1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 #include <asm/set_memory.h> 31 32 #ifdef CONFIG_KEXEC_FILE 33 const struct kexec_file_ops * const kexec_file_loaders[] = { 34 &kexec_bzImage64_ops, 35 NULL 36 }; 37 #endif 38 39 static void free_transition_pgtable(struct kimage *image) 40 { 41 free_page((unsigned long)image->arch.p4d); 42 image->arch.p4d = NULL; 43 free_page((unsigned long)image->arch.pud); 44 image->arch.pud = NULL; 45 free_page((unsigned long)image->arch.pmd); 46 image->arch.pmd = NULL; 47 free_page((unsigned long)image->arch.pte); 48 image->arch.pte = NULL; 49 } 50 51 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 52 { 53 p4d_t *p4d; 54 pud_t *pud; 55 pmd_t *pmd; 56 pte_t *pte; 57 unsigned long vaddr, paddr; 58 int result = -ENOMEM; 59 60 vaddr = (unsigned long)relocate_kernel; 61 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 62 pgd += pgd_index(vaddr); 63 if (!pgd_present(*pgd)) { 64 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 65 if (!p4d) 66 goto err; 67 image->arch.p4d = p4d; 68 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 69 } 70 p4d = p4d_offset(pgd, vaddr); 71 if (!p4d_present(*p4d)) { 72 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 73 if (!pud) 74 goto err; 75 image->arch.pud = pud; 76 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 77 } 78 pud = pud_offset(p4d, vaddr); 79 if (!pud_present(*pud)) { 80 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 81 if (!pmd) 82 goto err; 83 image->arch.pmd = pmd; 84 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 85 } 86 pmd = pmd_offset(pud, vaddr); 87 if (!pmd_present(*pmd)) { 88 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 89 if (!pte) 90 goto err; 91 image->arch.pte = pte; 92 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 93 } 94 pte = pte_offset_kernel(pmd, vaddr); 95 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC)); 96 return 0; 97 err: 98 return result; 99 } 100 101 static void *alloc_pgt_page(void *data) 102 { 103 struct kimage *image = (struct kimage *)data; 104 struct page *page; 105 void *p = NULL; 106 107 page = kimage_alloc_control_pages(image, 0); 108 if (page) { 109 p = page_address(page); 110 clear_page(p); 111 } 112 113 return p; 114 } 115 116 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 117 { 118 struct x86_mapping_info info = { 119 .alloc_pgt_page = alloc_pgt_page, 120 .context = image, 121 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 122 .kernpg_flag = _KERNPG_TABLE_NOENC, 123 }; 124 unsigned long mstart, mend; 125 pgd_t *level4p; 126 int result; 127 int i; 128 129 level4p = (pgd_t *)__va(start_pgtable); 130 clear_page(level4p); 131 132 if (direct_gbpages) 133 info.direct_gbpages = true; 134 135 for (i = 0; i < nr_pfn_mapped; i++) { 136 mstart = pfn_mapped[i].start << PAGE_SHIFT; 137 mend = pfn_mapped[i].end << PAGE_SHIFT; 138 139 result = kernel_ident_mapping_init(&info, 140 level4p, mstart, mend); 141 if (result) 142 return result; 143 } 144 145 /* 146 * segments's mem ranges could be outside 0 ~ max_pfn, 147 * for example when jump back to original kernel from kexeced kernel. 148 * or first kernel is booted with user mem map, and second kernel 149 * could be loaded out of that range. 