xref: /linux/arch/x86/kernel/machine_kexec_64.c (revision 40d269c000bda9fcd276a0412a9cebd3f6e344c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt)	"kexec: " fmt
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21 
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 
32 #ifdef CONFIG_ACPI
33 /*
34  * Used while adding mapping for ACPI tables.
35  * Can be reused when other iomem regions need be mapped
36  */
37 struct init_pgtable_data {
38 	struct x86_mapping_info *info;
39 	pgd_t *level4p;
40 };
41 
42 static int mem_region_callback(struct resource *res, void *arg)
43 {
44 	struct init_pgtable_data *data = arg;
45 
46 	return kernel_ident_mapping_init(data->info, data->level4p,
47 					 res->start, res->end + 1);
48 }
49 
50 static int
51 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
52 {
53 	struct init_pgtable_data data;
54 	unsigned long flags;
55 	int ret;
56 
57 	data.info = info;
58 	data.level4p = level4p;
59 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
60 
61 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
62 				  &data, mem_region_callback);
63 	if (ret && ret != -EINVAL)
64 		return ret;
65 
66 	/* ACPI tables could be located in ACPI Non-volatile Storage region */
67 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
68 				  &data, mem_region_callback);
69 	if (ret && ret != -EINVAL)
70 		return ret;
71 
72 	return 0;
73 }
74 #else
75 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
76 #endif
77 
78 #ifdef CONFIG_KEXEC_FILE
79 const struct kexec_file_ops * const kexec_file_loaders[] = {
80 		&kexec_bzImage64_ops,
81 		NULL
82 };
83 #endif
84 
85 static int
86 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
87 {
88 #ifdef CONFIG_EFI
89 	unsigned long mstart, mend;
90 
91 	if (!efi_enabled(EFI_BOOT))
92 		return 0;
93 
94 	mstart = (boot_params.efi_info.efi_systab |
95 			((u64)boot_params.efi_info.efi_systab_hi<<32));
96 
97 	if (efi_enabled(EFI_64BIT))
98 		mend = mstart + sizeof(efi_system_table_64_t);
99 	else
100 		mend = mstart + sizeof(efi_system_table_32_t);
101 
102 	if (!mstart)
103 		return 0;
104 
105 	return kernel_ident_mapping_init(info, level4p, mstart, mend);
106 #endif
107 	return 0;
108 }
109 
110 static void free_transition_pgtable(struct kimage *image)
111 {
112 	free_page((unsigned long)image->arch.p4d);
113 	image->arch.p4d = NULL;
114 	free_page((unsigned long)image->arch.pud);
115 	image->arch.pud = NULL;
116 	free_page((unsigned long)image->arch.pmd);
117 	image->arch.pmd = NULL;
118 	free_page((unsigned long)image->arch.pte);
119 	image->arch.pte = NULL;
120 }
121 
122 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
123 {
124 	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
125 	unsigned long vaddr, paddr;
126 	int result = -ENOMEM;
127 	p4d_t *p4d;
128 	pud_t *pud;
129 	pmd_t *pmd;
130 	pte_t *pte;
131 
132 	vaddr = (unsigned long)relocate_kernel;
133 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
134 	pgd += pgd_index(vaddr);
135 	if (!pgd_present(*pgd)) {
136 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
137 		if (!p4d)
138 			goto err;
139 		image->arch.p4d = p4d;
140 		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
141 	}
142 	p4d = p4d_offset(pgd, vaddr);
143 	if (!p4d_present(*p4d)) {
144 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
145 		if (!pud)
146 			goto err;
147 		image->arch.pud = pud;
148 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
149 	}
150 	pud = pud_offset(p4d, vaddr);
151 	if (!pud_present(*pud)) {
152 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
153 		if (!pmd)
154 			goto err;
155 		image->arch.pmd = pmd;
156 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
157 	}
158 	pmd = pmd_offset(pud, vaddr);
159 	if (!pmd_present(*pmd)) {
160 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
161 		if (!pte)
162 			goto err;
163 		image->arch.pte = pte;
164 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
165 	}
166 	pte = pte_offset_kernel(pmd, vaddr);
167 
