xref: /linux/arch/x86/kernel/kvmclock.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27 #include <linux/sched.h>
28 
29 #include <asm/x86_init.h>
30 #include <asm/reboot.h>
31 
32 static int kvmclock = 1;
33 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
34 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
35 
36 static int parse_no_kvmclock(char *arg)
37 {
38 	kvmclock = 0;
39 	return 0;
40 }
41 early_param("no-kvmclock", parse_no_kvmclock);
42 
43 /* The hypervisor will put information about time periodically here */
44 static struct pvclock_vsyscall_time_info *hv_clock;
45 static struct pvclock_wall_clock wall_clock;
46 
47 /*
48  * The wallclock is the time of day when we booted. Since then, some time may
49  * have elapsed since the hypervisor wrote the data. So we try to account for
50  * that with system time
51  */
52 static void kvm_get_wallclock(struct timespec *now)
53 {
54 	struct pvclock_vcpu_time_info *vcpu_time;
55 	int low, high;
56 	int cpu;
57 
58 	low = (int)__pa_symbol(&wall_clock);
59 	high = ((u64)__pa_symbol(&wall_clock) >> 32);
60 
61 	native_write_msr(msr_kvm_wall_clock, low, high);
62 
63 	cpu = get_cpu();
64 
65 	vcpu_time = &hv_clock[cpu].pvti;
66 	pvclock_read_wallclock(&wall_clock, vcpu_time, now);
67 
68 	put_cpu();
69 }
70 
71 static int kvm_set_wallclock(const struct timespec *now)
72 {
73 	return -1;
74 }
75 
76 static cycle_t kvm_clock_read(void)
77 {
78 	struct pvclock_vcpu_time_info *src;
79 	cycle_t ret;
80 	int cpu;
81 
82 	preempt_disable_notrace();
83 	cpu = smp_processor_id();
84 	src = &hv_clock[cpu].pvti;
85 	ret = pvclock_clocksource_read(src);
86 	preempt_enable_notrace();
87 	return ret;
88 }
89 
90 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
91 {
92 	return kvm_clock_read();
93 }
94 
95 /*
96  * If we don't do that, there is the possibility that the guest
97  * will calibrate under heavy load - thus, getting a lower lpj -
98  * and execute the delays themselves without load. This is wrong,
99  * because no delay loop can finish beforehand.
100  * Any heuristics is subject to fail, because ultimately, a large
101  * poll of guests can be running and trouble each other. So we preset
102  * lpj here
103  */
104 static unsigned long kvm_get_tsc_khz(void)
105 {
106 	struct pvclock_vcpu_time_info *src;
107 	int cpu;
108 	unsigned long tsc_khz;
109 
110 	cpu = get_cpu();
111 	src = &hv_clock[cpu].pvti;
112 	tsc_khz = pvclock_tsc_khz(src);
113 	put_cpu();
114 	return tsc_khz;
115 }
116 
117 static void kvm_get_preset_lpj(void)
118 {
119 	unsigned long khz;
120 	u64 lpj;
121 
122 	khz = kvm_get_tsc_khz();
123 
124 	lpj = ((u64)khz * 1000);
125 	do_div(lpj, HZ);
126 	preset_lpj = lpj;
127 }
128 
129 bool kvm_check_and_clear_guest_paused(void)
130 {
131 	bool ret = false;
132 	struct pvclock_vcpu_time_info *src;
133 	int cpu = smp_processor_id();
134 
135 	if (!hv_clock)
136 		return ret;
137 
138 	src = &hv_clock[cpu].pvti;
139 	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
140 		src->flags &= ~PVCLOCK_GUEST_STOPPED;
141 		pvclock_touch_watchdogs();
142 		ret = true;
143 	}
144 
145 	return ret;
146 }
147 
148 static struct clocksource kvm_clock = {
149 	.name = "kvm-clock",
150 	.read = kvm_clock_get_cycles,
151 	.rating = 400,
152 	.mask = CLOCKSOURCE_MASK(64),
153 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155 
156 int kvm_register_clock(char *txt)
157 {
158 	int cpu = smp_processor_id();
159 	int low, high, ret;
160 	struct pvclock_vcpu_time_info *src;
161 
162 	if (!hv_clock)
163 		return 0;
164 
165 	src = &hv_clock[cpu].pvti;
166 	low = (int)slow_virt_to_phys(src) | 1;
167 	high = ((u64)slow_virt_to_phys(src) >> 32);
168 	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
169 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
170 	       cpu, high, low, txt);
171 
172 	return ret;
173 }
174 
175 static void kvm_save_sched_clock_state(void)
176 {
177 }
178 
179 static void kvm_restore_sched_clock_state(void)
180 {
181 	kvm_register_clock("primary cpu clock, resume");
182 }
183 
184 #ifdef CONFIG_X86_LOCAL_APIC
185 static void kvm_setup_secondary_clock(void)
186 {
187 	/*
188 	 * Now that the first cpu already had this clocksource initialized,
189 	 * we shouldn't fail.
