1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 #include <linux/cc_platform.h> 21 22 #include <asm/init.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io_apic.h> 26 #include <asm/debugreg.h> 27 #include <asm/kexec-bzimage64.h> 28 #include <asm/setup.h> 29 #include <asm/set_memory.h> 30 #include <asm/cpu.h> 31 #include <asm/efi.h> 32 #include <asm/processor.h> 33 34 #ifdef CONFIG_ACPI 35 /* 36 * Used while adding mapping for ACPI tables. 37 * Can be reused when other iomem regions need be mapped 38 */ 39 struct init_pgtable_data { 40 struct x86_mapping_info *info; 41 pgd_t *level4p; 42 }; 43 44 static int mem_region_callback(struct resource *res, void *arg) 45 { 46 struct init_pgtable_data *data = arg; 47 48 return kernel_ident_mapping_init(data->info, data->level4p, 49 res->start, res->end + 1); 50 } 51 52 static int 53 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 54 { 55 struct init_pgtable_data data; 56 unsigned long flags; 57 int ret; 58 59 data.info = info; 60 data.level4p = level4p; 61 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 62 63 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 64 &data, mem_region_callback); 65 if (ret && ret != -EINVAL) 66 return ret; 67 68 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 69 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 70 &data, mem_region_callback); 71 if (ret && ret != -EINVAL) 72 return ret; 73 74 return 0; 75 } 76 #else 77 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 78 #endif 79 80 static int map_mmio_serial(struct x86_mapping_info *info, pgd_t *level4p) 81 { 82 unsigned long mstart, mend; 83 84 if (!kexec_debug_8250_mmio32) 85 return 0; 86 87 mstart = kexec_debug_8250_mmio32 & PAGE_MASK; 88 mend = (kexec_debug_8250_mmio32 + PAGE_SIZE + 23) & PAGE_MASK; 89 pr_info("Map PCI serial at %lx - %lx\n", mstart, mend); 90 return kernel_ident_mapping_init(info, level4p, mstart, mend); 91 } 92 93 #ifdef CONFIG_KEXEC_FILE 94 const struct kexec_file_ops * const kexec_file_loaders[] = { 95 &kexec_bzImage64_ops, 96 NULL 97 }; 98 #endif 99 100 static int 101 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 102 { 103 #ifdef CONFIG_EFI 104 unsigned long mstart, mend; 105 void *kaddr; 106 int ret; 107 108 if (!efi_enabled(EFI_BOOT)) 109 return 0; 110 111 mstart = (boot_params.efi_info.efi_systab | 112 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 113 114 if (efi_enabled(EFI_64BIT)) 115 mend = mstart + sizeof(efi_system_table_64_t); 116 else 117 mend = mstart + sizeof(efi_system_table_32_t); 118 119 if (!mstart) 120 return 0; 121 122 ret = kernel_ident_mapping_init(info, level4p, mstart, mend); 123 if (ret) 124 return ret; 125 126 kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB); 127 if (!kaddr) { 128 pr_err("Could not map UEFI system table\n"); 129 return -ENOMEM; 130 } 131 132 mstart = efi_config_table; 133 134 if (efi_enabled(EFI_64BIT)) { 135 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr; 136 137 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables; 138 } else { 139 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr; 140 141 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables; 142 } 143 144 memunmap(kaddr); 145 146 return kernel_ident_mapping_init(info, level4p, mstart, mend); 147 #endif 148 return 0; 149 } 150 151 static void free_transition_pgtable(struct kimage *image) 152 { 153 free_page((unsigned long)image->arch.p4d); 154 image->arch.p4d = NULL; 155 free_page((unsigned long)image->arch.pud); 156 image->arch.pud = NULL; 157 free_page((unsigned long)image->arch.pmd); 158 image->arch.pmd = NULL; 159 free_page((unsigned long)image->arch.pte); 160 image->arch.pte = NULL; 161 } 162 163 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd, 164 unsigned long control_page) 165 { 166 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 167 unsigned long vaddr, paddr; 168 int result = -ENOMEM; 169 p4d_t *p4d; 170 pud_t *pud; 171 pmd_t *pmd; 172 pte_t *pte; 173 174 /* 175 * For the transition to the identity mapped page tables, the control 176 * code page also needs