xref: /linux/arch/x86/kernel/machine_kexec_64.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * machine_kexec.c - handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/reboot.h>
13 #include <asm/pgtable.h>
14 #include <asm/tlbflush.h>
15 #include <asm/mmu_context.h>
16 #include <asm/io.h>
17 
18 #define PAGE_ALIGNED __attribute__ ((__aligned__(PAGE_SIZE)))
19 static u64 kexec_pgd[512] PAGE_ALIGNED;
20 static u64 kexec_pud0[512] PAGE_ALIGNED;
21 static u64 kexec_pmd0[512] PAGE_ALIGNED;
22 static u64 kexec_pte0[512] PAGE_ALIGNED;
23 static u64 kexec_pud1[512] PAGE_ALIGNED;
24 static u64 kexec_pmd1[512] PAGE_ALIGNED;
25 static u64 kexec_pte1[512] PAGE_ALIGNED;
26 
27 static void init_level2_page(pmd_t *level2p, unsigned long addr)
28 {
29 	unsigned long end_addr;
30 
31 	addr &= PAGE_MASK;
32 	end_addr = addr + PUD_SIZE;
33 	while (addr < end_addr) {
34 		set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
35 		addr += PMD_SIZE;
36 	}
37 }
38 
39 static int init_level3_page(struct kimage *image, pud_t *level3p,
40 				unsigned long addr, unsigned long last_addr)
41 {
42 	unsigned long end_addr;
43 	int result;
44 
45 	result = 0;
46 	addr &= PAGE_MASK;
47 	end_addr = addr + PGDIR_SIZE;
48 	while ((addr < last_addr) && (addr < end_addr)) {
49 		struct page *page;
50 		pmd_t *level2p;
51 
52 		page = kimage_alloc_control_pages(image, 0);
53 		if (!page) {
54 			result = -ENOMEM;
55 			goto out;
56 		}
57 		level2p = (pmd_t *)page_address(page);
58 		init_level2_page(level2p, addr);
59 		set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE));
60 		addr += PUD_SIZE;
61 	}
62 	/* clear the unused entries */
63 	while (addr < end_addr) {
64 		pud_clear(level3p++);
65 		addr += PUD_SIZE;
66 	}
67 out:
68 	return result;
69 }
70 
71 
72 static int init_level4_page(struct kimage *image, pgd_t *level4p,
73 				unsigned long addr, unsigned long last_addr)
74 {
75 	unsigned long end_addr;
76 	int result;
77 
78 	result = 0;
79 	addr &= PAGE_MASK;
80 	end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE);
81 	while ((addr < last_addr) && (addr < end_addr)) {
82 		struct page *page;
83 		pud_t *level3p;
84 
85 		page = kimage_alloc_control_pages(image, 0);
86 		if (!page) {
87 			result = -ENOMEM;
88 			goto out;
89 		}
90 		level3p = (pud_t *)page_address(page);
91 		result = init_level3_page(image, level3p, addr, last_addr);
92 		if (result) {
93 			goto out;
94 		}
95 		set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE));
96 		addr += PGDIR_SIZE;
97 	}
98 	/* clear the unused entries */
99 	while (addr < end_addr) {
100 		pgd_clear(level4p++);
101 		addr += PGDIR_SIZE;
102 	}
103 out:
104 	return result;
105 }
106 
107 
108 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
109 {
110 	pgd_t *level4p;
111 	level4p = (pgd_t *)__va(start_pgtable);
112  	return init_level4_page(image, level4p, 0, end_pfn << PAGE_SHIFT);
113 }
114 
115 static void set_idt(void *newidt, u16 limit)
116 {
117 	struct desc_ptr curidt;
118 
119 	/* x86-64 supports unaliged loads & stores */
120 	curidt.size    = limit;
121 	curidt.address = (unsigned long)newidt;
122 
123 	__asm__ __volatile__ (
124 		"lidtq %0\n"
125 		: : "m" (curidt)
126 		);
127 };
128 
129 
130 static void set_gdt(void *newgdt, u16 limit)
131 {
132 	struct desc_ptr curgdt;
133 
134 	/* x86-64 supports unaligned loads & stores */
135 	curgdt.size    = limit;
136 	curgdt.address = (unsigned long)newgdt;
137 
138 	__asm__ __volatile__ (
139 		"lgdtq %0\n"
140 		: : "m" (curgdt)
141 		);
142 };
143 
144 static void load_segments(void)
145 {
146 	__asm__ __volatile__ (
147 		"\tmovl %0,%%ds\n"
148 		"\tmovl %0,%%es\n"
149 		"\tmovl %0,%%ss\n"
150 		"\tmovl %0,%%fs\n"
151 		"\tmovl %0,%%gs\n"
152 		: : "a" (__KERNEL_DS) : "memory"
153 		);
154 }
155 
156 int machine_kexec_prepare(struct kimage *image)
157 {
158 	unsigned long start_pgtable;
159 	int result;
160 
161 	/* Calculate the offsets */
162 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
163 
164 	/* Setup the identity mapped 64bit page table */
165 	result = init_pgtable(image, start_pgtable);
166 	if (result)
167 		return result;
168 
169 	return 0;
170 }
171 
172 void machine_kexec_cleanup(struct kimage *image)
173 {
174 	return;
175 }
176 
177 /*
178  * Do not allocate memory (or fail in any way) in machine_kexec().