190 	 */
191 	WARN_ON(kvm_register_clock("secondary cpu clock"));
192 }
193 #endif
194 
195 /*
196  * After the clock is registered, the host will keep writing to the
197  * registered memory location. If the guest happens to shutdown, this memory
198  * won't be valid. In cases like kexec, in which you install a new kernel, this
199  * means a random memory location will be kept being written. So before any
200  * kind of shutdown from our side, we unregister the clock by writting anything
201  * that does not have the 'enable' bit set in the msr
202  */
203 #ifdef CONFIG_KEXEC_CORE
204 static void kvm_crash_shutdown(struct pt_regs *regs)
205 {
206 	native_write_msr(msr_kvm_system_time, 0, 0);
207 	kvm_disable_steal_time();
208 	native_machine_crash_shutdown(regs);
209 }
210 #endif
211 
212 static void kvm_shutdown(void)
213 {
214 	native_write_msr(msr_kvm_system_time, 0, 0);
215 	kvm_disable_steal_time();
216 	native_machine_shutdown();
217 }
218 
219 void __init kvmclock_init(void)
220 {
221 	struct pvclock_vcpu_time_info *vcpu_time;
222 	unsigned long mem;
223 	int size, cpu;
224 	u8 flags;
225 
226 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
227 
228 	if (!kvm_para_available())
229 		return;
230 
231 	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
232 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
233 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
234 	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
235 		return;
236 
237 	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
238 		msr_kvm_system_time, msr_kvm_wall_clock);
239 
240 	mem = memblock_alloc(size, PAGE_SIZE);
241 	if (!mem)
242 		return;
243 	hv_clock = __va(mem);
244 	memset(hv_clock, 0, size);
245 
246 	if (kvm_register_clock("primary cpu clock")) {
247 		hv_clock = NULL;
248 		memblock_free(mem, size);
249 		return;
250 	}
251 	pv_time_ops.sched_clock = kvm_clock_read;
252 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
253 	x86_platform.get_wallclock = kvm_get_wallclock;
254 	x86_platform.set_wallclock = kvm_set_wallclock;
255 #ifdef CONFIG_X86_LOCAL_APIC
256 	x86_cpuinit.early_percpu_clock_init =
257 		kvm_setup_secondary_clock;
258 #endif
259 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
260 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
261 	machine_ops.shutdown  = kvm_shutdown;
262 #ifdef CONFIG_KEXEC_CORE
263 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
264 #endif
265 	kvm_get_preset_lpj();
266 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
267 	pv_info.name = "KVM";
268 
269 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
270 		pvclock_set_flags(~0);
271 
272 	cpu = get_cpu();
273 	vcpu_time = &hv_clock[cpu].pvti;
274 	flags = pvclock_read_flags(vcpu_time);
275 	if (flags & PVCLOCK_COUNTS_FROM_ZERO)
276 		set_sched_clock_stable();
277 	put_cpu();
278 }
279 
280 int __init kvm_setup_vsyscall_timeinfo(void)
281 {
282 #ifdef CONFIG_X86_64
283 	int cpu;
284 	int ret;
285 	u8 flags;
286 	struct pvclock_vcpu_time_info *vcpu_time;
287 	unsigned int size;
288 
289 	if (!hv_clock)
290 		return 0;
291 
292 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
293 
294 	cpu = get_cpu();
295 
296 	vcpu_time = &hv_clock[cpu].pvti;
297 	flags = pvclock_read_flags(vcpu_time);
298 
299 	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
300 		put_cpu();
301 		return 1;
302 	}
303 
304 	if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
305 		put_cpu();
306 		return ret;
307 	}
308 
309 	put_cpu();
310 
311 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
312 #endif
313 	return 0;
314 }
315