1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds 4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 5 * Copyright (C) 2002 Andi Kleen 6 * 7 * This handles calls from both 32bit and 64bit mode. 8 * 9 * Lock order: 10 * contex.ldt_usr_sem 11 * mmap_sem 12 * context.lock 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/sched.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/syscalls.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/uaccess.h> 25 26 #include <asm/ldt.h> 27 #include <asm/tlb.h> 28 #include <asm/desc.h> 29 #include <asm/mmu_context.h> 30 #include <asm/syscalls.h> 31 32 static void refresh_ldt_segments(void) 33 { 34 #ifdef CONFIG_X86_64 35 unsigned short sel; 36 37 /* 38 * Make sure that the cached DS and ES descriptors match the updated 39 * LDT. 40 */ 41 savesegment(ds, sel); 42 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 43 loadsegment(ds, sel); 44 45 savesegment(es, sel); 46 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 47 loadsegment(es, sel); 48 #endif 49 } 50 51 /* context.lock is held by the task which issued the smp function call */ 52 static void flush_ldt(void *__mm) 53 { 54 struct mm_struct *mm = __mm; 55 56 if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) 57 return; 58 59 load_mm_ldt(mm); 60 61 refresh_ldt_segments(); 62 } 63 64 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ 65 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) 66 { 67 struct ldt_struct *new_ldt; 68 unsigned int alloc_size; 69 70 if (num_entries > LDT_ENTRIES) 71 return NULL; 72 73 new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL); 74 if (!new_ldt) 75 return NULL; 76 77 BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); 78 alloc_size = num_entries * LDT_ENTRY_SIZE; 79 80 /* 81 * Xen is very picky: it requires a page-aligned LDT that has no 82 * trailing nonzero bytes in any page that contains LDT descriptors. 83 * Keep it simple: zero the whole allocation and never allocate less 84 * than PAGE_SIZE. 85 */ 86 if (alloc_size > PAGE_SIZE) 87 new_ldt->entries = vzalloc(alloc_size); 88 else 89 new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL); 90 91 if (!new_ldt->entries) { 92 kfree(new_ldt); 93 return NULL; 94 } 95 96 /* The new LDT isn't aliased for PTI yet. */ 97 new_ldt->slot = -1; 98 99 new_ldt->nr_entries = num_entries; 100 return new_ldt; 101 } 102 103 /* 104 * If PTI is enabled, this maps the LDT into the kernelmode and 105 * usermode tables for the given mm. 106 * 107 * There is no corresponding unmap function. Even if the LDT is freed, we 108 * leave the PTEs around until the slot is reused or the mm is destroyed. 109 * This is harmless: the LDT is always in ordinary memory, and no one will 110 * access the freed slot. 111 * 112 * If we wanted to unmap freed LDTs, we'd also need to do a flush to make 113 * it useful, and the flush would slow down modify_ldt(). 114 */ 115 static int 116 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) 117 { 118 #ifdef CONFIG_PAGE_TABLE_ISOLATION 119 bool is_vmalloc, had_top_level_entry; 120 unsigned long va; 121 spinlock_t *ptl; 122 pgd_t *pgd; 123 int i; 124 125 if (!static_cpu_has(X86_FEATURE_PTI)) 126 return 0; 127 128 /* 129 * Any given ldt_struct should have map_ldt_struct() called at most 130 * once. 131 */ 132 WARN_ON(ldt->slot != -1); 133 134 /* 135 * Did we already have the top level entry allocated? We can't 136 * use pgd_none() for this because it doens't do anything on 137 * 4-level page table kernels. 138 */ 139 pgd = pgd_offset(mm, LDT_BASE_ADDR); 140 had_top_level_entry = (pgd->pgd != 0); 141 142 is_vmalloc = is_vmalloc_addr(ldt->entries); 143 144 for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) { 145 unsigned long offset = i << PAGE_SHIFT; 146 const void *src = (char *)ldt->entries + offset; 147 unsigned long pfn; 148 pgprot_t pte_prot; 149 pte_t pte, *ptep; 150 151 va = (unsigned long)ldt_slot_va(slot) + offset; 152 pfn = is_vmalloc ? vmalloc_to_pfn(src) : 153 page_to_pfn(virt_to_page(src)); 154 /* 155 * Treat the PTI LDT range as a *userspace* range. 156 * get_locked_pte() will allocate all needed pagetables 157 * and account for them in this mm. 158 */ 159 ptep = get_locked_pte(mm, va, &ptl); 160 if (!ptep) 161 return -ENOMEM; 162 /* 163 * Map it RO so the easy to find address is not a primary 164 * target via some kernel interface which misses a 165 * permission check. 