xref: /linux/arch/x86/kernel/machine_kexec_64.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt)	"kexec: " fmt
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21 
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32 
33 #ifdef CONFIG_ACPI
34 /*
35  * Used while adding mapping for ACPI tables.
36  * Can be reused when other iomem regions need be mapped
37  */
38 struct init_pgtable_data {
39 	struct x86_mapping_info *info;
40 	pgd_t *level4p;
41 };
42 
43 static int mem_region_callback(struct resource *res, void *arg)
44 {
45 	struct init_pgtable_data *data = arg;
46 
47 	return kernel_ident_mapping_init(data->info, data->level4p,
48 					 res->start, res->end + 1);
49 }
50 
51 static int
52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54 	struct init_pgtable_data data;
55 	unsigned long flags;
56 	int ret;
57 
58 	data.info = info;
59 	data.level4p = level4p;
60 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61 
62 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 				  &data, mem_region_callback);
64 	if (ret && ret != -EINVAL)
65 		return ret;
66 
67 	/* ACPI tables could be located in ACPI Non-volatile Storage region */
68 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 				  &data, mem_region_callback);
70 	if (ret && ret != -EINVAL)
71 		return ret;
72 
73 	return 0;
74 }
75 #else
76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78 
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81 		&kexec_bzImage64_ops,
82 		NULL
83 };
84 #endif
85 
86 static int
87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90 	unsigned long mstart, mend;
91 	void *kaddr;
92 	int ret;
93 
94 	if (!efi_enabled(EFI_BOOT))
95 		return 0;
96 
97 	mstart = (boot_params.efi_info.efi_systab |
98 			((u64)boot_params.efi_info.efi_systab_hi<<32));
99 
100 	if (efi_enabled(EFI_64BIT))
101 		mend = mstart + sizeof(efi_system_table_64_t);
102 	else
103 		mend = mstart + sizeof(efi_system_table_32_t);
104 
105 	if (!mstart)
106 		return 0;
107 
108 	ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
109 	if (ret)
110 		return ret;
111 
112 	kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
113 	if (!kaddr) {
114 		pr_err("Could not map UEFI system table\n");
115 		return -ENOMEM;
116 	}
117 
118 	mstart = efi_config_table;
119 
120 	if (efi_enabled(EFI_64BIT)) {
121 		efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
122 
123 		mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
124 	} else {
125 		efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
126 
127 		mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
128 	}
129 
130 	memunmap(kaddr);
131 
132 	return kernel_ident_mapping_init(info, level4p, mstart, mend);
133 #endif
134 	return 0;
135 }
136 
137 static void free_transition_pgtable(struct kimage *image)
138 {
139 	free_page((unsigned long)image->arch.p4d);
140 	image->arch.p4d = NULL;
141 	free_page((unsigned long)image->arch.pud);
142 	image->arch.pud = NULL;
143 	free_page((unsigned long)image->arch.pmd);
144 	image->arch.pmd = NULL;
145 	free_page((unsigned long)image->arch.pte);
146 	image->arch.pte = NULL;
147 }
148 
149 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
150 {
151 	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
152 	unsigned long vaddr, paddr;
153 	int result = -ENOMEM;
154 	p4d_t *p4d;
155 	pud_t *pud;
156 	pmd_t *pmd;
157 	pte_t *pte;
158 
159 	vaddr = (unsigned long)relocate_kernel;
160 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
161 	pgd += pgd_index(vaddr);
162 	if (!pgd_present(*pgd)) {
163 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
164 		if (!p4d)
165 			goto err;
166 		image->arch.p4d = p4d;
167 		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
168 	}
169 	p4d = p4d_offset(pgd, vaddr);
170 	if (!p4d_present(*p4d)) {
171 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
172 		if (!pud)
173 			goto err;
174 		image->arch.pud = pud;
175 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
176 	}
177 	pud = pud_offset(p4d, vaddr);
178 	if (!pud_present(*pud)) {
179 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
180 		if (!pmd)
181 			goto err;
182 		image->arch.pmd = pmd;
183 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
184 	}
185 	pmd = pmd_offset(pud, vaddr);
186 	if (!pmd_present(*pmd)) {
187 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
188 		if (!pte)
189 			goto err;
190 		image->arch.pte = pte;
