xref: /linux/arch/x86/kernel/ldt.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5  * Copyright (C) 2002 Andi Kleen
6  *
7  * This handles calls from both 32bit and 64bit mode.
8  *
9  * Lock order:
10  *	contex.ldt_usr_sem
11  *	  mmap_sem
12  *	    context.lock
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
25 
26 #include <asm/ldt.h>
27 #include <asm/tlb.h>
28 #include <asm/desc.h>
29 #include <asm/mmu_context.h>
30 #include <asm/syscalls.h>
31 
32 static void refresh_ldt_segments(void)
33 {
34 #ifdef CONFIG_X86_64
35 	unsigned short sel;
36 
37 	/*
38 	 * Make sure that the cached DS and ES descriptors match the updated
39 	 * LDT.
40 	 */
41 	savesegment(ds, sel);
42 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
43 		loadsegment(ds, sel);
44 
45 	savesegment(es, sel);
46 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
47 		loadsegment(es, sel);
48 #endif
49 }
50 
51 /* context.lock is held by the task which issued the smp function call */
52 static void flush_ldt(void *__mm)
53 {
54 	struct mm_struct *mm = __mm;
55 
56 	if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
57 		return;
58 
59 	load_mm_ldt(mm);
60 
61 	refresh_ldt_segments();
62 }
63 
64 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
65 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
66 {
67 	struct ldt_struct *new_ldt;
68 	unsigned int alloc_size;
69 
70 	if (num_entries > LDT_ENTRIES)
71 		return NULL;
72 
73 	new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
74 	if (!new_ldt)
75 		return NULL;
76 
77 	BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
78 	alloc_size = num_entries * LDT_ENTRY_SIZE;
79 
80 	/*
81 	 * Xen is very picky: it requires a page-aligned LDT that has no
82 	 * trailing nonzero bytes in any page that contains LDT descriptors.
83 	 * Keep it simple: zero the whole allocation and never allocate less
84 	 * than PAGE_SIZE.
85 	 */
86 	if (alloc_size > PAGE_SIZE)
87 		new_ldt->entries = vzalloc(alloc_size);
88 	else
89 		new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
90 
91 	if (!new_ldt->entries) {
92 		kfree(new_ldt);
93 		return NULL;
94 	}
95 
96 	/* The new LDT isn't aliased for PTI yet. */
97 	new_ldt->slot = -1;
98 
99 	new_ldt->nr_entries = num_entries;
100 	return new_ldt;
101 }
102 
103 /*
104  * If PTI is enabled, this maps the LDT into the kernelmode and
105  * usermode tables for the given mm.
106  *
107  * There is no corresponding unmap function.  Even if the LDT is freed, we
108  * leave the PTEs around until the slot is reused or the mm is destroyed.
109  * This is harmless: the LDT is always in ordinary memory, and no one will
110  * access the freed slot.
111  *
112  * If we wanted to unmap freed LDTs, we'd also need to do a flush to make
113  * it useful, and the flush would slow down modify_ldt().
114  */
115 static int
116 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
117 {
118 #ifdef CONFIG_PAGE_TABLE_ISOLATION
119 	bool is_vmalloc, had_top_level_entry;
120 	unsigned long va;
121 	spinlock_t *ptl;
122 	pgd_t *pgd;
123 	int i;
124 
125 	if (!static_cpu_has(X86_FEATURE_PTI))
126 		return 0;
127 
128 	/*
129 	 * Any given ldt_struct should have map_ldt_struct() called at most
130 	 * once.
131 	 */
132 	WARN_ON(ldt->slot != -1);
133 
134 	/*
135 	 * Did we already have the top level entry allocated?  We can't
136 	 * use pgd_none() for this because it doens't do anything on
137 	 * 4-level page table kernels.
138 	 */
139 	pgd = pgd_offset(mm, LDT_BASE_ADDR);
140 	had_top_level_entry = (pgd->pgd != 0);
141 
142 	is_vmalloc = is_vmalloc_addr(ldt->entries);
143 
144 	for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) {
145 		unsigned long offset = i << PAGE_SHIFT;
146 		const void *src = (char *)ldt->entries + offset;
147 		unsigned long pfn;
148 		pte_t pte, *ptep;
149 
150 		va = (unsigned long)ldt_slot_va(slot) + offset;
151 		pfn = is_vmalloc ? vmalloc_to_pfn(src) :
152 			page_to_pfn(virt_to_page(src));
153 		/*
154 		 * Treat the PTI LDT range as a *userspace* range.
155 		 * get_locked_pte() will allocate all needed pagetables
156 		 * and account for them in this mm.
157 		 */
158 		ptep = get_locked_pte(mm, va, &ptl);
159 		if (!ptep)
160 			return -ENOMEM;
161 		/*
162 		 * Map it RO so the easy to find address is not a primary
163 		 * target via some kernel interface which misses a
164 		 * permission check.
