xref: /linux/arch/x86/kernel/machine_kexec_64.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 
19 #include <asm/init.h>
20 #include <asm/pgtable.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/debugreg.h>
24 
25 static void free_transition_pgtable(struct kimage *image)
26 {
27 	free_page((unsigned long)image->arch.pud);
28 	free_page((unsigned long)image->arch.pmd);
29 	free_page((unsigned long)image->arch.pte);
30 }
31 
32 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
33 {
34 	pud_t *pud;
35 	pmd_t *pmd;
36 	pte_t *pte;
37 	unsigned long vaddr, paddr;
38 	int result = -ENOMEM;
39 
40 	vaddr = (unsigned long)relocate_kernel;
41 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
42 	pgd += pgd_index(vaddr);
43 	if (!pgd_present(*pgd)) {
44 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
45 		if (!pud)
46 			goto err;
47 		image->arch.pud = pud;
48 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
49 	}
50 	pud = pud_offset(pgd, vaddr);
51 	if (!pud_present(*pud)) {
52 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
53 		if (!pmd)
54 			goto err;
55 		image->arch.pmd = pmd;
56 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
57 	}
58 	pmd = pmd_offset(pud, vaddr);
59 	if (!pmd_present(*pmd)) {
60 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
61 		if (!pte)
62 			goto err;
63 		image->arch.pte = pte;
64 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
65 	}
66 	pte = pte_offset_kernel(pmd, vaddr);
67 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
68 	return 0;
69 err:
70 	free_transition_pgtable(image);
71 	return result;
72 }
73 
74 static void *alloc_pgt_page(void *data)
75 {
76 	struct kimage *image = (struct kimage *)data;
77 	struct page *page;
78 	void *p = NULL;
79 
80 	page = kimage_alloc_control_pages(image, 0);
81 	if (page) {
82 		p = page_address(page);
83 		clear_page(p);
84 	}
85 
86 	return p;
87 }
88 
89 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
90 {
91 	struct x86_mapping_info info = {
92 		.alloc_pgt_page	= alloc_pgt_page,
93 		.context	= image,
94 		.pmd_flag	= __PAGE_KERNEL_LARGE_EXEC,
95 	};
96 	unsigned long mstart, mend;
97 	pgd_t *level4p;
98 	int result;
99 	int i;
100 
101 	level4p = (pgd_t *)__va(start_pgtable);
102 	clear_page(level4p);
103 	for (i = 0; i < nr_pfn_mapped; i++) {
104 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
105 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
106 
107 		result = kernel_ident_mapping_init(&info,
108 						 level4p, mstart, mend);
109 		if (result)
110 			return result;
111 	}
112 
113 	/*
114 	 * segments's mem ranges could be outside 0 ~ max_pfn,
115 	 * for example when jump back to original kernel from kexeced kernel.
116 	 * or first kernel is booted with user mem map, and second kernel
117 	 * could be loaded out of that range.
118 	 */
119 	for (i = 0; i < image->nr_segments; i++) {
120 		mstart = image->segment[i].mem;
121 		mend   = mstart + image->segment[i].memsz;
122 
123 		result = kernel_ident_mapping_init(&info,
124 						 level4p, mstart, mend);
125 
126 		if (result)
127 			return result;
128 	}
129 
130 	return init_transition_pgtable(image, level4p);
131 }
132 
133 static void set_idt(void *newidt, u16 limit)
134 {
135 	struct desc_ptr curidt;
136 
137 	/* x86-64 supports unaliged loads & stores */
138 	curidt.size    = limit;
139 	curidt.address = (unsigned long)newidt;
140 
141 	__asm__ __volatile__ (
142 		"lidtq %0\n"
143 		: : "m" (curidt)
144 		);
145 };
146 
147 
148 static void set_gdt(void *newgdt, u16 limit)
149 {
150 	struct desc_ptr curgdt;
151 
152 	/* x86-64 supports unaligned loads & stores */
153 	curgdt.size    = limit;
154 	curgdt.address = (unsigned long)newgdt;
155 
156 	__asm__ __volatile__ (
157 		"lgdtq %0\n"
158 		: : "m" (curgdt)
159 		);
160 };
161 
162 static void load_segments(void)
163 {
164 	__asm__ __volatile__ (
165 		"\tmovl %0,%%ds\n"
166 		"\tmovl %0,%%es\n"
167 		"\tmovl %0,%%ss\n"
168 		"\tmovl %0,%%fs\n"
169 		"\tmovl %0,%%gs\n"
170 		: : "a" (__KERNEL_DS) : "memory"
171 		);
172 }
173 
174 int machine_kexec_prepare(struct kimage *image)
175 {
176 	unsigned long start_pgtable;
177 	int result;
178 
179 	/* Calculate the offsets */
180 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
181 
182 	/* Setup the identity mapped 64bit page table */
183 	result = init_pgtable(image, start_pgtable);
184 	if (result)
185 		return result;
186 
187 	return 0;
188 }
189 
190 void machine_kexec_cleanup(struct kimage *image)
191 {
192 	free_transition_pgtable(image);
193 }
194 
195 /*
196  * Do not allocate memory (or fail in any way) in machine_kexec().
