xref: /linux/arch/x86/kernel/kvm.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22 
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/hash.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/kprobes.h>
36 #include <asm/timer.h>
37 #include <asm/cpu.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
41 
42 #define MMU_QUEUE_SIZE 1024
43 
44 static int kvmapf = 1;
45 
46 static int parse_no_kvmapf(char *arg)
47 {
48         kvmapf = 0;
49         return 0;
50 }
51 
52 early_param("no-kvmapf", parse_no_kvmapf);
53 
54 static int steal_acc = 1;
55 static int parse_no_stealacc(char *arg)
56 {
57         steal_acc = 0;
58         return 0;
59 }
60 
61 early_param("no-steal-acc", parse_no_stealacc);
62 
63 struct kvm_para_state {
64 	u8 mmu_queue[MMU_QUEUE_SIZE];
65 	int mmu_queue_len;
66 };
67 
68 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
69 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
70 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
71 static int has_steal_clock = 0;
72 
73 static struct kvm_para_state *kvm_para_state(void)
74 {
75 	return &per_cpu(para_state, raw_smp_processor_id());
76 }
77 
78 /*
79  * No need for any "IO delay" on KVM
80  */
81 static void kvm_io_delay(void)
82 {
83 }
84 
85 #define KVM_TASK_SLEEP_HASHBITS 8
86 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
87 
88 struct kvm_task_sleep_node {
89 	struct hlist_node link;
90 	wait_queue_head_t wq;
91 	u32 token;
92 	int cpu;
93 	bool halted;
94 	struct mm_struct *mm;
95 };
96 
97 static struct kvm_task_sleep_head {
98 	spinlock_t lock;
99 	struct hlist_head list;
100 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
101 
102 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
103 						  u32 token)
104 {
105 	struct hlist_node *p;
106 
107 	hlist_for_each(p, &b->list) {
108 		struct kvm_task_sleep_node *n =
109 			hlist_entry(p, typeof(*n), link);
110 		if (n->token == token)
111 			return n;
112 	}
113 
114 	return NULL;
115 }
116 
117 void kvm_async_pf_task_wait(u32 token)
118 {
119 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
120 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
121 	struct kvm_task_sleep_node n, *e;
122 	DEFINE_WAIT(wait);
123 	int cpu, idle;
124 
125 	cpu = get_cpu();
126 	idle = idle_cpu(cpu);
127 	put_cpu();
128 
129 	spin_lock(&b->lock);
130 	e = _find_apf_task(b, token);
131 	if (e) {
132 		/* dummy entry exist -> wake up was delivered ahead of PF */
133 		hlist_del(&e->link);
134 		kfree(e);
135 		spin_unlock(&b->lock);
136 		return;
137 	}
138 
139 	n.token = token;
140 	n.cpu = smp_processor_id();
141 	n.mm = current->active_mm;
142 	n.halted = idle || preempt_count() > 1;
143 	atomic_inc(&n.mm->mm_count);
144 	init_waitqueue_head(&n.wq);
145 	hlist_add_head(&n.link, &b->list);
146 	spin_unlock(&b->lock);
147 
148 	for (;;) {
149 		if (!n.halted)
150 			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151 		if (hlist_unhashed(&n.link))
152 			break;
153 
154 		if (!n.halted) {
155 			local_irq_enable();
156 			schedule();
157 			local_irq_disable();
158 		} else {
159 			/*
160 			 * We cannot reschedule. So halt.
