xref: /linux/arch/x86/kernel/ldt.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5  * Copyright (C) 2002 Andi Kleen
6  *
7  * This handles calls from both 32bit and 64bit mode.
8  *
9  * Lock order:
10  *	contex.ldt_usr_sem
11  *	  mmap_sem
12  *	    context.lock
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
25 
26 #include <asm/ldt.h>
27 #include <asm/tlb.h>
28 #include <asm/desc.h>
29 #include <asm/mmu_context.h>
30 #include <asm/syscalls.h>
31 
32 static void refresh_ldt_segments(void)
33 {
34 #ifdef CONFIG_X86_64
35 	unsigned short sel;
36 
37 	/*
38 	 * Make sure that the cached DS and ES descriptors match the updated
39 	 * LDT.
40 	 */
41 	savesegment(ds, sel);
42 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
43 		loadsegment(ds, sel);
44 
45 	savesegment(es, sel);
46 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
47 		loadsegment(es, sel);
48 #endif
49 }
50 
51 /* context.lock is held by the task which issued the smp function call */
52 static void flush_ldt(void *__mm)
53 {
54 	struct mm_struct *mm = __mm;
55 
56 	if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
57 		return;
58 
59 	load_mm_ldt(mm);
60 
61 	refresh_ldt_segments();
62 }
63 
64 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
65 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
66 {
67 	struct ldt_struct *new_ldt;
68 	unsigned int alloc_size;
69 
70 	if (num_entries > LDT_ENTRIES)
71 		return NULL;
72 
73 	new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
74 	if (!new_ldt)
75 		return NULL;
76 
77 	BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
78 	alloc_size = num_entries * LDT_ENTRY_SIZE;
79 
80 	/*
81 	 * Xen is very picky: it requires a page-aligned LDT that has no
82 	 * trailing nonzero bytes in any page that contains LDT descriptors.
83 	 * Keep it simple: zero the whole allocation and never allocate less
84 	 * than PAGE_SIZE.
85 	 */
86 	if (alloc_size > PAGE_SIZE)
87 		new_ldt->entries = vzalloc(alloc_size);
88 	else
89 		new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
90 
91 	if (!new_ldt->entries) {
92 		kfree(new_ldt);
93 		return NULL;
94 	}
95 
96 	/* The new LDT isn't aliased for PTI yet. */
97 	new_ldt->slot = -1;
98 
99 	new_ldt->nr_entries = num_entries;
100 	return new_ldt;
101 }
102 
103 /*
104  * If PTI is enabled, this maps the LDT into the kernelmode and
105  * usermode tables for the given mm.
106  *
107  * There is no corresponding unmap function.  Even if the LDT is freed, we
108  * leave the PTEs around until the slot is reused or the mm is destroyed.
109  * This is harmless: the LDT is always in ordinary memory, and no one will
110  * access the freed slot.
111  *
112  * If we wanted to unmap freed LDTs, we'd also need to do a flush to make
113  * it useful, and the flush would slow down modify_ldt().
114  */
115 static int
116 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
117 {
118 #ifdef CONFIG_PAGE_TABLE_ISOLATION
119 	bool is_vmalloc, had_top_level_entry;
120 	unsigned long va;
121 	spinlock_t *ptl;
122 	pgd_t *pgd;
123 	int i;
124 
125 	if (!static_cpu_has(X86_FEATURE_PTI))
126 		return 0;
127 
128 	/*
129 	 * Any given ldt_struct should have map_ldt_struct() called at most
130 	 * once.
131 	 */
132 	WARN_ON(ldt->slot != -1);
133 
134 	/*
135 	 * Did we already have the top level entry allocated?  We can't
136 	 * use pgd_none() for this because it doens't do anything on
137 	 * 4-level page table kernels.
138 	 */
139 	pgd = pgd_offset(mm, LDT_BASE_ADDR);
140 	had_top_level_entry = (pgd->pgd != 0);
141 
142 	is_vmalloc = is_vmalloc_addr(ldt->entries);
143 
144 	for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) {
145 		unsigned long offset = i << PAGE_SHIFT;
146 		const void *src = (char *)ldt->entries + offset;
147 		unsigned long pfn;
148 		pgprot_t pte_prot;
149 		pte_t pte, *ptep;
150 
151 		va = (unsigned long)ldt_slot_va(slot) + offset;
152 		pfn = is_vmalloc ? vmalloc_to_pfn(src) :
153 			page_to_pfn(virt_to_page(src));
154 		/*
155 		 * Treat the PTI LDT range as a *userspace* range.
156 		 * get_locked_pte() will allocate all needed pagetables
157 		 * and account for them in this mm.
158 		 */
159 		ptep = get_locked_pte(mm, va, &ptl);
160 		if (!ptep)
161 			return -ENOMEM;
162 		/*
163 		 * Map it RO so the easy to find address is not a primary
164 		 * target via some kernel interface which misses a
165 		 * permission check.