168 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
169 		prot = PAGE_KERNEL_EXEC;
170 
171 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
172 	return 0;
173 err:
174 	return result;
175 }
176 
177 static void *alloc_pgt_page(void *data)
178 {
179 	struct kimage *image = (struct kimage *)data;
180 	struct page *page;
181 	void *p = NULL;
182 
183 	page = kimage_alloc_control_pages(image, 0);
184 	if (page) {
185 		p = page_address(page);
186 		clear_page(p);
187 	}
188 
189 	return p;
190 }
191 
192 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
193 {
194 	struct x86_mapping_info info = {
195 		.alloc_pgt_page	= alloc_pgt_page,
196 		.context	= image,
197 		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
198 		.kernpg_flag	= _KERNPG_TABLE_NOENC,
199 	};
200 	unsigned long mstart, mend;
201 	pgd_t *level4p;
202 	int result;
203 	int i;
204 
205 	level4p = (pgd_t *)__va(start_pgtable);
206 	clear_page(level4p);
207 
208 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
209 		info.page_flag   |= _PAGE_ENC;
210 		info.kernpg_flag |= _PAGE_ENC;
211 	}
212 
213 	if (direct_gbpages)
214 		info.direct_gbpages = true;
215 
216 	for (i = 0; i < nr_pfn_mapped; i++) {
217 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
218 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
219 
220 		result = kernel_ident_mapping_init(&info,
221 						 level4p, mstart, mend);
222 		if (result)
223 			return result;
224 	}
225 
226 	/*
227 	 * segments's mem ranges could be outside 0 ~ max_pfn,
228 	 * for example when jump back to original kernel from kexeced kernel.
229 	 * or first kernel is booted with user mem map, and second kernel
230 	 * could be loaded out of that range.
231 	 */
232 	for (i = 0; i < image->nr_segments; i++) {
233 		mstart = image->segment[i].mem;
234 		mend   = mstart + image->segment[i].memsz;
235 
236 		result = kernel_ident_mapping_init(&info,
237 						 level4p, mstart, mend);
238 
239 		if (result)
240 			return result;
241 	}
242 
243 	/*
244 	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
245 	 * not covered by pfn_mapped.
246 	 */
247 	result = map_efi_systab(&info, level4p);
248 	if (result)
249 		return result;
250 
251 	result = map_acpi_tables(&info, level4p);
252 	if (result)
253 		return result;
254 
255 	return init_transition_pgtable(image, level4p);
256 }
257 
258 static void load_segments(void)
259 {
260 	__asm__ __volatile__ (
261 		"\tmovl %0,%%ds\n"
262 		"\tmovl %0,%%es\n"
263 		"\tmovl %0,%%ss\n"
264 		"\tmovl %0,%%fs\n"
265 		"\tmovl %0,%%gs\n"
266 		: : "a" (__KERNEL_DS) : "memory"
267 		);
268 }
269 
270 int machine_kexec_prepare(struct kimage *image)
271 {
272 	unsigned long start_pgtable;
273 	int result;
274 
275 	/* Calculate the offsets */
276 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
277 
278 	/* Setup the identity mapped 64bit page table */
279 	result = init_pgtable(image, start_pgtable);
280 	if (result)
281 		return result;
282 
283 	return 0;
284 }
285 
286 void machine_kexec_cleanup(struct kimage *image)
287 {
288 	free_transition_pgtable(image);
289 }
290 
291 /*
292  * Do not allocate memory (or fail in any way) in machine_kexec().
293  * We are past the point of no return, committed to rebooting now.
294  */
295 void machine_kexec(struct kimage *image)
296 {
297 	unsigned long page_list[PAGES_NR];
298 	void *control_page;
299 	int save_ftrace_enabled;
300 
301 #ifdef CONFIG_KEXEC_JUMP
302 	if (image->preserve_context)
303 		save_processor_state();
304 #endif
305 
306 	save_ftrace_enabled = __ftrace_enabled_save();
307 
308 	/* Interrupts aren't acceptable while we reboot */
309 	local_irq_disable();
310 	hw_breakpoint_disable();
311 	cet_disable();
312 
313 	if (image->preserve_context) {
314 #ifdef CONFIG_X86_IO_APIC
315 		/*
316 		 * We need to put APICs in legacy mode so that we can
317 		 * get timer interrupts in second kernel. kexec/kdump
318 		 * paths already have calls to restore_boot_irq_mode()
319 		 * in one form or other. kexec jump path also need one.
