1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 #include <linux/cc_platform.h> 21 22 #include <asm/init.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io_apic.h> 26 #include <asm/debugreg.h> 27 #include <asm/kexec-bzimage64.h> 28 #include <asm/setup.h> 29 #include <asm/set_memory.h> 30 #include <asm/cpu.h> 31 32 #ifdef CONFIG_ACPI 33 /* 34 * Used while adding mapping for ACPI tables. 35 * Can be reused when other iomem regions need be mapped 36 */ 37 struct init_pgtable_data { 38 struct x86_mapping_info *info; 39 pgd_t *level4p; 40 }; 41 42 static int mem_region_callback(struct resource *res, void *arg) 43 { 44 struct init_pgtable_data *data = arg; 45 46 return kernel_ident_mapping_init(data->info, data->level4p, 47 res->start, res->end + 1); 48 } 49 50 static int 51 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 52 { 53 struct init_pgtable_data data; 54 unsigned long flags; 55 int ret; 56 57 data.info = info; 58 data.level4p = level4p; 59 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 60 61 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 62 &data, mem_region_callback); 63 if (ret && ret != -EINVAL) 64 return ret; 65 66 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 67 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 68 &data, mem_region_callback); 69 if (ret && ret != -EINVAL) 70 return ret; 71 72 return 0; 73 } 74 #else 75 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 76 #endif 77 78 #ifdef CONFIG_KEXEC_FILE 79 const struct kexec_file_ops * const kexec_file_loaders[] = { 80 &kexec_bzImage64_ops, 81 NULL 82 }; 83 #endif 84 85 static int 86 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 87 { 88 #ifdef CONFIG_EFI 89 unsigned long mstart, mend; 90 91 if (!efi_enabled(EFI_BOOT)) 92 return 0; 93 94 mstart = (boot_params.efi_info.efi_systab | 95 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 96 97 if (efi_enabled(EFI_64BIT)) 98 mend = mstart + sizeof(efi_system_table_64_t); 99 else 100 mend = mstart + sizeof(efi_system_table_32_t); 101 102 if (!mstart) 103 return 0; 104 105 return kernel_ident_mapping_init(info, level4p, mstart, mend); 106 #endif 107 return 0; 108 } 109 110 static void free_transition_pgtable(struct kimage *image) 111 { 112 free_page((unsigned long)image->arch.p4d); 113 image->arch.p4d = NULL; 114 free_page((unsigned long)image->arch.pud); 115 image->arch.pud = NULL; 116 free_page((unsigned long)image->arch.pmd); 117 image->arch.pmd = NULL; 118 free_page((unsigned long)image->arch.pte); 119 image->arch.pte = NULL; 120 } 121 122 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 123 { 124 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 125 unsigned long vaddr, paddr; 126 int result = -ENOMEM; 127 p4d_t *p4d; 128 pud_t *pud; 129 pmd_t *pmd; 130 pte_t *pte; 131 132 vaddr = (unsigned long)relocate_kernel; 133 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 134 pgd += pgd_index(vaddr); 135 if (!pgd_present(*pgd)) { 136 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 137 if (!p4d) 138 goto err; 139 image->arch.p4d = p4d; 140 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 141 } 142 p4d = p4d_offset(pgd, vaddr); 143 if (!p4d_present(*p4d)) { 144 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 145 if (!pud) 146 goto err; 147 image->arch.pud = pud; 148 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 149 } 150 pud = pud_offset(p4d, vaddr); 151 if (!pud_present(*pud)) { 152 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 153 if (!pmd) 154 goto err; 155 image->arch.pmd = pmd; 156 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 157 } 158 pmd = pmd_offset(pud, vaddr); 159 if (!pmd_present(*pmd)) { 160 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 161 if (!pte) 162 goto err; 163 image->arch.pte = pte; 164 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 165 } 166 pte = pte_offset_kernel(pmd, vaddr); 167 168 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 