166 		 */
167 		pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
168 		/* Filter out unsuppored __PAGE_KERNEL* bits: */
169 		pgprot_val(pte_prot) &= __supported_pte_mask;
170 		pte = pfn_pte(pfn, pte_prot);
171 		set_pte_at(mm, va, ptep, pte);
172 		pte_unmap_unlock(ptep, ptl);
173 	}
174 
175 	if (mm->context.ldt) {
176 		/*
177 		 * We already had an LDT.  The top-level entry should already
178 		 * have been allocated and synchronized with the usermode
179 		 * tables.
180 		 */
181 		WARN_ON(!had_top_level_entry);
182 		if (static_cpu_has(X86_FEATURE_PTI))
183 			WARN_ON(!kernel_to_user_pgdp(pgd)->pgd);
184 	} else {
185 		/*
186 		 * This is the first time we're mapping an LDT for this process.
187 		 * Sync the pgd to the usermode tables.
188 		 */
189 		WARN_ON(had_top_level_entry);
190 		if (static_cpu_has(X86_FEATURE_PTI)) {
191 			WARN_ON(kernel_to_user_pgdp(pgd)->pgd);
192 			set_pgd(kernel_to_user_pgdp(pgd), *pgd);
193 		}
194 	}
195 
196 	va = (unsigned long)ldt_slot_va(slot);
197 	flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, 0);
198 
199 	ldt->slot = slot;
200 #endif
201 	return 0;
202 }
203 
204 static void free_ldt_pgtables(struct mm_struct *mm)
205 {
206 #ifdef CONFIG_PAGE_TABLE_ISOLATION
207 	struct mmu_gather tlb;
208 	unsigned long start = LDT_BASE_ADDR;
209 	unsigned long end = start + (1UL << PGDIR_SHIFT);
210 
211 	if (!static_cpu_has(X86_FEATURE_PTI))
212 		return;
213 
214 	tlb_gather_mmu(&tlb, mm, start, end);
215 	free_pgd_range(&tlb, start, end, start, end);
216 	tlb_finish_mmu(&tlb, start, end);
217 #endif
218 }
219 
220 /* After calling this, the LDT is immutable. */
221 static void finalize_ldt_struct(struct ldt_struct *ldt)
222 {
223 	paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
224 }
225 
226 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
227 {
228 	mutex_lock(&mm->context.lock);
229 
230 	/* Synchronizes with READ_ONCE in load_mm_ldt. */
231 	smp_store_release(&mm->context.ldt, ldt);
232 
233 	/* Activate the LDT for all CPUs using currents mm. */
234 	on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
235 
236 	mutex_unlock(&mm->context.lock);
237 }
238 
239 static void free_ldt_struct(struct ldt_struct *ldt)
240 {
241 	if (likely(!ldt))
242 		return;
243 
244 	paravirt_free_ldt(ldt->entries, ldt->nr_entries);
245 	if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
246 		vfree_atomic(ldt->entries);
247 	else
248 		free_page((unsigned long)ldt->entries);
249 	kfree(ldt);
250 }
251 
252 /*
253  * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
254  * the new task is not running, so nothing can be installed.
255  */
256 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
257 {
258 	struct ldt_struct *new_ldt;
259 	int retval = 0;
260 
261 	if (!old_mm)
262 		return 0;
263 
264 	mutex_lock(&old_mm->context.lock);
265 	if (!old_mm->context.ldt)
266 		goto out_unlock;
267 
268 	new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
269 	if (!new_ldt) {
270 		retval = -ENOMEM;
271 		goto out_unlock;
272 	}
273 
274 	memcpy(new_ldt->entries, old_mm->context.ldt->entries,
275 	       new_ldt->nr_entries * LDT_ENTRY_SIZE);
276 	finalize_ldt_struct(new_ldt);
277 
278 	retval = map_ldt_struct(mm, new_ldt, 0);
279 	if (retval) {
280 		free_ldt_pgtables(mm);
281 		free_ldt_struct(new_ldt);
282 		goto out_unlock;
283 	}
284 	mm->context.ldt = new_ldt;
285 
286 out_unlock:
287 	mutex_unlock(&old_mm->context.lock);
288 	return retval;
289 }
290 
291 /*
292  * No need to lock the MM as we are the last user
293  *
294  * 64bit: Don't touch the LDT register - we're already in the next thread.