320 		 */
321 		clear_IO_APIC();
322 		restore_boot_irq_mode();
323 #endif
324 	}
325 
326 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
327 	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328 
329 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331 	page_list[PA_TABLE_PAGE] =
332 	  (unsigned long)__pa(page_address(image->control_code_page));
333 
334 	if (image->type == KEXEC_TYPE_DEFAULT)
335 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336 						<< PAGE_SHIFT);
337 
338 	/*
339 	 * The segment registers are funny things, they have both a
340 	 * visible and an invisible part.  Whenever the visible part is
341 	 * set to a specific selector, the invisible part is loaded
342 	 * with from a table in memory.  At no other time is the
343 	 * descriptor table in memory accessed.
344 	 *
345 	 * I take advantage of this here by force loading the
346 	 * segments, before I zap the gdt with an invalid value.
347 	 */
348 	load_segments();
349 	/*
350 	 * The gdt & idt are now invalid.
351 	 * If you want to load them you must set up your own idt & gdt.
352 	 */
353 	native_idt_invalidate();
354 	native_gdt_invalidate();
355 
356 	/* now call it */
357 	image->start = relocate_kernel((unsigned long)image->head,
358 				       (unsigned long)page_list,
359 				       image->start,
360 				       image->preserve_context,
361 				       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
362 
363 #ifdef CONFIG_KEXEC_JUMP
364 	if (image->preserve_context)
365 		restore_processor_state();
366 #endif
367 
368 	__ftrace_enabled_restore(save_ftrace_enabled);
369 }
370 
371 /* arch-dependent functionality related to kexec file-based syscall */
372 
373 #ifdef CONFIG_KEXEC_FILE
374 /*
375  * Apply purgatory relocations.
376  *
377  * @pi:		Purgatory to be relocated.
378  * @section:	Section relocations applying to.
379  * @relsec:	Section containing RELAs.
380  * @symtabsec:	Corresponding symtab.
381  *
382  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
383  */
384 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
385 				     Elf_Shdr *section, const Elf_Shdr *relsec,
386 				     const Elf_Shdr *symtabsec)
387 {
388 	unsigned int i;
389 	Elf64_Rela *rel;
390 	Elf64_Sym *sym;
391 	void *location;
392 	unsigned long address, sec_base, value;
393 	const char *strtab, *name, *shstrtab;
394 	const Elf_Shdr *sechdrs;
395 
396 	/* String & section header string table */
397 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
398 	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
399 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
400 
401 	rel = (void *)pi->ehdr + relsec->sh_offset;
402 
403 	pr_debug("Applying relocate section %s to %u\n",
404 		 shstrtab + relsec->sh_name, relsec->sh_info);
405 
406 	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
407 
408 		/*
409 		 * rel[i].r_offset contains byte offset from beginning
410 		 * of section to the storage unit affected.
411 		 *
412 		 * This is location to update. This is temporary buffer
413 		 * where section is currently loaded. This will finally be
414 		 * loaded to a different address later, pointed to by
415 		 * ->sh_addr. kexec takes care of moving it
416 		 *  (kexec_load_segment()).
417 		 */
418 		location = pi->purgatory_buf;
419 		location += section->sh_offset;
420 		location += rel[i].r_offset;
421 
422 		/* Final address of the location */
423 		address = section->sh_addr + rel[i].r_offset;
424 
425 		/*
426 		 * rel[i].r_info contains information about symbol table index
427 		 * w.r.t which relocation must be made and type of relocation
428 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
429 		 * these respectively.