161 			 */
162 			native_safe_halt();
163 			local_irq_disable();
164 		}
165 	}
166 	if (!n.halted)
167 		finish_wait(&n.wq, &wait);
168 
169 	return;
170 }
171 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
172 
173 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
174 {
175 	hlist_del_init(&n->link);
176 	if (!n->mm)
177 		return;
178 	mmdrop(n->mm);
179 	if (n->halted)
180 		smp_send_reschedule(n->cpu);
181 	else if (waitqueue_active(&n->wq))
182 		wake_up(&n->wq);
183 }
184 
185 static void apf_task_wake_all(void)
186 {
187 	int i;
188 
189 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190 		struct hlist_node *p, *next;
191 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192 		spin_lock(&b->lock);
193 		hlist_for_each_safe(p, next, &b->list) {
194 			struct kvm_task_sleep_node *n =
195 				hlist_entry(p, typeof(*n), link);
196 			if (n->cpu == smp_processor_id())
197 				apf_task_wake_one(n);
198 		}
199 		spin_unlock(&b->lock);
200 	}
201 }
202 
203 void kvm_async_pf_task_wake(u32 token)
204 {
205 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207 	struct kvm_task_sleep_node *n;
208 
209 	if (token == ~0) {
210 		apf_task_wake_all();
211 		return;
212 	}
213 
214 again:
215 	spin_lock(&b->lock);
216 	n = _find_apf_task(b, token);
217 	if (!n) {
218 		/*
219 		 * async PF was not yet handled.
220 		 * Add dummy entry for the token.
221 		 */
222 		n = kmalloc(sizeof(*n), GFP_ATOMIC);
223 		if (!n) {
224 			/*
225 			 * Allocation failed! Busy wait while other cpu
226 			 * handles async PF.
227 			 */
228 			spin_unlock(&b->lock);
229 			cpu_relax();
230 			goto again;
231 		}
232 		n->token = token;
233 		n->cpu = smp_processor_id();
234 		n->mm = NULL;
235 		init_waitqueue_head(&n->wq);
236 		hlist_add_head(&n->link, &b->list);
237 	} else
238 		apf_task_wake_one(n);
239 	spin_unlock(&b->lock);
240 	return;
241 }
242 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243 
244 u32 kvm_read_and_reset_pf_reason(void)
245 {
246 	u32 reason = 0;
247 
248 	if (__get_cpu_var(apf_reason).enabled) {
249 		reason = __get_cpu_var(apf_reason).reason;
250 		__get_cpu_var(apf_reason).reason = 0;
251 	}
252 
253 	return reason;
254 }
255 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256 
257 dotraplinkage void __kprobes
258 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259 {
260 	switch (kvm_read_and_reset_pf_reason()) {
261 	default:
262 		do_page_fault(regs, error_code);
263 		break;
264 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
265 		/* page is swapped out by the host. */
266 		kvm_async_pf_task_wait((u32)read_cr2());
267 		break;
268 	case KVM_PV_REASON_PAGE_READY:
269 		kvm_async_pf_task_wake((u32)read_cr2());
270 		break;
271 	}
272 }
273 
274 static void kvm_mmu_op(void *buffer, unsigned len)
275 {
276 	int r;
277 	unsigned long a1, a2;
278 
279 	do {
280 		a1 = __pa(buffer);
281 		a2 = 0;   /* on i386 __pa() always returns <4G */
282 		r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
283 		buffer += r;
284 		len -= r;
285 	} while (len);
286 }
287 
288 static void mmu_queue_flush(struct kvm_para_state *state)
289 {
290 	if (state->mmu_queue_len) {
291 		kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
292 		state->mmu_queue_len = 0;
293 	}
294 }
295 
296 static void kvm_deferred_mmu_op(void *buffer, int len)
297 {
298 	struct kvm_para_state *state = kvm_para_state();
299 
300 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
301 		kvm_mmu_op(buffer, len);
302 		return;
303 	}
304 	if (state->mmu_queue_len + len > sizeof state->mmu_queue)
305 		mmu_queue_flush(state);
306 	memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
307 	state->mmu_queue_len += len;
308 }
309 
310 static void kvm_mmu_write(void *dest, u64 val)
311 {
312 	__u64 pte_phys;
313 	struct kvm_mmu_op_write_pte wpte;
314 
315 #ifdef CONFIG_HIGHPTE
316 	struct page *page;
317 	unsigned long dst = (unsigned long) dest;
318 
319 	page = kmap_atomic_to_page(dest);
320 	pte_phys = page_to_pfn(page);
321 	pte_phys <<= PAGE_SHIFT;
322 	pte_phys += (dst & ~(PAGE_MASK));
323 #else
324 	pte_phys = (unsigned long)__pa(dest);
325 #endif
326 	wpte.header.op = KVM_MMU_OP_WRITE_PTE;
327 	wpte.pte_val = val;
328 	wpte.pte_phys = pte_phys;
329 
330 	kvm_deferred_mmu_op(&wpte, sizeof wpte);
331 }
332 
333 /*
334  * We only need to hook operations that are MMU writes.  We hook these so that
335  * we can use lazy MMU mode to batch these operations.  We could probably
336  * improve the performance of the host code if we used some of the information
337  * here to simplify processing of batched writes.
