1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 21 #include <asm/init.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io_apic.h> 26 #include <asm/debugreg.h> 27 #include <asm/kexec-bzimage64.h> 28 29 #ifdef CONFIG_KEXEC_FILE 30 static struct kexec_file_ops *kexec_file_loaders[] = { 31 &kexec_bzImage64_ops, 32 }; 33 #endif 34 35 static void free_transition_pgtable(struct kimage *image) 36 { 37 free_page((unsigned long)image->arch.pud); 38 free_page((unsigned long)image->arch.pmd); 39 free_page((unsigned long)image->arch.pte); 40 } 41 42 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 43 { 44 pud_t *pud; 45 pmd_t *pmd; 46 pte_t *pte; 47 unsigned long vaddr, paddr; 48 int result = -ENOMEM; 49 50 vaddr = (unsigned long)relocate_kernel; 51 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 52 pgd += pgd_index(vaddr); 53 if (!pgd_present(*pgd)) { 54 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 55 if (!pud) 56 goto err; 57 image->arch.pud = pud; 58 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 59 } 60 pud = pud_offset(pgd, vaddr); 61 if (!pud_present(*pud)) { 62 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 63 if (!pmd) 64 goto err; 65 image->arch.pmd = pmd; 66 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 67 } 68 pmd = pmd_offset(pud, vaddr); 69 if (!pmd_present(*pmd)) { 70 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 71 if (!pte) 72 goto err; 73 image->arch.pte = pte; 74 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 75 } 76 pte = pte_offset_kernel(pmd, vaddr); 77 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); 78 return 0; 79 err: 80 free_transition_pgtable(image); 81 return result; 82 } 83 84 static void *alloc_pgt_page(void *data) 85 { 86 struct kimage *image = (struct kimage *)data; 87 struct page *page; 88 void *p = NULL; 89 90 page = kimage_alloc_control_pages(image, 0); 91 if (page) { 92 p = page_address(page); 93 clear_page(p); 94 } 95 96 return p; 97 } 98 99 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 100 { 101 struct x86_mapping_info info = { 102 .alloc_pgt_page = alloc_pgt_page, 103 .context = image, 104 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC, 105 }; 106 unsigned long mstart, mend; 107 pgd_t *level4p; 108 int result; 109 int i; 110 111 level4p = (pgd_t *)__va(start_pgtable); 112 clear_page(level4p); 113 for (i = 0; i < nr_pfn_mapped; i++) { 114 mstart = pfn_mapped[i].start << PAGE_SHIFT; 115 mend = pfn_mapped[i].end << PAGE_SHIFT; 116 117 result = kernel_ident_mapping_init(&info, 118 level4p, mstart, mend); 119 if (result) 120 return result; 121 } 122 123 /* 124 * segments's mem ranges could be outside 0 ~ max_pfn, 125 * for example when jump back to original kernel from kexeced kernel. 126 * or first kernel is booted with user mem map, and second kernel 127 * could be loaded out of that range. 128 */ 129 for (i = 0; i < image->nr_segments; i++) { 130 mstart = image->segment[i].mem; 131 mend = mstart + image->segment[i].memsz; 132 133 result = kernel_ident_mapping_init(&info, 134 level4p, mstart, mend); 135 136 if (result) 137 return result; 138 } 139 140 return init_transition_pgtable(image, level4p); 141 } 142 143 static void set_idt(void *newidt, u16 limit) 144 { 145 struct desc_ptr curidt; 146 147 /* x86-64 supports unaliged loads & stores */ 148 curidt.size = limit; 149 curidt.address = (unsigned long)newidt; 150 151 __asm__ __volatile__ ( 152 "lidtq %0\n" 153 : : "m" (curidt) 154 ); 155 }; 156 157 158 static void set_gdt(void *newgdt, u16 limit) 159 { 160 struct desc_ptr curgdt; 161 162 /* x86-64 supports unaligned loads & stores */ 163 curgdt.size = limit; 164 curgdt.address = (unsigned long)newgdt; 165 166 __asm__ __volatile__ ( 167 "lgdtq %0\n" 168 : : "m" (curgdt) 169 ); 170 }; 171 172 static void load_segments(void) 173 { 174 __asm__ __volatile__ ( 175 "\tmovl %0,%%ds\n" 176 "\tmovl %0,%%es\n" 177 "\tmovl %0,%%ss\n" 178 "\tmovl %0,%%fs\n" 179 "\tmovl %0,%%gs\n" 180 : : "a" (__KERNEL_DS) : "memory" 181 ); 182 } 183 184 #ifdef CONFIG_KEXEC_FILE 185 /* Update purgatory as needed after various image segments have been prepared */ 186 static int arch_update_purgatory(struct kimage *image) 187 { 188 int ret = 0; 189 190 if (!image->file_mode) 191 return 0; 192 193 /* Setup copying of backup region */ 194 if (image->type == KEXEC_TYPE_CRASH) { 195 ret = kexec_purgatory_get_set_symbol(image, "backup_dest", 196 &image->arch.backup_load_addr, 197 sizeof(image->arch.backup_load_addr), 0); 198 if (ret) 199 return ret; 200 201 ret = kexec_purgatory_get_set_symbol(image, "backup_src", 202 &image->arch.backup_src_start, 