to be mapped at the virtual address it starts 177 * off running from. 178 */ 179 vaddr = (unsigned long)__va(control_page); 180 paddr = control_page; 181 pgd += pgd_index(vaddr); 182 if (!pgd_present(*pgd)) { 183 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 184 if (!p4d) 185 goto err; 186 image->arch.p4d = p4d; 187 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 188 } 189 p4d = p4d_offset(pgd, vaddr); 190 if (!p4d_present(*p4d)) { 191 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 192 if (!pud) 193 goto err; 194 image->arch.pud = pud; 195 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 196 } 197 pud = pud_offset(p4d, vaddr); 198 if (!pud_present(*pud)) { 199 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 200 if (!pmd) 201 goto err; 202 image->arch.pmd = pmd; 203 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 204 } 205 pmd = pmd_offset(pud, vaddr); 206 if (!pmd_present(*pmd)) { 207 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 208 if (!pte) 209 goto err; 210 image->arch.pte = pte; 211 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 212 } 213 pte = pte_offset_kernel(pmd, vaddr); 214 215 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 216 prot = PAGE_KERNEL_EXEC; 217 218 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 219 return 0; 220 err: 221 return result; 222 } 223 224 static void *alloc_pgt_page(void *data) 225 { 226 struct kimage *image = (struct kimage *)data; 227 struct page *page; 228 void *p = NULL; 229 230 page = kimage_alloc_control_pages(image, 0); 231 if (page) { 232 p = page_address(page); 233 clear_page(p); 234 } 235 236 return p; 237 } 238 239 static int init_pgtable(struct kimage *image, unsigned long control_page) 240 { 241 struct x86_mapping_info info = { 242 .alloc_pgt_page = alloc_pgt_page, 243 .context = image, 244 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 245 .kernpg_flag = _KERNPG_TABLE_NOENC, 246 }; 247 unsigned long mstart, mend; 248 int result; 249 int i; 250 251 image->arch.pgd = alloc_pgt_page(image); 252 if (!image->arch.pgd) 253 return -ENOMEM; 254 255 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 256 info.page_flag |= _PAGE_ENC; 257 info.kernpg_flag |= _PAGE_ENC; 258 } 259 260 if (direct_gbpages) 261 info.direct_gbpages = true; 262 263 for (i = 0; i < nr_pfn_mapped; i++) { 264 mstart = pfn_mapped[i].start << PAGE_SHIFT; 265 mend = pfn_mapped[i].end << PAGE_SHIFT; 266 267 result = kernel_ident_mapping_init(&info, image->arch.pgd, 268 mstart, mend); 269 if (result) 270 return result; 271 } 272 273 /* 274 * segments's mem ranges could be outside 0 ~ max_pfn, 275 * for example when jump back to original kernel from kexeced kernel. 276 * or first kernel is booted with user mem map, and second kernel 277 * could be loaded out of that range. 278 */ 279 for (i = 0; i < image->nr_segments; i++) { 280 mstart = image->segment[i].mem; 281 mend = mstart + image->segment[i].memsz; 282 283 result = kernel_ident_mapping_init(&info, image->arch.pgd, 284 mstart, mend); 285 286 if (result) 287 return result; 288 } 289 290 /* 291 * Prepare EFI systab and ACPI tables for kexec kernel since they are 292 * not covered by pfn_mapped. 293 */ 294 result = map_efi_systab(&info, image->arch.pgd); 295 if (result) 296 return result; 297 298 result = map_acpi_tables(&info, image->arch.pgd); 299 if (result) 300 return result; 301 302 result = map_mmio_serial(&info, image->arch.pgd); 303 if (result) 304 return result; 305 306 /* 307 * This must be last because the intermediate page table pages it 308 * allocates will not be control pages and may overlap the image. 