150 */ 151 for (i = 0; i < image->nr_segments; i++) { 152 mstart = image->segment[i].mem; 153 mend = mstart + image->segment[i].memsz; 154 155 result = kernel_ident_mapping_init(&info, 156 level4p, mstart, mend); 157 158 if (result) 159 return result; 160 } 161 162 return init_transition_pgtable(image, level4p); 163 } 164 165 static void set_idt(void *newidt, u16 limit) 166 { 167 struct desc_ptr curidt; 168 169 /* x86-64 supports unaliged loads & stores */ 170 curidt.size = limit; 171 curidt.address = (unsigned long)newidt; 172 173 __asm__ __volatile__ ( 174 "lidtq %0\n" 175 : : "m" (curidt) 176 ); 177 }; 178 179 180 static void set_gdt(void *newgdt, u16 limit) 181 { 182 struct desc_ptr curgdt; 183 184 /* x86-64 supports unaligned loads & stores */ 185 curgdt.size = limit; 186 curgdt.address = (unsigned long)newgdt; 187 188 __asm__ __volatile__ ( 189 "lgdtq %0\n" 190 : : "m" (curgdt) 191 ); 192 }; 193 194 static void load_segments(void) 195 { 196 __asm__ __volatile__ ( 197 "\tmovl %0,%%ds\n" 198 "\tmovl %0,%%es\n" 199 "\tmovl %0,%%ss\n" 200 "\tmovl %0,%%fs\n" 201 "\tmovl %0,%%gs\n" 202 : : "a" (__KERNEL_DS) : "memory" 203 ); 204 } 205 206 #ifdef CONFIG_KEXEC_FILE 207 /* Update purgatory as needed after various image segments have been prepared */ 208 static int arch_update_purgatory(struct kimage *image) 209 { 210 int ret = 0; 211 212 if (!image->file_mode) 213 return 0; 214 215 /* Setup copying of backup region */ 216 if (image->type == KEXEC_TYPE_CRASH) { 217 ret = kexec_purgatory_get_set_symbol(image, 218 "purgatory_backup_dest", 219 &image->arch.backup_load_addr, 220 sizeof(image->arch.backup_load_addr), 0); 221 if (ret) 222 return ret; 223 224 ret = kexec_purgatory_get_set_symbol(image, 225 "purgatory_backup_src", 226 &image->arch.backup_src_start, 227 sizeof(image->arch.backup_src_start), 0); 228 if (ret) 229 return ret; 230 231 ret = kexec_purgatory_get_set_symbol(image, 232 "purgatory_backup_sz", 233 &image->arch.backup_src_sz, 234 sizeof(image->arch.backup_src_sz), 0); 235 if (ret) 236 return ret; 237 } 238 239 return ret; 240 } 241 #else /* !CONFIG_KEXEC_FILE */ 242 static inline int arch_update_purgatory(struct kimage *image) 243 { 244 return 0; 245 } 246 #endif /* CONFIG_KEXEC_FILE */ 247 248 int machine_kexec_prepare(struct kimage *image) 249 { 250 unsigned long start_pgtable; 251 int result; 252 253 /* Calculate the offsets */ 254 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 255 256 /* Setup the identity mapped 64bit page table */ 257 result = init_pgtable(image, start_pgtable); 258 if (result) 259 return result; 260 261 /* update purgatory as needed */ 262 result = arch_update_purgatory(image); 263 if (result) 264 return result; 265 266 return 0; 267 } 268 269 void machine_kexec_cleanup(struct kimage *image) 270 { 271 free_transition_pgtable(image); 272 } 273 274 /* 275 * Do not allocate memory (or fail in any way) in machine_kexec(). 276 * We are past the point of no return, committed to rebooting now. 277 */ 278 void machine_kexec(struct kimage *image) 279 { 280 unsigned long page_list[PAGES_NR]; 281 void *control_page; 282 int save_ftrace_enabled; 283 284 #ifdef CONFIG_KEXEC_JUMP 285 if (image->preserve_context) 286 save_processor_state(); 287 #endif 288 289 save_ftrace_enabled = __ftrace_enabled_save(); 290 291 /* Interrupts aren't acceptable while we reboot */ 292 local_irq_disable(); 293 hw_breakpoint_disable(); 294 295 if (image->preserve_context) { 296 #ifdef CONFIG_X86_IO_APIC 297 /* 298 * We need to put APICs in legacy mode so that we can 299 * get timer interrupts in second kernel. kexec/kdump 300 * paths already have calls to restore_boot_irq_mode() 301 * in one form or other. kexec jump path also need one. 302 */ 303 clear_IO_APIC(); 304 restore_boot_irq_mode(); 305 #endif 306 } 307 308 control_page = page_address(image->control_code_page) + PAGE_SIZE; 309 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 310 311 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 312 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 313 page_list[PA_TABLE_PAGE] = 314 (unsigned long)__pa(page_address(image->control_code_page)); 315 316 if (image->type == KEXEC_TYPE_DEFAULT) 317 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 318 << PAGE_SHIFT); 319 320 /* 321 * The segment registers are funny things, they have both a 322 * visible and an invisible part. Whenever the visible part is 323 * set to a specific selector, the invisible part is loaded 324 * with from a table in memory. At no other time is the 325 * descriptor table in memory accessed. 