169 prot = PAGE_KERNEL_EXEC; 170 171 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 172 return 0; 173 err: 174 return result; 175 } 176 177 static void *alloc_pgt_page(void *data) 178 { 179 struct kimage *image = (struct kimage *)data; 180 struct page *page; 181 void *p = NULL; 182 183 page = kimage_alloc_control_pages(image, 0); 184 if (page) { 185 p = page_address(page); 186 clear_page(p); 187 } 188 189 return p; 190 } 191 192 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 193 { 194 struct x86_mapping_info info = { 195 .alloc_pgt_page = alloc_pgt_page, 196 .context = image, 197 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 198 .kernpg_flag = _KERNPG_TABLE_NOENC, 199 }; 200 unsigned long mstart, mend; 201 pgd_t *level4p; 202 int result; 203 int i; 204 205 level4p = (pgd_t *)__va(start_pgtable); 206 clear_page(level4p); 207 208 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 209 info.page_flag |= _PAGE_ENC; 210 info.kernpg_flag |= _PAGE_ENC; 211 } 212 213 if (direct_gbpages) 214 info.direct_gbpages = true; 215 216 for (i = 0; i < nr_pfn_mapped; i++) { 217 mstart = pfn_mapped[i].start << PAGE_SHIFT; 218 mend = pfn_mapped[i].end << PAGE_SHIFT; 219 220 result = kernel_ident_mapping_init(&info, 221 level4p, mstart, mend); 222 if (result) 223 return result; 224 } 225 226 /* 227 * segments's mem ranges could be outside 0 ~ max_pfn, 228 * for example when jump back to original kernel from kexeced kernel. 229 * or first kernel is booted with user mem map, and second kernel 230 * could be loaded out of that range. 231 */ 232 for (i = 0; i < image->nr_segments; i++) { 233 mstart = image->segment[i].mem; 234 mend = mstart + image->segment[i].memsz; 235 236 result = kernel_ident_mapping_init(&info, 237 level4p, mstart, mend); 238 239 if (result) 240 return result; 241 } 242 243 /* 244 * Prepare EFI systab and ACPI tables for kexec kernel since they are 245 * not covered by pfn_mapped. 246 */ 247 result = map_efi_systab(&info, level4p); 248 if (result) 249 return result; 250 251 result = map_acpi_tables(&info, level4p); 252 if (result) 253 return result; 254 255 return init_transition_pgtable(image, level4p); 256 } 257 258 static void load_segments(void) 259 { 260 __asm__ __volatile__ ( 261 "\tmovl %0,%%ds\n" 262 "\tmovl %0,%%es\n" 263 "\tmovl %0,%%ss\n" 264 "\tmovl %0,%%fs\n" 265 "\tmovl %0,%%gs\n" 266 : : "a" (__KERNEL_DS) : "memory" 267 ); 268 } 269 270 int machine_kexec_prepare(struct kimage *image) 271 { 272 unsigned long start_pgtable; 273 int result; 274 275 /* Calculate the offsets */ 276 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 277 278 /* Setup the identity mapped 64bit page table */ 279 result = init_pgtable(image, start_pgtable); 280 if (result) 281 return result; 282 283 return 0; 284 } 285 286 void machine_kexec_cleanup(struct kimage *image) 287 { 288 free_transition_pgtable(image); 289 } 290 291 /* 292 * Do not allocate memory (or fail in any way) in machine_kexec(). 293 * We are past the point of no return, committed to rebooting now. 294 */ 295 void machine_kexec(struct kimage *image) 296 { 297 unsigned long page_list[PAGES_NR]; 298 void *control_page; 299 int save_ftrace_enabled; 300 301 #ifdef CONFIG_KEXEC_JUMP 302 if (image->preserve_context) 303 save_processor_state(); 304 #endif 305 306 save_ftrace_enabled = __ftrace_enabled_save(); 307 308 /* Interrupts aren't acceptable while we reboot */ 309 local_irq_disable(); 310 hw_breakpoint_disable(); 311 cet_disable(); 312 313 if (image->preserve_context) { 314 #ifdef CONFIG_X86_IO_APIC 315 /* 316 * We need to put APICs in legacy mode so that we can 317 * get timer interrupts in second kernel. kexec/kdump 318 * paths already have calls to restore_boot_irq_mode() 319 * in one form or other. kexec jump path also need one. 320 */ 321 clear_IO_APIC(); 322 restore_boot_irq_mode(); 323 #endif 324 } 325 326 control_page = page_address(image->control_code_page) + PAGE_SIZE; 