203 sizeof(image->arch.backup_src_start), 0); 204 if (ret) 205 return ret; 206 207 ret = kexec_purgatory_get_set_symbol(image, "backup_sz", 208 &image->arch.backup_src_sz, 209 sizeof(image->arch.backup_src_sz), 0); 210 if (ret) 211 return ret; 212 } 213 214 return ret; 215 } 216 #else /* !CONFIG_KEXEC_FILE */ 217 static inline int arch_update_purgatory(struct kimage *image) 218 { 219 return 0; 220 } 221 #endif /* CONFIG_KEXEC_FILE */ 222 223 int machine_kexec_prepare(struct kimage *image) 224 { 225 unsigned long start_pgtable; 226 int result; 227 228 /* Calculate the offsets */ 229 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 230 231 /* Setup the identity mapped 64bit page table */ 232 result = init_pgtable(image, start_pgtable); 233 if (result) 234 return result; 235 236 /* update purgatory as needed */ 237 result = arch_update_purgatory(image); 238 if (result) 239 return result; 240 241 return 0; 242 } 243 244 void machine_kexec_cleanup(struct kimage *image) 245 { 246 free_transition_pgtable(image); 247 } 248 249 /* 250 * Do not allocate memory (or fail in any way) in machine_kexec(). 251 * We are past the point of no return, committed to rebooting now. 252 */ 253 void machine_kexec(struct kimage *image) 254 { 255 unsigned long page_list[PAGES_NR]; 256 void *control_page; 257 int save_ftrace_enabled; 258 259 #ifdef CONFIG_KEXEC_JUMP 260 if (image->preserve_context) 261 save_processor_state(); 262 #endif 263 264 save_ftrace_enabled = __ftrace_enabled_save(); 265 266 /* Interrupts aren't acceptable while we reboot */ 267 local_irq_disable(); 268 hw_breakpoint_disable(); 269 270 if (image->preserve_context) { 271 #ifdef CONFIG_X86_IO_APIC 272 /* 273 * We need to put APICs in legacy mode so that we can 274 * get timer interrupts in second kernel. kexec/kdump 275 * paths already have calls to disable_IO_APIC() in 276 * one form or other. kexec jump path also need 277 * one. 278 */ 279 disable_IO_APIC(); 280 #endif 281 } 282 283 control_page = page_address(image->control_code_page) + PAGE_SIZE; 284 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 285 286 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 287 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 288 page_list[PA_TABLE_PAGE] = 289 (unsigned long)__pa(page_address(image->control_code_page)); 290 291 if (image->type == KEXEC_TYPE_DEFAULT) 292 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 293 << PAGE_SHIFT); 294 295 /* 296 * The segment registers are funny things, they have both a 297 * visible and an invisible part. Whenever the visible part is 298 * set to a specific selector, the invisible part is loaded 299 * with from a table in memory. At no other time is the 300 * descriptor table in memory accessed. 301 * 302 * I take advantage of this here by force loading the 303 * segments, before I zap the gdt with an invalid value. 304 */ 305 load_segments(); 306 /* 307 * The gdt & idt are now invalid. 308 * If you want to load them you must set up your own idt & gdt. 309 */ 310 set_gdt(phys_to_virt(0), 0); 311 set_idt(phys_to_virt(0), 0); 312 313 /* now call it */ 314 image->start = relocate_kernel((unsigned long)image->head, 315 (unsigned long)page_list, 316 image->start, 317 image->preserve_context); 318 319 #ifdef CONFIG_KEXEC_JUMP 320 if (image->preserve_context) 321 restore_processor_state(); 322 #endif 323 324 __ftrace_enabled_restore(save_ftrace_enabled); 325 } 326 327 void arch_crash_save_vmcoreinfo(void) 328 { 329 VMCOREINFO_SYMBOL(phys_base); 330 VMCOREINFO_SYMBOL(init_level4_pgt); 331 332 #ifdef CONFIG_NUMA 333 VMCOREINFO_SYMBOL(node_data); 334 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 335 #endif 336 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 337 (unsigned long)&_text - __START_KERNEL); 338 } 339 340 /* arch-dependent functionality related to kexec file-based syscall */ 341 342 #ifdef CONFIG_KEXEC_FILE 343 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 344 unsigned long buf_len) 345 { 346 int i, ret = -ENOEXEC; 347 struct kexec_file_ops *fops; 348 349 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 350 fops = kexec_file_loaders[i]; 351 if (!fops || !fops->probe) 352 continue; 353 354 ret = fops->probe(buf, buf_len); 355 if (!ret) { 356 image->fops = fops; 357 return ret; 358 } 359 } 360 361 return ret; 362 } 363 364 void *arch_kexec_kernel_image_load(struct kimage *image) 365 { 366 vfree(image->arch.elf_headers); 367 image->arch.elf_headers = NULL; 368 369 if (!image->fops || !image->fops->load) 370 return ERR_PTR(-ENOEXEC); 371 372 return image->fops->load(image, image->kernel_buf, 373 image->kernel_buf_len, image->initrd_buf, 374 image->initrd_buf_len, image->cmdline_buf, 375 image->cmdline_buf_len); 376 } 377 378 int arch_kimage_file_post_load_cleanup(struct kimage *image) 379 { 380 if (!image->fops || !image->fops->cleanup) 381 return 0; 382 383 return image->fops->cleanup(image->image_loader_data); 384 } 385 386 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 387 unsigned long kernel_len) 388 { 389 if (!image->fops || !image->fops->verify_sig) { 390 pr_debug("kernel loader does not support signature verification."); 391 return -EKEYREJECTED; 392 } 393 394 return image->fops->verify_sig(kernel, kernel_len); 395 } 396 397 /* 398 * Apply purgatory relocations. 