326 * 327 * I take advantage of this here by force loading the 328 * segments, before I zap the gdt with an invalid value. 329 */ 330 load_segments(); 331 /* 332 * The gdt & idt are now invalid. 333 * If you want to load them you must set up your own idt & gdt. 334 */ 335 set_gdt(phys_to_virt(0), 0); 336 set_idt(phys_to_virt(0), 0); 337 338 /* now call it */ 339 image->start = relocate_kernel((unsigned long)image->head, 340 (unsigned long)page_list, 341 image->start, 342 image->preserve_context, 343 sme_active()); 344 345 #ifdef CONFIG_KEXEC_JUMP 346 if (image->preserve_context) 347 restore_processor_state(); 348 #endif 349 350 __ftrace_enabled_restore(save_ftrace_enabled); 351 } 352 353 void arch_crash_save_vmcoreinfo(void) 354 { 355 u64 sme_mask = sme_me_mask; 356 357 VMCOREINFO_NUMBER(phys_base); 358 VMCOREINFO_SYMBOL(init_top_pgt); 359 vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n", 360 pgtable_l5_enabled()); 361 362 #ifdef CONFIG_NUMA 363 VMCOREINFO_SYMBOL(node_data); 364 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 365 #endif 366 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 367 kaslr_offset()); 368 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 369 VMCOREINFO_NUMBER(sme_mask); 370 } 371 372 /* arch-dependent functionality related to kexec file-based syscall */ 373 374 #ifdef CONFIG_KEXEC_FILE 375 void *arch_kexec_kernel_image_load(struct kimage *image) 376 { 377 vfree(image->arch.elf_headers); 378 image->arch.elf_headers = NULL; 379 380 if (!image->fops || !image->fops->load) 381 return ERR_PTR(-ENOEXEC); 382 383 return image->fops->load(image, image->kernel_buf, 384 image->kernel_buf_len, image->initrd_buf, 385 image->initrd_buf_len, image->cmdline_buf, 386 image->cmdline_buf_len); 387 } 388 389 /* 390 * Apply purgatory relocations. 391 * 392 * @pi: Purgatory to be relocated. 393 * @section: Section relocations applying to. 394 * @relsec: Section containing RELAs. 395 * @symtabsec: Corresponding symtab. 396 * 397 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 398 */ 399 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 400 Elf_Shdr *section, const Elf_Shdr *relsec, 401 const Elf_Shdr *symtabsec) 402 { 403 unsigned int i; 404 Elf64_Rela *rel; 405 Elf64_Sym *sym; 406 void *location; 407 unsigned long address, sec_base, value; 408 const char *strtab, *name, *shstrtab; 409 const Elf_Shdr *sechdrs; 410 411 /* String & section header string table */ 412 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 413 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 414 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 415 416 rel = (void *)pi->ehdr + relsec->sh_offset; 417 418 pr_debug("Applying relocate section %s to %u\n", 419 shstrtab + relsec->sh_name, relsec->sh_info); 420 421 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 422 423 /* 424 * rel[i].r_offset contains byte offset from beginning 425 * of section to the storage unit affected. 426 * 427 * This is location to update. This is temporary buffer 428 * where section is currently loaded. This will finally be 429 * loaded to a different address later, pointed to by 430 * ->sh_addr. kexec takes care of moving it 431 * (kexec_load_segment()). 432 */ 433 location = pi->purgatory_buf; 434 location += section->sh_offset; 435 location += rel[i].r_offset; 436 437 /* Final address of the location */ 438 address = section->sh_addr + rel[i].r_offset; 439 440 /* 441 * rel[i].r_info contains information about symbol table index 442 * w.r.t which relocation must be made and type of relocation 443 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 444 * these respectively. 