327 __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 328 329 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 330 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 331 page_list[PA_TABLE_PAGE] = 332 (unsigned long)__pa(page_address(image->control_code_page)); 333 334 if (image->type == KEXEC_TYPE_DEFAULT) 335 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 336 << PAGE_SHIFT); 337 338 /* 339 * The segment registers are funny things, they have both a 340 * visible and an invisible part. Whenever the visible part is 341 * set to a specific selector, the invisible part is loaded 342 * with from a table in memory. At no other time is the 343 * descriptor table in memory accessed. 344 * 345 * I take advantage of this here by force loading the 346 * segments, before I zap the gdt with an invalid value. 347 */ 348 load_segments(); 349 /* 350 * The gdt & idt are now invalid. 351 * If you want to load them you must set up your own idt & gdt. 352 */ 353 native_idt_invalidate(); 354 native_gdt_invalidate(); 355 356 /* now call it */ 357 image->start = relocate_kernel((unsigned long)image->head, 358 (unsigned long)page_list, 359 image->start, 360 image->preserve_context, 361 cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)); 362 363 #ifdef CONFIG_KEXEC_JUMP 364 if (image->preserve_context) 365 restore_processor_state(); 366 #endif 367 368 __ftrace_enabled_restore(save_ftrace_enabled); 369 } 370 371 /* arch-dependent functionality related to kexec file-based syscall */ 372 373 #ifdef CONFIG_KEXEC_FILE 374 /* 375 * Apply purgatory relocations. 376 * 377 * @pi: Purgatory to be relocated. 378 * @section: Section relocations applying to. 379 * @relsec: Section containing RELAs. 380 * @symtabsec: Corresponding symtab. 381 * 382 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 383 */ 384 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 385 Elf_Shdr *section, const Elf_Shdr *relsec, 386 const Elf_Shdr *symtabsec) 387 { 388 unsigned int i; 389 Elf64_Rela *rel; 390 Elf64_Sym *sym; 391 void *location; 392 unsigned long address, sec_base, value; 393 const char *strtab, *name, *shstrtab; 394 const Elf_Shdr *sechdrs; 395 396 /* String & section header string table */ 397 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 398 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 399 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 400 401 rel = (void *)pi->ehdr + relsec->sh_offset; 402 403 pr_debug("Applying relocate section %s to %u\n", 404 shstrtab + relsec->sh_name, relsec->sh_info); 405 406 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 407 408 /* 409 * rel[i].r_offset contains byte offset from beginning 410 * of section to the storage unit affected. 411 * 412 * This is location to update. This is temporary buffer 413 * where section is currently loaded. This will finally be 414 * loaded to a different address later, pointed to by 415 * ->sh_addr. kexec takes care of moving it 416 * (kexec_load_segment()). 417 */ 418 location = pi->purgatory_buf; 419 location += section->sh_offset; 420 location += rel[i].r_offset; 421 422 /* Final address of the location */ 423 address = section->sh_addr + rel[i].r_offset; 424 425 /* 426 * rel[i].r_info contains information about symbol table index 427 * w.r.t which relocation must be made and type of relocation 428 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 429 * these respectively. 