197  * We are past the point of no return, committed to rebooting now.
198  */
199 void machine_kexec(struct kimage *image)
200 {
201 	unsigned long page_list[PAGES_NR];
202 	void *control_page;
203 	int save_ftrace_enabled;
204 
205 #ifdef CONFIG_KEXEC_JUMP
206 	if (image->preserve_context)
207 		save_processor_state();
208 #endif
209 
210 	save_ftrace_enabled = __ftrace_enabled_save();
211 
212 	/* Interrupts aren't acceptable while we reboot */
213 	local_irq_disable();
214 	hw_breakpoint_disable();
215 
216 	if (image->preserve_context) {
217 #ifdef CONFIG_X86_IO_APIC
218 		/*
219 		 * We need to put APICs in legacy mode so that we can
220 		 * get timer interrupts in second kernel. kexec/kdump
221 		 * paths already have calls to disable_IO_APIC() in
222 		 * one form or other. kexec jump path also need
223 		 * one.
224 		 */
225 		disable_IO_APIC();
226 #endif
227 	}
228 
229 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
230 	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
231 
232 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
233 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
234 	page_list[PA_TABLE_PAGE] =
235 	  (unsigned long)__pa(page_address(image->control_code_page));
236 
237 	if (image->type == KEXEC_TYPE_DEFAULT)
238 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
239 						<< PAGE_SHIFT);
240 
241 	/*
242 	 * The segment registers are funny things, they have both a
243 	 * visible and an invisible part.  Whenever the visible part is
244 	 * set to a specific selector, the invisible part is loaded
245 	 * with from a table in memory.  At no other time is the
246 	 * descriptor table in memory accessed.
247 	 *
248 	 * I take advantage of this here by force loading the
249 	 * segments, before I zap the gdt with an invalid value.
250 	 */
251 	load_segments();
252 	/*
253 	 * The gdt & idt are now invalid.
254 	 * If you want to load them you must set up your own idt & gdt.
255 	 */
256 	set_gdt(phys_to_virt(0), 0);
257 	set_idt(phys_to_virt(0), 0);
258 
259 	/* now call it */
260 	image->start = relocate_kernel((unsigned long)image->head,
261 				       (unsigned long)page_list,
262 				       image->start,
263 				       image->preserve_context);
264 
265 #ifdef CONFIG_KEXEC_JUMP
266 	if (image->preserve_context)
267 		restore_processor_state();
268 #endif
269 
270 	__ftrace_enabled_restore(save_ftrace_enabled);
271 }
272 
273 void arch_crash_save_vmcoreinfo(void)
274 {
275 	VMCOREINFO_SYMBOL(phys_base);
276 	VMCOREINFO_SYMBOL(init_level4_pgt);
277 
278 #ifdef CONFIG_NUMA
279 	VMCOREINFO_SYMBOL(node_data);
280 	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
281 #endif
282 	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
283 			      (unsigned long)&_text - __START_KERNEL);
284 }
285 
286