165 		 */
166 		pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL));
167 		set_pte_at(mm, va, ptep, pte);
168 		pte_unmap_unlock(ptep, ptl);
169 	}
170 
171 	if (mm->context.ldt) {
172 		/*
173 		 * We already had an LDT.  The top-level entry should already
174 		 * have been allocated and synchronized with the usermode
175 		 * tables.
176 		 */
177 		WARN_ON(!had_top_level_entry);
178 		if (static_cpu_has(X86_FEATURE_PTI))
179 			WARN_ON(!kernel_to_user_pgdp(pgd)->pgd);
180 	} else {
181 		/*
182 		 * This is the first time we're mapping an LDT for this process.
183 		 * Sync the pgd to the usermode tables.
184 		 */
185 		WARN_ON(had_top_level_entry);
186 		if (static_cpu_has(X86_FEATURE_PTI)) {
187 			WARN_ON(kernel_to_user_pgdp(pgd)->pgd);
188 			set_pgd(kernel_to_user_pgdp(pgd), *pgd);
189 		}
190 	}
191 
192 	va = (unsigned long)ldt_slot_va(slot);
193 	flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, 0);
194 
195 	ldt->slot = slot;
196 #endif
197 	return 0;
198 }
199 
200 static void free_ldt_pgtables(struct mm_struct *mm)
201 {
202 #ifdef CONFIG_PAGE_TABLE_ISOLATION
203 	struct mmu_gather tlb;
204 	unsigned long start = LDT_BASE_ADDR;
205 	unsigned long end = start + (1UL << PGDIR_SHIFT);
206 
207 	if (!static_cpu_has(X86_FEATURE_PTI))
208 		return;
209 
210 	tlb_gather_mmu(&tlb, mm, start, end);
211 	free_pgd_range(&tlb, start, end, start, end);
212 	tlb_finish_mmu(&tlb, start, end);
213 #endif
214 }
215 
216 /* After calling this, the LDT is immutable. */
217 static void finalize_ldt_struct(struct ldt_struct *ldt)
218 {
219 	paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
220 }
221 
222 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
223 {
224 	mutex_lock(&mm->context.lock);
225 
226 	/* Synchronizes with READ_ONCE in load_mm_ldt. */
227 	smp_store_release(&mm->context.ldt, ldt);
228 
229 	/* Activate the LDT for all CPUs using currents mm. */
230 	on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
231 
232 	mutex_unlock(&mm->context.lock);
233 }
234 
235 static void free_ldt_struct(struct ldt_struct *ldt)
236 {
237 	if (likely(!ldt))
238 		return;
239 
240 	paravirt_free_ldt(ldt->entries, ldt->nr_entries);
241 	if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
242 		vfree_atomic(ldt->entries);
243 	else
244 		free_page((unsigned long)ldt->entries);
245 	kfree(ldt);
246 }
247 
248 /*
249  * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
250  * the new task is not running, so nothing can be installed.
251  */
252 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
253 {
254 	struct ldt_struct *new_ldt;
255 	int retval = 0;
256 
257 	if (!old_mm)
258 		return 0;
259 
260 	mutex_lock(&old_mm->context.lock);
261 	if (!old_mm->context.ldt)
262 		goto out_unlock;
263 
264 	new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
265 	if (!new_ldt) {
266 		retval = -ENOMEM;
267 		goto out_unlock;
268 	}
269 
270 	memcpy(new_ldt->entries, old_mm->context.ldt->entries,
271 	       new_ldt->nr_entries * LDT_ENTRY_SIZE);
272 	finalize_ldt_struct(new_ldt);
273 
274 	retval = map_ldt_struct(mm, new_ldt, 0);
275 	if (retval) {
276 		free_ldt_pgtables(mm);
277 		free_ldt_struct(new_ldt);
278 		goto out_unlock;
279 	}
280 	mm->context.ldt = new_ldt;
281 
282 out_unlock:
283 	mutex_unlock(&old_mm->context.lock);
284 	return retval;
285 }
286 
287 /*
288  * No need to lock the MM as we are the last user
289  *
290  * 64bit: Don't touch the LDT register - we're already in the next thread.