191 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
192 	}
193 	pte = pte_offset_kernel(pmd, vaddr);
194 
195 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
196 		prot = PAGE_KERNEL_EXEC;
197 
198 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
199 	return 0;
200 err:
201 	return result;
202 }
203 
204 static void *alloc_pgt_page(void *data)
205 {
206 	struct kimage *image = (struct kimage *)data;
207 	struct page *page;
208 	void *p = NULL;
209 
210 	page = kimage_alloc_control_pages(image, 0);
211 	if (page) {
212 		p = page_address(page);
213 		clear_page(p);
214 	}
215 
216 	return p;
217 }
218 
219 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
220 {
221 	struct x86_mapping_info info = {
222 		.alloc_pgt_page	= alloc_pgt_page,
223 		.context	= image,
224 		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
225 		.kernpg_flag	= _KERNPG_TABLE_NOENC,
226 	};
227 	unsigned long mstart, mend;
228 	pgd_t *level4p;
229 	int result;
230 	int i;
231 
232 	level4p = (pgd_t *)__va(start_pgtable);
233 	clear_page(level4p);
234 
235 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
236 		info.page_flag   |= _PAGE_ENC;
237 		info.kernpg_flag |= _PAGE_ENC;
238 	}
239 
240 	if (direct_gbpages)
241 		info.direct_gbpages = true;
242 
243 	for (i = 0; i < nr_pfn_mapped; i++) {
244 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
245 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
246 
247 		result = kernel_ident_mapping_init(&info,
248 						 level4p, mstart, mend);
249 		if (result)
250 			return result;
251 	}
252 
253 	/*
254 	 * segments's mem ranges could be outside 0 ~ max_pfn,
255 	 * for example when jump back to original kernel from kexeced kernel.
256 	 * or first kernel is booted with user mem map, and second kernel
257 	 * could be loaded out of that range.
258 	 */
259 	for (i = 0; i < image->nr_segments; i++) {
260 		mstart = image->segment[i].mem;
261 		mend   = mstart + image->segment[i].memsz;
262 
263 		result = kernel_ident_mapping_init(&info,
264 						 level4p, mstart, mend);
265 
266 		if (result)
267 			return result;
268 	}
269 
270 	/*
271 	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
272 	 * not covered by pfn_mapped.
273 	 */
274 	result = map_efi_systab(&info, level4p);
275 	if (result)
276 		return result;
277 
278 	result = map_acpi_tables(&info, level4p);
279 	if (result)
280 		return result;
281 
282 	return init_transition_pgtable(image, level4p);
283 }
284 
285 static void load_segments(void)
286 {
287 	__asm__ __volatile__ (
288 		"\tmovl %0,%%ds\n"
289 		"\tmovl %0,%%es\n"
290 		"\tmovl %0,%%ss\n"
291 		"\tmovl %0,%%fs\n"
292 		"\tmovl %0,%%gs\n"
293 		: : "a" (__KERNEL_DS) : "memory"
294 		);
295 }
296 
297 int machine_kexec_prepare(struct kimage *image)
298 {
299 	unsigned long start_pgtable;
300 	int result;
301 
302 	/* Calculate the offsets */
303 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
304 
305 	/* Setup the identity mapped 64bit page table */
306 	result = init_pgtable(image, start_pgtable);
307 	if (result)
308 		return result;
309 
310 	return 0;
311 }
312 
313 void machine_kexec_cleanup(struct kimage *image)
314 {
315 	free_transition_pgtable(image);
316 }
317 
318 /*
319  * Do not allocate memory (or fail in any way) in machine_kexec().
320  * We are past the point of no return, committed to rebooting now.
321  */
322 void machine_kexec(struct kimage *image)
323 {
324 	unsigned long page_list[PAGES_NR];
325 	unsigned int host_mem_enc_active;
326 	int save_ftrace_enabled;
327 	void *control_page;
328 
329 	/*
330 	 * This must be done before load_segments() since if call depth tracking
331 	 * is used then GS must be valid to make any function calls.
332 	 */
333 	host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
334 
335 #ifdef CONFIG_KEXEC_JUMP
336 	if (image->preserve_context)
337 		save_processor_state();
338 #endif
339 
340 	save_ftrace_enabled = __ftrace_enabled_save();
341 
342 	/* Interrupts aren't acceptable while we reboot */
343 	local_irq_disable();
344 	hw_breakpoint_disable();
345 	cet_disable();
346 
347 	if (image->preserve_context) {
348 #ifdef CONFIG_X86_IO_APIC
349 		/*
350 		 * We need to put APICs in legacy mode so that we can
351 		 * get timer interrupts in second kernel. kexec/kdump
352 		 * paths already have calls to restore_boot_irq_mode()
353 		 * in one form or other. kexec jump path also need one.