399 * 400 * ehdr: Pointer to elf headers 401 * sechdrs: Pointer to section headers. 402 * relsec: section index of SHT_RELA section. 403 * 404 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 405 */ 406 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 407 Elf64_Shdr *sechdrs, unsigned int relsec) 408 { 409 unsigned int i; 410 Elf64_Rela *rel; 411 Elf64_Sym *sym; 412 void *location; 413 Elf64_Shdr *section, *symtabsec; 414 unsigned long address, sec_base, value; 415 const char *strtab, *name, *shstrtab; 416 417 /* 418 * ->sh_offset has been modified to keep the pointer to section 419 * contents in memory 420 */ 421 rel = (void *)sechdrs[relsec].sh_offset; 422 423 /* Section to which relocations apply */ 424 section = &sechdrs[sechdrs[relsec].sh_info]; 425 426 pr_debug("Applying relocate section %u to %u\n", relsec, 427 sechdrs[relsec].sh_info); 428 429 /* Associated symbol table */ 430 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 431 432 /* String table */ 433 if (symtabsec->sh_link >= ehdr->e_shnum) { 434 /* Invalid strtab section number */ 435 pr_err("Invalid string table section index %d\n", 436 symtabsec->sh_link); 437 return -ENOEXEC; 438 } 439 440 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 441 442 /* section header string table */ 443 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 444 445 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 446 447 /* 448 * rel[i].r_offset contains byte offset from beginning 449 * of section to the storage unit affected. 450 * 451 * This is location to update (->sh_offset). This is temporary 452 * buffer where section is currently loaded. This will finally 453 * be loaded to a different address later, pointed to by 454 * ->sh_addr. kexec takes care of moving it 455 * (kexec_load_segment()). 456 */ 457 location = (void *)(section->sh_offset + rel[i].r_offset); 458 459 /* Final address of the location */ 460 address = section->sh_addr + rel[i].r_offset; 461 462 /* 463 * rel[i].r_info contains information about symbol table index 464 * w.r.t which relocation must be made and type of relocation 465 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 466 * these respectively. 467 */ 468 sym = (Elf64_Sym *)symtabsec->sh_offset + 469 ELF64_R_SYM(rel[i].r_info); 470 471 if (sym->st_name) 472 name = strtab + sym->st_name; 473 else 474 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 475 476 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 477 name, sym->st_info, sym->st_shndx, sym->st_value, 478 sym->st_size); 479 480 if (sym->st_shndx == SHN_UNDEF) { 481 pr_err("Undefined symbol: %s\n", name); 482 return -ENOEXEC; 483 } 484 485 if (sym->st_shndx == SHN_COMMON) { 486 pr_err("symbol '%s' in common section\n", name); 487 return -ENOEXEC; 488 } 489 490 if (sym->st_shndx == SHN_ABS) 491 sec_base = 0; 492 else if (sym->st_shndx >= ehdr->e_shnum) { 493 pr_err("Invalid section %d for symbol %s\n", 494 sym->st_shndx, name); 495 return -ENOEXEC; 496 } else 497 sec_base = sechdrs[sym->st_shndx].sh_addr; 498 499 value = sym->st_value; 500 value += sec_base; 501 value += rel[i].r_addend; 502 503 switch (ELF64_R_TYPE(rel[i].r_info)) { 504 case R_X86_64_NONE: 505 break; 506 case R_X86_64_64: 507 *(u64 *)location = value; 508 break; 509 case R_X86_64_32: 510 *(u32 *)location = value; 511 if (value != *(u32 *)location) 512 goto overflow; 513 break; 514 case R_X86_64_32S: 515 *(s32 *)location = value; 516 if ((s64)value != *(s32 *)location) 517 goto overflow; 518 break; 519 case R_X86_64_PC32: 520 value -= (u64)address; 521 *(u32 *)location = value; 522 break; 523 default: 524 pr_err("Unknown rela relocation: %llu\n", 525 ELF64_R_TYPE(rel[i].r_info)); 526 return -ENOEXEC; 527 } 528 } 529 return 0; 530 531 overflow: 532 pr_err("Overflow in relocation type %d value 0x%lx\n", 533 (int)ELF64_R_TYPE(rel[i].r_info), value); 534 return -ENOEXEC; 535 } 536 #endif /* CONFIG_KEXEC_FILE */ 537