179  * We are past the point of no return, committed to rebooting now.
180  */
181 NORET_TYPE void machine_kexec(struct kimage *image)
182 {
183 	unsigned long page_list[PAGES_NR];
184 	void *control_page;
185 
186 	/* Interrupts aren't acceptable while we reboot */
187 	local_irq_disable();
188 
189 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
190 	memcpy(control_page, relocate_kernel, PAGE_SIZE);
191 
192 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
193 	page_list[VA_CONTROL_PAGE] = (unsigned long)relocate_kernel;
194 	page_list[PA_PGD] = virt_to_phys(&kexec_pgd);
195 	page_list[VA_PGD] = (unsigned long)kexec_pgd;
196 	page_list[PA_PUD_0] = virt_to_phys(&kexec_pud0);
197 	page_list[VA_PUD_0] = (unsigned long)kexec_pud0;
198 	page_list[PA_PMD_0] = virt_to_phys(&kexec_pmd0);
199 	page_list[VA_PMD_0] = (unsigned long)kexec_pmd0;
200 	page_list[PA_PTE_0] = virt_to_phys(&kexec_pte0);
201 	page_list[VA_PTE_0] = (unsigned long)kexec_pte0;
202 	page_list[PA_PUD_1] = virt_to_phys(&kexec_pud1);
203 	page_list[VA_PUD_1] = (unsigned long)kexec_pud1;
204 	page_list[PA_PMD_1] = virt_to_phys(&kexec_pmd1);
205 	page_list[VA_PMD_1] = (unsigned long)kexec_pmd1;
206 	page_list[PA_PTE_1] = virt_to_phys(&kexec_pte1);
207 	page_list[VA_PTE_1] = (unsigned long)kexec_pte1;
208 
209 	page_list[PA_TABLE_PAGE] =
210 	  (unsigned long)__pa(page_address(image->control_code_page));
211 
212 	/* The segment registers are funny things, they have both a
213 	 * visible and an invisible part.  Whenever the visible part is
214 	 * set to a specific selector, the invisible part is loaded
215 	 * with from a table in memory.  At no other time is the
216 	 * descriptor table in memory accessed.
217 	 *
218 	 * I take advantage of this here by force loading the
219 	 * segments, before I zap the gdt with an invalid value.
220 	 */
221 	load_segments();
222 	/* The gdt & idt are now invalid.
223 	 * If you want to load them you must set up your own idt & gdt.
224 	 */
225 	set_gdt(phys_to_virt(0),0);
226 	set_idt(phys_to_virt(0),0);
227 
228 	/* now call it */
229 	relocate_kernel((unsigned long)image->head, (unsigned long)page_list,
230 			image->start);
231 }
232 
233 /* crashkernel=size@addr specifies the location to reserve for
234  * a crash kernel.  By reserving this memory we guarantee
235  * that linux never set's it up as a DMA target.
236  * Useful for holding code to do something appropriate
237  * after a kernel panic.
238  */
239 static int __init setup_crashkernel(char *arg)
240 {
241 	unsigned long size, base;
242 	char *p;
243 	if (!arg)
244 		return -EINVAL;
245 	size = memparse(arg, &p);
246 	if (arg == p)
247 		return -EINVAL;
248 	if (*p == '@') {
249 		base = memparse(p+1, &p);
250 		/* FIXME: Do I want a sanity check to validate the
251 		 * memory range?  Yes you do, but it's too early for
252 		 * e820 -AK */
253 		crashk_res.start = base;
254 		crashk_res.end   = base + size - 1;
255 	}
256 	return 0;
257 }
258 early_param("crashkernel", setup_crashkernel);
259 
260