354 		 */
355 		clear_IO_APIC();
356 		restore_boot_irq_mode();
357 #endif
358 	}
359 
360 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
361 	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
362 
363 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
364 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
365 	page_list[PA_TABLE_PAGE] =
366 	  (unsigned long)__pa(page_address(image->control_code_page));
367 
368 	if (image->type == KEXEC_TYPE_DEFAULT)
369 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
370 						<< PAGE_SHIFT);
371 
372 	/*
373 	 * The segment registers are funny things, they have both a
374 	 * visible and an invisible part.  Whenever the visible part is
375 	 * set to a specific selector, the invisible part is loaded
376 	 * with from a table in memory.  At no other time is the
377 	 * descriptor table in memory accessed.
378 	 *
379 	 * I take advantage of this here by force loading the
380 	 * segments, before I zap the gdt with an invalid value.
381 	 */
382 	load_segments();
383 	/*
384 	 * The gdt & idt are now invalid.
385 	 * If you want to load them you must set up your own idt & gdt.
386 	 */
387 	native_idt_invalidate();
388 	native_gdt_invalidate();
389 
390 	/* now call it */
391 	image->start = relocate_kernel((unsigned long)image->head,
392 				       (unsigned long)page_list,
393 				       image->start,
394 				       image->preserve_context,
395 				       host_mem_enc_active);
396 
397 #ifdef CONFIG_KEXEC_JUMP
398 	if (image->preserve_context)
399 		restore_processor_state();
400 #endif
401 
402 	__ftrace_enabled_restore(save_ftrace_enabled);
403 }
404 
405 /* arch-dependent functionality related to kexec file-based syscall */
406 
407 #ifdef CONFIG_KEXEC_FILE
408 /*
409  * Apply purgatory relocations.
410  *
411  * @pi:		Purgatory to be relocated.
412  * @section:	Section relocations applying to.
413  * @relsec:	Section containing RELAs.
414  * @symtabsec:	Corresponding symtab.
415  *
416  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
417  */
418 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
419 				     Elf_Shdr *section, const Elf_Shdr *relsec,
420 				     const Elf_Shdr *symtabsec)
421 {
422 	unsigned int i;
423 	Elf64_Rela *rel;
424 	Elf64_Sym *sym;
425 	void *location;
426 	unsigned long address, sec_base, value;
427 	const char *strtab, *name, *shstrtab;
428 	const Elf_Shdr *sechdrs;
429 
430 	/* String & section header string table */
431 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
432 	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
433 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
434 
435 	rel = (void *)pi->ehdr + relsec->sh_offset;
436 
437 	pr_debug("Applying relocate section %s to %u\n",
438 		 shstrtab + relsec->sh_name, relsec->sh_info);
439 
440 	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
441 
442 		/*
443 		 * rel[i].r_offset contains byte offset from beginning
444 		 * of section to the storage unit affected.
445 		 *
446 		 * This is location to update. This is temporary buffer
447 		 * where section is currently loaded. This will finally be
448 		 * loaded to a different address later, pointed to by
449 		 * ->sh_addr. kexec takes care of moving it
450 		 *  (kexec_load_segment()).
451 		 */
452 		location = pi->purgatory_buf;
453 		location += section->sh_offset;
454 		location += rel[i].r_offset;
455 
456 		/* Final address of the location */
457 		address = section->sh_addr + rel[i].r_offset;
458 
459 		/*
460 		 * rel[i].r_info contains information about symbol table index
461 		 * w.r.t which relocation must be made and type of relocation
462 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
463 		 * these respectively.