166 */ 167 pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL); 168 /* Filter out unsuppored __PAGE_KERNEL* bits: */ 169 pgprot_val(pte_prot) &= __supported_pte_mask; 170 pte = pfn_pte(pfn, pte_prot); 171 set_pte_at(mm, va, ptep, pte); 172 pte_unmap_unlock(ptep, ptl); 173 } 174 175 if (mm->context.ldt) { 176 /* 177 * We already had an LDT. The top-level entry should already 178 * have been allocated and synchronized with the usermode 179 * tables. 180 */ 181 WARN_ON(!had_top_level_entry); 182 if (static_cpu_has(X86_FEATURE_PTI)) 183 WARN_ON(!kernel_to_user_pgdp(pgd)->pgd); 184 } else { 185 /* 186 * This is the first time we're mapping an LDT for this process. 187 * Sync the pgd to the usermode tables. 188 */ 189 WARN_ON(had_top_level_entry); 190 if (static_cpu_has(X86_FEATURE_PTI)) { 191 WARN_ON(kernel_to_user_pgdp(pgd)->pgd); 192 set_pgd(kernel_to_user_pgdp(pgd), *pgd); 193 } 194 } 195 196 va = (unsigned long)ldt_slot_va(slot); 197 flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, 0); 198 199 ldt->slot = slot; 200 #endif 201 return 0; 202 } 203 204 static void free_ldt_pgtables(struct mm_struct *mm) 205 { 206 #ifdef CONFIG_PAGE_TABLE_ISOLATION 207 struct mmu_gather tlb; 208 unsigned long start = LDT_BASE_ADDR; 209 unsigned long end = start + (1UL << PGDIR_SHIFT); 210 211 if (!static_cpu_has(X86_FEATURE_PTI)) 212 return; 213 214 tlb_gather_mmu(&tlb, mm, start, end); 215 free_pgd_range(&tlb, start, end, start, end); 216 tlb_finish_mmu(&tlb, start, end); 217 #endif 218 } 219 220 /* After calling this, the LDT is immutable. */ 221 static void finalize_ldt_struct(struct ldt_struct *ldt) 222 { 223 paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); 224 } 225 226 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) 227 { 228 mutex_lock(&mm->context.lock); 229 230 /* Synchronizes with READ_ONCE in load_mm_ldt. */ 231 smp_store_release(&mm->context.ldt, ldt); 232 233 /* Activate the LDT for all CPUs using currents mm. */ 234 on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); 235 236 mutex_unlock(&mm->context.lock); 237 } 238 239 static void free_ldt_struct(struct ldt_struct *ldt) 240 { 241 if (likely(!ldt)) 242 return; 243 244 paravirt_free_ldt(ldt->entries, ldt->nr_entries); 245 if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) 246 vfree_atomic(ldt->entries); 247 else 248 free_page((unsigned long)ldt->entries); 249 kfree(ldt); 250 } 251 252 /* 253 * Called on fork from arch_dup_mmap(). Just copy the current LDT state, 254 * the new task is not running, so nothing can be installed. 255 */ 256 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) 257 { 258 struct ldt_struct *new_ldt; 259 int retval = 0; 260 261 if (!old_mm) 262 return 0; 263 264 mutex_lock(&old_mm->context.lock); 265 if (!old_mm->context.ldt) 266 goto out_unlock; 267 268 new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); 269 if (!new_ldt) { 270 retval = -ENOMEM; 271 goto out_unlock; 272 } 273 274 memcpy(new_ldt->entries, old_mm->context.ldt->entries, 275 new_ldt->nr_entries * LDT_ENTRY_SIZE); 276 finalize_ldt_struct(new_ldt); 277 278 retval = map_ldt_struct(mm, new_ldt, 0); 279 if (retval) { 280 free_ldt_pgtables(mm); 281 free_ldt_struct(new_ldt); 282 goto out_unlock; 283 } 284 mm->context.ldt = new_ldt; 285 286 out_unlock: 287 mutex_unlock(&old_mm->context.lock); 288 return retval; 289 } 290 291 /* 292 * No need to lock the MM as we are the last user 293 * 294 * 64bit: Don't touch the LDT register - we're already in the next thread. 