309 */ 310 return init_transition_pgtable(image, image->arch.pgd, control_page); 311 } 312 313 static void load_segments(void) 314 { 315 __asm__ __volatile__ ( 316 "\tmovl %0,%%ds\n" 317 "\tmovl %0,%%es\n" 318 "\tmovl %0,%%ss\n" 319 "\tmovl %0,%%fs\n" 320 "\tmovl %0,%%gs\n" 321 : : "a" (__KERNEL_DS) : "memory" 322 ); 323 } 324 325 static void prepare_debug_idt(unsigned long control_page, unsigned long vec_ofs) 326 { 327 gate_desc idtentry = { 0 }; 328 int i; 329 330 idtentry.bits.p = 1; 331 idtentry.bits.type = GATE_TRAP; 332 idtentry.segment = __KERNEL_CS; 333 idtentry.offset_low = (control_page & 0xFFFF) + vec_ofs; 334 idtentry.offset_middle = (control_page >> 16) & 0xFFFF; 335 idtentry.offset_high = control_page >> 32; 336 337 for (i = 0; i < 16; i++) { 338 kexec_debug_idt[i] = idtentry; 339 idtentry.offset_low += KEXEC_DEBUG_EXC_HANDLER_SIZE; 340 } 341 } 342 343 int machine_kexec_prepare(struct kimage *image) 344 { 345 void *control_page = page_address(image->control_code_page); 346 unsigned long reloc_start = (unsigned long)__relocate_kernel_start; 347 unsigned long reloc_end = (unsigned long)__relocate_kernel_end; 348 int result; 349 350 /* 351 * Some early TDX-capable platforms have an erratum. A kernel 352 * partial write (a write transaction of less than cacheline 353 * lands at memory controller) to TDX private memory poisons that 354 * memory, and a subsequent read triggers a machine check. 355 * 356 * On those platforms the old kernel must reset TDX private 357 * memory before jumping to the new kernel otherwise the new 358 * kernel may see unexpected machine check. For simplicity 359 * just fail kexec/kdump on those platforms. 360 */ 361 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE)) { 362 pr_info_once("Not allowed on platform with tdx_pw_mce bug\n"); 363 return -EOPNOTSUPP; 364 } 365 366 /* Setup the identity mapped 64bit page table */ 367 result = init_pgtable(image, __pa(control_page)); 368 if (result) 369 return result; 370 kexec_va_control_page = (unsigned long)control_page; 371 kexec_pa_table_page = (unsigned long)__pa(image->arch.pgd); 372 373 if (image->type == KEXEC_TYPE_DEFAULT) 374 kexec_pa_swap_page = page_to_pfn(image->swap_page) << PAGE_SHIFT; 375 376 prepare_debug_idt((unsigned long)__pa(control_page), 377 (unsigned long)kexec_debug_exc_vectors - reloc_start); 378 379 __memcpy(control_page, __relocate_kernel_start, reloc_end - reloc_start); 380 381 set_memory_rox((unsigned long)control_page, 1); 382 383 return 0; 384 } 385 386 void machine_kexec_cleanup(struct kimage *image) 387 { 388 void *control_page = page_address(image->control_code_page); 389 390 set_memory_nx((unsigned long)control_page, 1); 391 set_memory_rw((unsigned long)control_page, 1); 392 393 free_transition_pgtable(image); 394 } 395 396 /* 397 * Do not allocate memory (or fail in any way) in machine_kexec(). 398 * We are past the point of no return, committed to rebooting now. 399 */ 400 void __nocfi machine_kexec(struct kimage *image) 401 { 402 unsigned long reloc_start = (unsigned long)__relocate_kernel_start; 403 relocate_kernel_fn *relocate_kernel_ptr; 404 unsigned int relocate_kernel_flags; 405 int save_ftrace_enabled; 406 void *control_page; 407 408 #ifdef CONFIG_KEXEC_JUMP 409 if (image->preserve_context) 410 save_processor_state(); 411 #endif 412 413 save_ftrace_enabled = __ftrace_enabled_save(); 414 415 /* Interrupts aren't acceptable while we reboot */ 416 local_irq_disable(); 417 hw_breakpoint_disable(); 418 cet_disable(); 419 420 if (image->preserve_context) { 421 #ifdef CONFIG_X86_IO_APIC 422 /* 423 * We need to put APICs in legacy mode so that we can 424 * get timer interrupts in second kernel. kexec/kdump 425 * paths already have calls to restore_boot_irq_mode() 426 * in one form or other. kexec jump path also need one. 427 */ 428 clear_IO_APIC(); 429 restore_boot_irq_mode(); 430 #endif 431 } 432 433 control_page = page_address(image->control_code_page); 434 435 /* 436 * Allow for the possibility that relocate_kernel might not be at 437 * the very start of the page. 438 */ 439 relocate_kernel_ptr = control_page + (unsigned long)relocate_kernel - reloc_start; 440 441 relocate_kernel_flags = 0; 442 if (image->preserve_context) 443 relocate_kernel_flags |= RELOC_KERNEL_PRESERVE_CONTEXT; 444 445 /* 446 * This must be done before load_segments() since it resets 447 * GS to 0 and percpu data needs the correct GS to work. 448 */ 449 if (this_cpu_read(cache_state_incoherent)) 450 relocate_kernel_flags |= RELOC_KERNEL_CACHE_INCOHERENT; 451 452 /* 453 * The segment registers are funny things, they have both a 454 * visible and an invisible part. Whenever the visible part is 455 * set to a specific selector, the invisible part is loaded 456 * with from a table in memory. At no other time is the 457 * descriptor table in memory accessed. 