430 */ 431 sym = (void *)pi->ehdr + symtabsec->sh_offset; 432 sym += ELF64_R_SYM(rel[i].r_info); 433 434 if (sym->st_name) 435 name = strtab + sym->st_name; 436 else 437 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 438 439 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 440 name, sym->st_info, sym->st_shndx, sym->st_value, 441 sym->st_size); 442 443 if (sym->st_shndx == SHN_UNDEF) { 444 pr_err("Undefined symbol: %s\n", name); 445 return -ENOEXEC; 446 } 447 448 if (sym->st_shndx == SHN_COMMON) { 449 pr_err("symbol '%s' in common section\n", name); 450 return -ENOEXEC; 451 } 452 453 if (sym->st_shndx == SHN_ABS) 454 sec_base = 0; 455 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 456 pr_err("Invalid section %d for symbol %s\n", 457 sym->st_shndx, name); 458 return -ENOEXEC; 459 } else 460 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 461 462 value = sym->st_value; 463 value += sec_base; 464 value += rel[i].r_addend; 465 466 switch (ELF64_R_TYPE(rel[i].r_info)) { 467 case R_X86_64_NONE: 468 break; 469 case R_X86_64_64: 470 *(u64 *)location = value; 471 break; 472 case R_X86_64_32: 473 *(u32 *)location = value; 474 if (value != *(u32 *)location) 475 goto overflow; 476 break; 477 case R_X86_64_32S: 478 *(s32 *)location = value; 479 if ((s64)value != *(s32 *)location) 480 goto overflow; 481 break; 482 case R_X86_64_PC32: 483 case R_X86_64_PLT32: 484 value -= (u64)address; 485 *(u32 *)location = value; 486 break; 487 default: 488 pr_err("Unknown rela relocation: %llu\n", 489 ELF64_R_TYPE(rel[i].r_info)); 490 return -ENOEXEC; 491 } 492 } 493 return 0; 494 495 overflow: 496 pr_err("Overflow in relocation type %d value 0x%lx\n", 497 (int)ELF64_R_TYPE(rel[i].r_info), value); 498 return -ENOEXEC; 499 } 500 501 int arch_kimage_file_post_load_cleanup(struct kimage *image) 502 { 503 vfree(image->elf_headers); 504 image->elf_headers = NULL; 505 image->elf_headers_sz = 0; 506 507 return kexec_image_post_load_cleanup_default(image); 508 } 509 #endif /* CONFIG_KEXEC_FILE */ 510 511 #ifdef CONFIG_CRASH_DUMP 512 513 static int 514 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 515 { 516 struct page *page; 517 unsigned int nr_pages; 518 519 /* 520 * For physical range: [start, end]. We must skip the unassigned 521 * crashk resource with zero-valued "end" member. 522 */ 523 if (!end || start > end) 524 return 0; 525 526 page = pfn_to_page(start >> PAGE_SHIFT); 527 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 528 if (protect) 529 return set_pages_ro(page, nr_pages); 530 else 531 return set_pages_rw(page, nr_pages); 532 } 533 534 static void kexec_mark_crashkres(bool protect) 535 { 536 unsigned long control; 537 538 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 539 540 /* Don't touch the control code page used in crash_kexec().*/ 541 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 542 /* Control code page is located in the 2nd page. */ 543 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 544 control += KEXEC_CONTROL_PAGE_SIZE; 545 kexec_mark_range(control, crashk_res.end, protect); 546 } 547 548 void arch_kexec_protect_crashkres(void) 549 { 550 kexec_mark_crashkres(true); 551 } 552 553 void arch_kexec_unprotect_crashkres(void) 554 { 555 kexec_mark_crashkres(false); 556 } 557 #endif 558 559 /* 560 * During a traditional boot under SME, SME will encrypt the kernel, 561 * so the SME kexec kernel also needs to be un-encrypted in order to 562 * replicate a normal SME boot. 563 * 564 * During a traditional boot under SEV, the kernel has already been 565 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 566 * order to replicate a normal SEV boot. 567 */ 568 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 569 { 570 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 571 return 0; 572 573 /* 574 * If host memory encryption is active we need to be sure that kexec 575 * pages are not encrypted because when we boot to the new kernel the 576 * pages won't be accessed encrypted (initially). 577 */ 578 return set_memory_decrypted((unsigned long)vaddr, pages); 579 } 580 581 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 582 { 583 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 584 return; 585 586 /* 587 * If host memory encryption is active we need to reset the pages back 588 * to being an encrypted mapping before freeing them. 589 */ 590 set_memory_encrypted((unsigned long)vaddr, pages); 591 } 592