295  */
296 void destroy_context_ldt(struct mm_struct *mm)
297 {
298 	free_ldt_struct(mm->context.ldt);
299 	mm->context.ldt = NULL;
300 }
301 
302 void ldt_arch_exit_mmap(struct mm_struct *mm)
303 {
304 	free_ldt_pgtables(mm);
305 }
306 
307 static int read_ldt(void __user *ptr, unsigned long bytecount)
308 {
309 	struct mm_struct *mm = current->mm;
310 	unsigned long entries_size;
311 	int retval;
312 
313 	down_read(&mm->context.ldt_usr_sem);
314 
315 	if (!mm->context.ldt) {
316 		retval = 0;
317 		goto out_unlock;
318 	}
319 
320 	if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
321 		bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
322 
323 	entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
324 	if (entries_size > bytecount)
325 		entries_size = bytecount;
326 
327 	if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
328 		retval = -EFAULT;
329 		goto out_unlock;
330 	}
331 
332 	if (entries_size != bytecount) {
333 		/* Zero-fill the rest and pretend we read bytecount bytes. */
334 		if (clear_user(ptr + entries_size, bytecount - entries_size)) {
335 			retval = -EFAULT;
336 			goto out_unlock;
337 		}
338 	}
339 	retval = bytecount;
340 
341 out_unlock:
342 	up_read(&mm->context.ldt_usr_sem);
343 	return retval;
344 }
345 
346 static int read_default_ldt(void __user *ptr, unsigned long bytecount)
347 {
348 	/* CHECKME: Can we use _one_ random number ? */
349 #ifdef CONFIG_X86_32
350 	unsigned long size = 5 * sizeof(struct desc_struct);
351 #else
352 	unsigned long size = 128;
353 #endif
354 	if (bytecount > size)
355 		bytecount = size;
356 	if (clear_user(ptr, bytecount))
357 		return -EFAULT;
358 	return bytecount;
359 }
360 
361 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
362 {
363 	struct mm_struct *mm = current->mm;
364 	struct ldt_struct *new_ldt, *old_ldt;
365 	unsigned int old_nr_entries, new_nr_entries;
366 	struct user_desc ldt_info;
367 	struct desc_struct ldt;
368 	int error;
369 
370 	error = -EINVAL;
371 	if (bytecount != sizeof(ldt_info))
372 		goto out;
373 	error = -EFAULT;
374 	if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
375 		goto out;
376 
377 	error = -EINVAL;
378 	if (ldt_info.entry_number >= LDT_ENTRIES)
379 		goto out;
380 	if (ldt_info.contents == 3) {
381 		if (oldmode)
382 			goto out;
383 		if (ldt_info.seg_not_present == 0)
384 			goto out;
385 	}
386 
387 	if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
388 	    LDT_empty(&ldt_info)) {
389 		/* The user wants to clear the entry. */
390 		memset(&ldt, 0, sizeof(ldt));
391 	} else {
392 		if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) {
393 			error = -EINVAL;
394 			goto out;
395 		}
396 
397 		fill_ldt(&ldt, &ldt_info);
398 		if (oldmode)
399 			ldt.avl = 0;
400 	}
401 
402 	if (down_write_killable(&mm->context.ldt_usr_sem))
403 		return -EINTR;
404 
405 	old_ldt       = mm->context.ldt;
406 	old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
407 	new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
408 
409 	error = -ENOMEM;
410 	new_ldt = alloc_ldt_struct(new_nr_entries);
411 	if (!new_ldt)
412 		goto out_unlock;
413 
414 	if (old_ldt)
415 		memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
416 
417 	new_ldt->entries[ldt_info.entry_number] = ldt;
418 	finalize_ldt_struct(new_ldt);
419 
420 	/*
421 	 * If we are using PTI, map the new LDT into the userspace pagetables.
422 	 * If there is already an LDT, use the other slot so that other CPUs
423 	 * will continue to use the old LDT until install_ldt() switches
424 	 * them over to the new LDT.
425 	 */
426 	error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
427 	if (error) {
428 		/*
429 		 * This only can fail for the first LDT setup. If an LDT is
430 		 * already installed then the PTE page is already
431 		 * populated. Mop up a half populated page table.
432 		 */
433 		if (!WARN_ON_ONCE(old_ldt))
434 			free_ldt_pgtables(mm);
435 		free_ldt_struct(new_ldt);
436 		goto out_unlock;
437 	}
438 
439 	install_ldt(mm, new_ldt);
440 	free_ldt_struct(old_ldt);
441 	error = 0;
442 
443 out_unlock:
444 	up_write(&mm->context.ldt_usr_sem);
445 out:
446 	return error;
447 }
448 
449 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
450 		unsigned long , bytecount)
451 {
452 	int ret = -ENOSYS;
453 
454 	switch (func) {
455 	case 0:
456 		ret = read_ldt(ptr, bytecount);
457 		break;
458 	case 1:
459 		ret = write_ldt(ptr, bytecount, 1);
460 		break;
461 	case 2:
462 		ret = read_default_ldt(ptr, bytecount);
463 		break;
464 	case 0x11:
465 		ret = write_ldt(ptr, bytecount, 0);
466 		break;
467 	}
468 	/*
469 	 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
470 	 * return type, but tht ABI for sys_modify_ldt() expects
471 	 * 'int'.  This cast gives us an int-sized value in %rax
472 	 * for the return code.  The 'unsigned' is necessary so
473 	 * the compiler does not try to sign-extend the negative
474 	 * return codes into the high half of the register when
475 	 * taking the value from int->long.
476 	 */
477 	return (unsigned int)ret;
478 }
479