430 		 */
431 		sym = (void *)pi->ehdr + symtabsec->sh_offset;
432 		sym += ELF64_R_SYM(rel[i].r_info);
433 
434 		if (sym->st_name)
435 			name = strtab + sym->st_name;
436 		else
437 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
438 
439 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
440 			 name, sym->st_info, sym->st_shndx, sym->st_value,
441 			 sym->st_size);
442 
443 		if (sym->st_shndx == SHN_UNDEF) {
444 			pr_err("Undefined symbol: %s\n", name);
445 			return -ENOEXEC;
446 		}
447 
448 		if (sym->st_shndx == SHN_COMMON) {
449 			pr_err("symbol '%s' in common section\n", name);
450 			return -ENOEXEC;
451 		}
452 
453 		if (sym->st_shndx == SHN_ABS)
454 			sec_base = 0;
455 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
456 			pr_err("Invalid section %d for symbol %s\n",
457 			       sym->st_shndx, name);
458 			return -ENOEXEC;
459 		} else
460 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
461 
462 		value = sym->st_value;
463 		value += sec_base;
464 		value += rel[i].r_addend;
465 
466 		switch (ELF64_R_TYPE(rel[i].r_info)) {
467 		case R_X86_64_NONE:
468 			break;
469 		case R_X86_64_64:
470 			*(u64 *)location = value;
471 			break;
472 		case R_X86_64_32:
473 			*(u32 *)location = value;
474 			if (value != *(u32 *)location)
475 				goto overflow;
476 			break;
477 		case R_X86_64_32S:
478 			*(s32 *)location = value;
479 			if ((s64)value != *(s32 *)location)
480 				goto overflow;
481 			break;
482 		case R_X86_64_PC32:
483 		case R_X86_64_PLT32:
484 			value -= (u64)address;
485 			*(u32 *)location = value;
486 			break;
487 		default:
488 			pr_err("Unknown rela relocation: %llu\n",
489 			       ELF64_R_TYPE(rel[i].r_info));
490 			return -ENOEXEC;
491 		}
492 	}
493 	return 0;
494 
495 overflow:
496 	pr_err("Overflow in relocation type %d value 0x%lx\n",
497 	       (int)ELF64_R_TYPE(rel[i].r_info), value);
498 	return -ENOEXEC;
499 }
500 
501 int arch_kimage_file_post_load_cleanup(struct kimage *image)
502 {
503 	vfree(image->elf_headers);
504 	image->elf_headers = NULL;
505 	image->elf_headers_sz = 0;
506 
507 	return kexec_image_post_load_cleanup_default(image);
508 }
509 #endif /* CONFIG_KEXEC_FILE */
510 
511 #ifdef CONFIG_CRASH_DUMP
512 
513 static int
514 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
515 {
516 	struct page *page;
517 	unsigned int nr_pages;
518 
519 	/*
520 	 * For physical range: [start, end]. We must skip the unassigned
521 	 * crashk resource with zero-valued "end" member.
522 	 */
523 	if (!end || start > end)
524 		return 0;
525 
526 	page = pfn_to_page(start >> PAGE_SHIFT);
527 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
528 	if (protect)
529 		return set_pages_ro(page, nr_pages);
530 	else
531 		return set_pages_rw(page, nr_pages);
532 }
533 
534 static void kexec_mark_crashkres(bool protect)
535 {
536 	unsigned long control;
537 
538 	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
539 
540 	/* Don't touch the control code page used in crash_kexec().*/
541 	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
542 	/* Control code page is located in the 2nd page. */
543 	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
544 	control += KEXEC_CONTROL_PAGE_SIZE;
545 	kexec_mark_range(control, crashk_res.end, protect);
546 }
547 
548 void arch_kexec_protect_crashkres(void)
549 {
550 	kexec_mark_crashkres(true);
551 }
552 
553 void arch_kexec_unprotect_crashkres(void)
554 {
555 	kexec_mark_crashkres(false);
556 }
557 #endif
558 
559 /*
560  * During a traditional boot under SME, SME will encrypt the kernel,
561  * so the SME kexec kernel also needs to be un-encrypted in order to
562  * replicate a normal SME boot.
563  *
564  * During a traditional boot under SEV, the kernel has already been
565  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
566  * order to replicate a normal SEV boot.
567  */
568 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
569 {
570 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
571 		return 0;
572 
573 	/*
574 	 * If host memory encryption is active we need to be sure that kexec
575 	 * pages are not encrypted because when we boot to the new kernel the
576 	 * pages won't be accessed encrypted (initially).
577 	 */
578 	return set_memory_decrypted((unsigned long)vaddr, pages);
579 }
580 
581 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
582 {
583 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
584 		return;
585 
586 	/*
587 	 * If host memory encryption is active we need to reset the pages back
588 	 * to being an encrypted mapping before freeing them.
589 	 */
590 	set_memory_encrypted((unsigned long)vaddr, pages);
591 }
592