295 */ 296 void destroy_context_ldt(struct mm_struct *mm) 297 { 298 free_ldt_struct(mm->context.ldt); 299 mm->context.ldt = NULL; 300 } 301 302 void ldt_arch_exit_mmap(struct mm_struct *mm) 303 { 304 free_ldt_pgtables(mm); 305 } 306 307 static int read_ldt(void __user *ptr, unsigned long bytecount) 308 { 309 struct mm_struct *mm = current->mm; 310 unsigned long entries_size; 311 int retval; 312 313 down_read(&mm->context.ldt_usr_sem); 314 315 if (!mm->context.ldt) { 316 retval = 0; 317 goto out_unlock; 318 } 319 320 if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) 321 bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; 322 323 entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; 324 if (entries_size > bytecount) 325 entries_size = bytecount; 326 327 if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { 328 retval = -EFAULT; 329 goto out_unlock; 330 } 331 332 if (entries_size != bytecount) { 333 /* Zero-fill the rest and pretend we read bytecount bytes. */ 334 if (clear_user(ptr + entries_size, bytecount - entries_size)) { 335 retval = -EFAULT; 336 goto out_unlock; 337 } 338 } 339 retval = bytecount; 340 341 out_unlock: 342 up_read(&mm->context.ldt_usr_sem); 343 return retval; 344 } 345 346 static int read_default_ldt(void __user *ptr, unsigned long bytecount) 347 { 348 /* CHECKME: Can we use _one_ random number ? */ 349 #ifdef CONFIG_X86_32 350 unsigned long size = 5 * sizeof(struct desc_struct); 351 #else 352 unsigned long size = 128; 353 #endif 354 if (bytecount > size) 355 bytecount = size; 356 if (clear_user(ptr, bytecount)) 357 return -EFAULT; 358 return bytecount; 359 } 360 361 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) 362 { 363 struct mm_struct *mm = current->mm; 364 struct ldt_struct *new_ldt, *old_ldt; 365 unsigned int old_nr_entries, new_nr_entries; 366 struct user_desc ldt_info; 367 struct desc_struct ldt; 368 int error; 369 370 error = -EINVAL; 371 if (bytecount != sizeof(ldt_info)) 372 goto out; 373 error = -EFAULT; 374 if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) 375 goto out; 376 377 error = -EINVAL; 378 if (ldt_info.entry_number >= LDT_ENTRIES) 379 goto out; 380 if (ldt_info.contents == 3) { 381 if (oldmode) 382 goto out; 383 if (ldt_info.seg_not_present == 0) 384 goto out; 385 } 386 387 if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || 388 LDT_empty(&ldt_info)) { 389 /* The user wants to clear the entry. */ 390 memset(&ldt, 0, sizeof(ldt)); 391 } else { 392 if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) { 393 error = -EINVAL; 394 goto out; 395 } 396 397 fill_ldt(&ldt, &ldt_info); 398 if (oldmode) 399 ldt.avl = 0; 400 } 401 402 if (down_write_killable(&mm->context.ldt_usr_sem)) 403 return -EINTR; 404 405 old_ldt = mm->context.ldt; 406 old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; 407 new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); 408 409 error = -ENOMEM; 410 new_ldt = alloc_ldt_struct(new_nr_entries); 411 if (!new_ldt) 412 goto out_unlock; 413 414 if (old_ldt) 415 memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); 416 417 new_ldt->entries[ldt_info.entry_number] = ldt; 418 finalize_ldt_struct(new_ldt); 419 420 /* 421 * If we are using PTI, map the new LDT into the userspace pagetables. 422 * If there is already an LDT, use the other slot so that other CPUs 423 * will continue to use the old LDT until install_ldt() switches 424 * them over to the new LDT. 425 */ 426 error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); 427 if (error) { 428 /* 429 * This only can fail for the first LDT setup. If an LDT is 430 * already installed then the PTE page is already 431 * populated. Mop up a half populated page table. 432 */ 433 if (!WARN_ON_ONCE(old_ldt)) 434 free_ldt_pgtables(mm); 435 free_ldt_struct(new_ldt); 436 goto out_unlock; 437 } 438 439 install_ldt(mm, new_ldt); 440 free_ldt_struct(old_ldt); 441 error = 0; 442 443 out_unlock: 444 up_write(&mm->context.ldt_usr_sem); 445 out: 446 return error; 447 } 448 449 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , 450 unsigned long , bytecount) 451 { 452 int ret = -ENOSYS; 453 454 switch (func) { 455 case 0: 456 ret = read_ldt(ptr, bytecount); 457 break; 458 case 1: 459 ret = write_ldt(ptr, bytecount, 1); 460 break; 461 case 2: 462 ret = read_default_ldt(ptr, bytecount); 463 break; 464 case 0x11: 465 ret = write_ldt(ptr, bytecount, 0); 466 break; 467 } 468 /* 469 * The SYSCALL_DEFINE() macros give us an 'unsigned long' 470 * return type, but tht ABI for sys_modify_ldt() expects 471 * 'int'. This cast gives us an int-sized value in %rax 472 * for the return code. The 'unsigned' is necessary so 473 * the compiler does not try to sign-extend the negative 474 * return codes into the high half of the register when 475 * taking the value from int->long. 476 */ 477 return (unsigned int)ret; 478 } 479