458 * 459 * Take advantage of this here by force loading the segments, 460 * before the GDT is zapped with an invalid value. 461 * 462 * load_segments() resets GS to 0. Don't make any function call 463 * after here since call depth tracking uses percpu variables to 464 * operate (relocate_kernel() is explicitly ignored by call depth 465 * tracking). 466 */ 467 load_segments(); 468 469 /* now call it */ 470 image->start = relocate_kernel_ptr((unsigned long)image->head, 471 virt_to_phys(control_page), 472 image->start, 473 relocate_kernel_flags); 474 475 #ifdef CONFIG_KEXEC_JUMP 476 if (image->preserve_context) 477 restore_processor_state(); 478 #endif 479 480 __ftrace_enabled_restore(save_ftrace_enabled); 481 } 482 483 /* arch-dependent functionality related to kexec file-based syscall */ 484 485 #ifdef CONFIG_KEXEC_FILE 486 /* 487 * Apply purgatory relocations. 488 * 489 * @pi: Purgatory to be relocated. 490 * @section: Section relocations applying to. 491 * @relsec: Section containing RELAs. 492 * @symtabsec: Corresponding symtab. 493 * 494 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 495 */ 496 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 497 Elf_Shdr *section, const Elf_Shdr *relsec, 498 const Elf_Shdr *symtabsec) 499 { 500 unsigned int i; 501 Elf64_Rela *rel; 502 Elf64_Sym *sym; 503 void *location; 504 unsigned long address, sec_base, value; 505 const char *strtab, *name, *shstrtab; 506 const Elf_Shdr *sechdrs; 507 508 /* String & section header string table */ 509 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 510 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 511 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 512 513 rel = (void *)pi->ehdr + relsec->sh_offset; 514 515 pr_debug("Applying relocate section %s to %u\n", 516 shstrtab + relsec->sh_name, relsec->sh_info); 517 518 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 519 520 /* 521 * rel[i].r_offset contains byte offset from beginning 522 * of section to the storage unit affected. 523 * 524 * This is location to update. This is temporary buffer 525 * where section is currently loaded. This will finally be 526 * loaded to a different address later, pointed to by 527 * ->sh_addr. kexec takes care of moving it 528 * (kexec_load_segment()). 529 */ 530 location = pi->purgatory_buf; 531 location += section->sh_offset; 532 location += rel[i].r_offset; 533 534 /* Final address of the location */ 535 address = section->sh_addr + rel[i].r_offset; 536 537 /* 538 * rel[i].r_info contains information about symbol table index 539 * w.r.t which relocation must be made and type of relocation 540 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 541 * these respectively. 542 */ 543 sym = (void *)pi->ehdr + symtabsec->sh_offset; 544 sym += ELF64_R_SYM(rel[i].r_info); 545 546 if (sym->st_name) 547 name = strtab + sym->st_name; 548 else 549 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 550 551 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 552 name, sym->st_info, sym->st_shndx, sym->st_value, 553 sym->st_size); 554 555 if (sym->st_shndx == SHN_UNDEF) { 556 pr_err("Undefined symbol: %s\n", name); 557 return -ENOEXEC; 558 } 559 560 if (sym->st_shndx == SHN_COMMON) { 561 pr_err("symbol '%s' in common section\n", name); 562 return -ENOEXEC; 563 } 564 565 if (sym->st_shndx == SHN_ABS) 566 sec_base = 0; 567 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 568 pr_err("Invalid section %d for symbol %s\n", 569 sym->st_shndx, name); 570 return -ENOEXEC; 571 } else 572 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 573 574 value = sym->st_value; 575 value += sec_base; 576 value += rel[i].r_addend; 577 578 switch (ELF64_R_TYPE(rel[i].r_info)) { 579 case R_X86_64_NONE: 580 break; 581 case R_X86_64_64: 582 *(u64 *)location = value; 583 break; 584 case R_X86_64_32: 585 *(u32 *)location = value; 586 if (value != *(u32 *)location) 587 goto overflow; 588 break; 589 case R_X86_64_32S: 590 *(s32 *)location = value; 591 if ((s64)value != *(s32 *)location) 592 goto overflow; 593 break; 594 case R_X86_64_PC32: 595 case R_X86_64_PLT32: 596 value -= (u64)address; 597 *(u32 *)location = value; 598 break; 599 default: 600 pr_err("Unknown rela relocation: %llu\n", 601 ELF64_R_TYPE(rel[i].r_info)); 602 return -ENOEXEC; 603 } 604 } 605 return 0; 606 607 overflow: 608 pr_err("Overflow in relocation type %d value 0x%lx\n", 609 (int)ELF64_R_TYPE(rel[i].r_info), value); 610 return -ENOEXEC; 611 } 612 613 int arch_kimage_file_post_load_cleanup(struct kimage *image) 614 { 615 vfree(image->elf_headers); 616 image->elf_headers = NULL; 617 image->elf_headers_sz = 0; 618 619 return kexec_image_post_load_cleanup_default(image); 620 } 621 #endif /* CONFIG_KEXEC_FILE */ 622 623 #ifdef CONFIG_CRASH_DUMP 624 625 static int 626 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 627 { 628 struct page *page; 629 unsigned int nr_pages; 630 631 /* 632 * For physical range: [start, end]. We must skip the unassigned 633 * crashk resource with zero-valued "end" member. 634 */ 635 if (!end || start > end) 636 return 0; 637 638 page = pfn_to_page(start >> PAGE_SHIFT); 639 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 640 if (protect) 641 return set_pages_ro(page, nr_pages); 642 else 643 return set_pages_rw(page, nr_pages); 644 } 645 646 static void kexec_mark_crashkres(bool protect) 647 { 648 unsigned long control; 649 650 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 651 652 /* Don't touch the control code page used in crash_kexec().*/ 653 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 654 kexec_mark_range(crashk_res.start, control - 1, protect); 655 control += KEXEC_CONTROL_PAGE_SIZE; 656 kexec_mark_range(control, crashk_res.end, protect); 657 } 658 659 /* make the memory storing dm crypt keys in/accessible */ 660 static void kexec_mark_dm_crypt_keys(bool protect) 661 { 662 unsigned long start_paddr, end_paddr; 663 unsigned int nr_pages; 664 665 if (kexec_crash_image->dm_crypt_keys_addr) { 666 start_paddr = kexec_crash_image->dm_crypt_keys_addr; 667 end_paddr = start_paddr + kexec_crash_image->dm_crypt_keys_sz - 1; 668 nr_pages = (PAGE_ALIGN(end_paddr) - PAGE_ALIGN_DOWN(start_paddr))/PAGE_SIZE; 669 if (protect) 670 set_memory_np((unsigned long)phys_to_virt(start_paddr), nr_pages); 671 else 672 __set_memory_prot( 673 (unsigned long)phys_to_virt(start_paddr), 674 nr_pages, 675 __pgprot(_PAGE_PRESENT | _PAGE_NX | _PAGE_RW)); 676 } 677 } 678 679 void arch_kexec_protect_crashkres(void) 680 { 681 kexec_mark_crashkres(true); 682 kexec_mark_dm_crypt_keys(true); 683 } 684 685 void arch_kexec_unprotect_crashkres(void) 686 { 687 kexec_mark_dm_crypt_keys(false); 688 kexec_mark_crashkres(false); 689 } 690 #endif 691 692 /* 693 * During a traditional boot under SME, SME will encrypt the kernel, 694 * so the SME kexec kernel also needs to be un-encrypted in order to 695 * replicate a normal SME boot. 696 * 697 * During a traditional boot under SEV, the kernel has already been 698 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 699 * order to replicate a normal SEV boot. 700 */ 701 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 702 { 703 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 704 return 0; 705 706 /* 707 * If host memory encryption is active we need to be sure that kexec 708 * pages are not encrypted because when we boot to the new kernel the 709 * pages won't be accessed encrypted (initially). 710 */ 711 return set_memory_decrypted((unsigned long)vaddr, pages); 712 } 713 714 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 715 { 716 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 717 return; 718 719 /* 720 * If host memory encryption is active we need to reset the pages back 721 * to being an encrypted mapping before freeing them. 722 */ 723 set_memory_encrypted((unsigned long)vaddr, pages); 724 } 725