464 		 */
465 		sym = (void *)pi->ehdr + symtabsec->sh_offset;
466 		sym += ELF64_R_SYM(rel[i].r_info);
467 
468 		if (sym->st_name)
469 			name = strtab + sym->st_name;
470 		else
471 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
472 
473 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
474 			 name, sym->st_info, sym->st_shndx, sym->st_value,
475 			 sym->st_size);
476 
477 		if (sym->st_shndx == SHN_UNDEF) {
478 			pr_err("Undefined symbol: %s\n", name);
479 			return -ENOEXEC;
480 		}
481 
482 		if (sym->st_shndx == SHN_COMMON) {
483 			pr_err("symbol '%s' in common section\n", name);
484 			return -ENOEXEC;
485 		}
486 
487 		if (sym->st_shndx == SHN_ABS)
488 			sec_base = 0;
489 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
490 			pr_err("Invalid section %d for symbol %s\n",
491 			       sym->st_shndx, name);
492 			return -ENOEXEC;
493 		} else
494 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
495 
496 		value = sym->st_value;
497 		value += sec_base;
498 		value += rel[i].r_addend;
499 
500 		switch (ELF64_R_TYPE(rel[i].r_info)) {
501 		case R_X86_64_NONE:
502 			break;
503 		case R_X86_64_64:
504 			*(u64 *)location = value;
505 			break;
506 		case R_X86_64_32:
507 			*(u32 *)location = value;
508 			if (value != *(u32 *)location)
509 				goto overflow;
510 			break;
511 		case R_X86_64_32S:
512 			*(s32 *)location = value;
513 			if ((s64)value != *(s32 *)location)
514 				goto overflow;
515 			break;
516 		case R_X86_64_PC32:
517 		case R_X86_64_PLT32:
518 			value -= (u64)address;
519 			*(u32 *)location = value;
520 			break;
521 		default:
522 			pr_err("Unknown rela relocation: %llu\n",
523 			       ELF64_R_TYPE(rel[i].r_info));
524 			return -ENOEXEC;
525 		}
526 	}
527 	return 0;
528 
529 overflow:
530 	pr_err("Overflow in relocation type %d value 0x%lx\n",
531 	       (int)ELF64_R_TYPE(rel[i].r_info), value);
532 	return -ENOEXEC;
533 }
534 
535 int arch_kimage_file_post_load_cleanup(struct kimage *image)
536 {
537 	vfree(image->elf_headers);
538 	image->elf_headers = NULL;
539 	image->elf_headers_sz = 0;
540 
541 	return kexec_image_post_load_cleanup_default(image);
542 }
543 #endif /* CONFIG_KEXEC_FILE */
544 
545 #ifdef CONFIG_CRASH_DUMP
546 
547 static int
548 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
549 {
550 	struct page *page;
551 	unsigned int nr_pages;
552 
553 	/*
554 	 * For physical range: [start, end]. We must skip the unassigned
555 	 * crashk resource with zero-valued "end" member.
556 	 */
557 	if (!end || start > end)
558 		return 0;
559 
560 	page = pfn_to_page(start >> PAGE_SHIFT);
561 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
562 	if (protect)
563 		return set_pages_ro(page, nr_pages);
564 	else
565 		return set_pages_rw(page, nr_pages);
566 }
567 
568 static void kexec_mark_crashkres(bool protect)
569 {
570 	unsigned long control;
571 
572 	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
573 
574 	/* Don't touch the control code page used in crash_kexec().*/
575 	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
576 	/* Control code page is located in the 2nd page. */
577 	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
578 	control += KEXEC_CONTROL_PAGE_SIZE;
579 	kexec_mark_range(control, crashk_res.end, protect);
580 }
581 
582 void arch_kexec_protect_crashkres(void)
583 {
584 	kexec_mark_crashkres(true);
585 }
586 
587 void arch_kexec_unprotect_crashkres(void)
588 {
589 	kexec_mark_crashkres(false);
590 }
591 #endif
592 
593 /*
594  * During a traditional boot under SME, SME will encrypt the kernel,
595  * so the SME kexec kernel also needs to be un-encrypted in order to
596  * replicate a normal SME boot.
597  *
598  * During a traditional boot under SEV, the kernel has already been
599  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
600  * order to replicate a normal SEV boot.
601  */
602 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
603 {
604 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
605 		return 0;
606 
607 	/*
608 	 * If host memory encryption is active we need to be sure that kexec
609 	 * pages are not encrypted because when we boot to the new kernel the
610 	 * pages won't be accessed encrypted (initially).
611 	 */
612 	return set_memory_decrypted((unsigned long)vaddr, pages);
613 }
614 
615 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
616 {
617 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
618 		return;
619 
620 	/*
621 	 * If host memory encryption is active we need to reset the pages back
622 	 * to being an encrypted mapping before freeing them.
623 	 */
624 	set_memory_encrypted((unsigned long)vaddr, pages);
625 }
626