291  */
292 void destroy_context_ldt(struct mm_struct *mm)
293 {
294 	free_ldt_struct(mm->context.ldt);
295 	mm->context.ldt = NULL;
296 }
297 
298 void ldt_arch_exit_mmap(struct mm_struct *mm)
299 {
300 	free_ldt_pgtables(mm);
301 }
302 
303 static int read_ldt(void __user *ptr, unsigned long bytecount)
304 {
305 	struct mm_struct *mm = current->mm;
306 	unsigned long entries_size;
307 	int retval;
308 
309 	down_read(&mm->context.ldt_usr_sem);
310 
311 	if (!mm->context.ldt) {
312 		retval = 0;
313 		goto out_unlock;
314 	}
315 
316 	if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
317 		bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
318 
319 	entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
320 	if (entries_size > bytecount)
321 		entries_size = bytecount;
322 
323 	if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
324 		retval = -EFAULT;
325 		goto out_unlock;
326 	}
327 
328 	if (entries_size != bytecount) {
329 		/* Zero-fill the rest and pretend we read bytecount bytes. */
330 		if (clear_user(ptr + entries_size, bytecount - entries_size)) {
331 			retval = -EFAULT;
332 			goto out_unlock;
333 		}
334 	}
335 	retval = bytecount;
336 
337 out_unlock:
338 	up_read(&mm->context.ldt_usr_sem);
339 	return retval;
340 }
341 
342 static int read_default_ldt(void __user *ptr, unsigned long bytecount)
343 {
344 	/* CHECKME: Can we use _one_ random number ? */
345 #ifdef CONFIG_X86_32
346 	unsigned long size = 5 * sizeof(struct desc_struct);
347 #else
348 	unsigned long size = 128;
349 #endif
350 	if (bytecount > size)
351 		bytecount = size;
352 	if (clear_user(ptr, bytecount))
353 		return -EFAULT;
354 	return bytecount;
355 }
356 
357 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
358 {
359 	struct mm_struct *mm = current->mm;
360 	struct ldt_struct *new_ldt, *old_ldt;
361 	unsigned int old_nr_entries, new_nr_entries;
362 	struct user_desc ldt_info;
363 	struct desc_struct ldt;
364 	int error;
365 
366 	error = -EINVAL;
367 	if (bytecount != sizeof(ldt_info))
368 		goto out;
369 	error = -EFAULT;
370 	if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
371 		goto out;
372 
373 	error = -EINVAL;
374 	if (ldt_info.entry_number >= LDT_ENTRIES)
375 		goto out;
376 	if (ldt_info.contents == 3) {
377 		if (oldmode)
378 			goto out;
379 		if (ldt_info.seg_not_present == 0)
380 			goto out;
381 	}
382 
383 	if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
384 	    LDT_empty(&ldt_info)) {
385 		/* The user wants to clear the entry. */
386 		memset(&ldt, 0, sizeof(ldt));
387 	} else {
388 		if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) {
389 			error = -EINVAL;
390 			goto out;
391 		}
392 
393 		fill_ldt(&ldt, &ldt_info);
394 		if (oldmode)
395 			ldt.avl = 0;
396 	}
397 
398 	if (down_write_killable(&mm->context.ldt_usr_sem))
399 		return -EINTR;
400 
401 	old_ldt       = mm->context.ldt;
402 	old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
403 	new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
404 
405 	error = -ENOMEM;
406 	new_ldt = alloc_ldt_struct(new_nr_entries);
407 	if (!new_ldt)
408 		goto out_unlock;
409 
410 	if (old_ldt)
411 		memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
412 
413 	new_ldt->entries[ldt_info.entry_number] = ldt;
414 	finalize_ldt_struct(new_ldt);
415 
416 	/*
417 	 * If we are using PTI, map the new LDT into the userspace pagetables.
418 	 * If there is already an LDT, use the other slot so that other CPUs
419 	 * will continue to use the old LDT until install_ldt() switches
420 	 * them over to the new LDT.
421 	 */
422 	error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
423 	if (error) {
424 		/*
425 		 * This only can fail for the first LDT setup. If an LDT is
426 		 * already installed then the PTE page is already
427 		 * populated. Mop up a half populated page table.
428 		 */
429 		if (!WARN_ON_ONCE(old_ldt))
430 			free_ldt_pgtables(mm);
431 		free_ldt_struct(new_ldt);
432 		goto out_unlock;
433 	}
434 
435 	install_ldt(mm, new_ldt);
436 	free_ldt_struct(old_ldt);
437 	error = 0;
438 
439 out_unlock:
440 	up_write(&mm->context.ldt_usr_sem);
441 out:
442 	return error;
443 }
444 
445 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
446 		unsigned long , bytecount)
447 {
448 	int ret = -ENOSYS;
449 
450 	switch (func) {
451 	case 0:
452 		ret = read_ldt(ptr, bytecount);
453 		break;
454 	case 1:
455 		ret = write_ldt(ptr, bytecount, 1);
456 		break;
457 	case 2:
458 		ret = read_default_ldt(ptr, bytecount);
459 		break;
460 	case 0x11:
461 		ret = write_ldt(ptr, bytecount, 0);
462 		break;
463 	}
464 	/*
465 	 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
466 	 * return type, but tht ABI for sys_modify_ldt() expects
467 	 * 'int'.  This cast gives us an int-sized value in %rax
468 	 * for the return code.  The 'unsigned' is necessary so
469 	 * the compiler does not try to sign-extend the negative
470 	 * return codes into the high half of the register when
471 	 * taking the value from int->long.
472 	 */
473 	return (unsigned int)ret;
474 }
475