445 */ 446 sym = (void *)pi->ehdr + symtabsec->sh_offset; 447 sym += ELF64_R_SYM(rel[i].r_info); 448 449 if (sym->st_name) 450 name = strtab + sym->st_name; 451 else 452 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 453 454 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 455 name, sym->st_info, sym->st_shndx, sym->st_value, 456 sym->st_size); 457 458 if (sym->st_shndx == SHN_UNDEF) { 459 pr_err("Undefined symbol: %s\n", name); 460 return -ENOEXEC; 461 } 462 463 if (sym->st_shndx == SHN_COMMON) { 464 pr_err("symbol '%s' in common section\n", name); 465 return -ENOEXEC; 466 } 467 468 if (sym->st_shndx == SHN_ABS) 469 sec_base = 0; 470 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 471 pr_err("Invalid section %d for symbol %s\n", 472 sym->st_shndx, name); 473 return -ENOEXEC; 474 } else 475 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 476 477 value = sym->st_value; 478 value += sec_base; 479 value += rel[i].r_addend; 480 481 switch (ELF64_R_TYPE(rel[i].r_info)) { 482 case R_X86_64_NONE: 483 break; 484 case R_X86_64_64: 485 *(u64 *)location = value; 486 break; 487 case R_X86_64_32: 488 *(u32 *)location = value; 489 if (value != *(u32 *)location) 490 goto overflow; 491 break; 492 case R_X86_64_32S: 493 *(s32 *)location = value; 494 if ((s64)value != *(s32 *)location) 495 goto overflow; 496 break; 497 case R_X86_64_PC32: 498 case R_X86_64_PLT32: 499 value -= (u64)address; 500 *(u32 *)location = value; 501 break; 502 default: 503 pr_err("Unknown rela relocation: %llu\n", 504 ELF64_R_TYPE(rel[i].r_info)); 505 return -ENOEXEC; 506 } 507 } 508 return 0; 509 510 overflow: 511 pr_err("Overflow in relocation type %d value 0x%lx\n", 512 (int)ELF64_R_TYPE(rel[i].r_info), value); 513 return -ENOEXEC; 514 } 515 #endif /* CONFIG_KEXEC_FILE */ 516 517 static int 518 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 519 { 520 struct page *page; 521 unsigned int nr_pages; 522 523 /* 524 * For physical range: [start, end]. We must skip the unassigned 525 * crashk resource with zero-valued "end" member. 526 */ 527 if (!end || start > end) 528 return 0; 529 530 page = pfn_to_page(start >> PAGE_SHIFT); 531 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 532 if (protect) 533 return set_pages_ro(page, nr_pages); 534 else 535 return set_pages_rw(page, nr_pages); 536 } 537 538 static void kexec_mark_crashkres(bool protect) 539 { 540 unsigned long control; 541 542 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 543 544 /* Don't touch the control code page used in crash_kexec().*/ 545 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 546 /* Control code page is located in the 2nd page. */ 547 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 548 control += KEXEC_CONTROL_PAGE_SIZE; 549 kexec_mark_range(control, crashk_res.end, protect); 550 } 551 552 void arch_kexec_protect_crashkres(void) 553 { 554 kexec_mark_crashkres(true); 555 } 556 557 void arch_kexec_unprotect_crashkres(void) 558 { 559 kexec_mark_crashkres(false); 560 } 561 562 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 563 { 564 /* 565 * If SME is active we need to be sure that kexec pages are 566 * not encrypted because when we boot to the new kernel the 567 * pages won't be accessed encrypted (initially). 568 */ 569 return set_memory_decrypted((unsigned long)vaddr, pages); 570 } 571 572 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 573 { 574 /* 575 * If SME is active we need to reset the pages back to being 576 * an encrypted mapping before freeing them. 577 */ 578 set_memory_encrypted((unsigned long)vaddr, pages); 579 } 580