */ 426 427 #ifdef CONFIG_KEXEC_FILE 428 /* 429 * Apply purgatory relocations. 430 * 431 * @pi: Purgatory to be relocated. 432 * @section: Section relocations applying to. 433 * @relsec: Section containing RELAs. 434 * @symtabsec: Corresponding symtab. 435 * 436 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 437 */ 438 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 439 Elf_Shdr *section, const Elf_Shdr *relsec, 440 const Elf_Shdr *symtabsec) 441 { 442 unsigned int i; 443 Elf64_Rela *rel; 444 Elf64_Sym *sym; 445 void *location; 446 unsigned long address, sec_base, value; 447 const char *strtab, *name, *shstrtab; 448 const Elf_Shdr *sechdrs; 449 450 /* String & section header string table */ 451 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 452 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 453 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 454 455 rel = (void *)pi->ehdr + relsec->sh_offset; 456 457 pr_debug("Applying relocate section %s to %u\n", 458 shstrtab + relsec->sh_name, relsec->sh_info); 459 460 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 461 462 /* 463 * rel[i].r_offset contains byte offset from beginning 464 * of section to the storage unit affected. 465 * 466 * This is location to update. This is temporary buffer 467 * where section is currently loaded. This will finally be 468 * loaded to a different address later, pointed to by 469 * ->sh_addr. kexec takes care of moving it 470 * (kexec_load_segment()). 471 */ 472 location = pi->purgatory_buf; 473 location += section->sh_offset; 474 location += rel[i].r_offset; 475 476 /* Final address of the location */ 477 address = section->sh_addr + rel[i].r_offset; 478 479 /* 480 * rel[i].r_info contains information about symbol table index 481 * w.r.t which relocation must be made and type of relocation 482 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 483 * these respectively. 484 */ 485 sym = (void *)pi->ehdr + symtabsec->sh_offset; 486 sym += ELF64_R_SYM(rel[i].r_info); 487 488 if (sym->st_name) 489 name = strtab + sym->st_name; 490 else 491 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 492 493 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 494 name, sym->st_info, sym->st_shndx, sym->st_value, 495 sym->st_size); 496 497 if (sym->st_shndx == SHN_UNDEF) { 498 pr_err("Undefined symbol: %s\n", name); 499 return -ENOEXEC; 500 } 501 502 if (sym->st_shndx == SHN_COMMON) { 503 pr_err("symbol '%s' in common section\n", name); 504 return -ENOEXEC; 505 } 506 507 if (sym->st_shndx == SHN_ABS) 508 sec_base = 0; 509 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 510 pr_err("Invalid section %d for symbol %s\n", 511 sym->st_shndx, name); 512 return -ENOEXEC; 513 } else 514 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 515 516 value = sym->st_value; 517 value += sec_base; 518 value += rel[i].r_addend; 519 520 switch (ELF64_R_TYPE(rel[i].r_info)) { 521 case R_X86_64_NONE: 522 break; 523 case R_X86_64_64: 524 *(u64 *)location = value; 525 break; 526 case R_X86_64_32: 527 *(u32 *)location = value; 528 if (value != *(u32 *)location) 529 goto overflow; 530 break; 531 case R_X86_64_32S: 532 *(s32 *)location = value; 533 if ((s64)value != *(s32 *)location) 534 goto overflow; 535 break; 536 case R_X86_64_PC32: 537 case R_X86_64_PLT32: 538 value -= (u64)address; 539 *(u32 *)location = value; 540 break; 541 default: 542 pr_err("Unknown rela relocation: %llu\n", 543 ELF64_R_TYPE(rel[i].r_info)); 544 return -ENOEXEC; 545 } 546 } 547 return 0; 548 549 overflow: 550 pr_err("Overflow in relocation type %d value 0x%lx\n", 551 (int)ELF64_R_TYPE(rel[i].r_info), value); 552 return -ENOEXEC; 553 } 554 555 int arch_kimage_file_post_load_cleanup(struct kimage *image) 556 { 557 vfree(image->elf_headers); 558 image->elf_headers = NULL; 559 image->elf_headers_sz = 0; 560 561 return kexec_image_post_load_cleanup_default(image); 562 } 563 #endif /* CONFIG_KEXEC_FILE */ 564 565 #ifdef CONFIG_CRASH_DUMP 566 567 static int 568 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 569 { 570 struct page *page; 571 unsigned int nr_pages; 572 573 /* 574 * For physical range: [start, end]. We must skip the unassigned 575 * crashk resource with zero-valued "end" member. 576 */ 577 if (!end || start > end) 578 return 0; 579 580 page = pfn_to_page(start >> PAGE_SHIFT); 581 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 582 if (protect) 583 return set_pages_ro(page, nr_pages); 584 else 585 return set_pages_rw(page, nr_pages); 586 } 587 588 static void kexec_mark_crashkres(bool protect) 589 { 590 unsigned long control; 591 592 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 593 594 /* Don't touch the control code page used in crash_kexec().*/ 595 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 596 kexec_mark_range(crashk_res.start, control - 1, protect); 597 control += KEXEC_CONTROL_PAGE_SIZE; 598 kexec_mark_range(control, crashk_res.end, protect); 599 } 600 601 void arch_kexec_protect_crashkres(void) 602 { 603 kexec_mark_crashkres(true); 604 } 605 606 void arch_kexec_unprotect_crashkres(void) 607 { 608 kexec_mark_crashkres(false); 609 } 610 #endif 611 612 /* 613 * During a traditional boot under SME, SME will encrypt the kernel, 614 * so the SME kexec kernel also needs to be un-encrypted in order to 615 * replicate a normal SME boot. 616 * 617 * During a traditional boot under SEV, the kernel has already been 618 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 619 * order to replicate a normal SEV boot. 620 */ 621 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 622 { 623 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 624 return 0; 625 626 /* 627 * If host memory encryption is active we need to be sure that kexec 628 * pages are not encrypted because when we boot to the new kernel the 629 * pages won't be accessed encrypted (initially). 630 */ 631 return set_memory_decrypted((unsigned long)vaddr, pages); 632 } 633 634 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 635 { 636 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 637 return; 638 639 /* 640 * If host memory encryption is active we need to reset the pages back 641 * to being an encrypted mapping before freeing them. 642 */ 643 set_memory_encrypted((unsigned long)vaddr, pages); 644 } 645