338  */
339 static void kvm_set_pte(pte_t *ptep, pte_t pte)
340 {
341 	kvm_mmu_write(ptep, pte_val(pte));
342 }
343 
344 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
345 			   pte_t *ptep, pte_t pte)
346 {
347 	kvm_mmu_write(ptep, pte_val(pte));
348 }
349 
350 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
351 {
352 	kvm_mmu_write(pmdp, pmd_val(pmd));
353 }
354 
355 #if PAGETABLE_LEVELS >= 3
356 #ifdef CONFIG_X86_PAE
357 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
358 {
359 	kvm_mmu_write(ptep, pte_val(pte));
360 }
361 
362 static void kvm_pte_clear(struct mm_struct *mm,
363 			  unsigned long addr, pte_t *ptep)
364 {
365 	kvm_mmu_write(ptep, 0);
366 }
367 
368 static void kvm_pmd_clear(pmd_t *pmdp)
369 {
370 	kvm_mmu_write(pmdp, 0);
371 }
372 #endif
373 
374 static void kvm_set_pud(pud_t *pudp, pud_t pud)
375 {
376 	kvm_mmu_write(pudp, pud_val(pud));
377 }
378 
379 #if PAGETABLE_LEVELS == 4
380 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
381 {
382 	kvm_mmu_write(pgdp, pgd_val(pgd));
383 }
384 #endif
385 #endif /* PAGETABLE_LEVELS >= 3 */
386 
387 static void kvm_flush_tlb(void)
388 {
389 	struct kvm_mmu_op_flush_tlb ftlb = {
390 		.header.op = KVM_MMU_OP_FLUSH_TLB,
391 	};
392 
393 	kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
394 }
395 
396 static void kvm_release_pt(unsigned long pfn)
397 {
398 	struct kvm_mmu_op_release_pt rpt = {
399 		.header.op = KVM_MMU_OP_RELEASE_PT,
400 		.pt_phys = (u64)pfn << PAGE_SHIFT,
401 	};
402 
403 	kvm_mmu_op(&rpt, sizeof rpt);
404 }
405 
406 static void kvm_enter_lazy_mmu(void)
407 {
408 	paravirt_enter_lazy_mmu();
409 }
410 
411 static void kvm_leave_lazy_mmu(void)
412 {
413 	struct kvm_para_state *state = kvm_para_state();
414 
415 	mmu_queue_flush(state);
416 	paravirt_leave_lazy_mmu();
417 }
418 
419 static void __init paravirt_ops_setup(void)
420 {
421 	pv_info.name = "KVM";
422 	pv_info.paravirt_enabled = 1;
423 
424 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
425 		pv_cpu_ops.io_delay = kvm_io_delay;
426 
427 	if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
428 		pv_mmu_ops.set_pte = kvm_set_pte;
429 		pv_mmu_ops.set_pte_at = kvm_set_pte_at;
430 		pv_mmu_ops.set_pmd = kvm_set_pmd;
431 #if PAGETABLE_LEVELS >= 3
432 #ifdef CONFIG_X86_PAE
433 		pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
434 		pv_mmu_ops.pte_clear = kvm_pte_clear;
435 		pv_mmu_ops.pmd_clear = kvm_pmd_clear;
436 #endif
437 		pv_mmu_ops.set_pud = kvm_set_pud;
438 #if PAGETABLE_LEVELS == 4
439 		pv_mmu_ops.set_pgd = kvm_set_pgd;
440 #endif
441 #endif
442 		pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
443 		pv_mmu_ops.release_pte = kvm_release_pt;
444 		pv_mmu_ops.release_pmd = kvm_release_pt;
445 		pv_mmu_ops.release_pud = kvm_release_pt;
446 
447 		pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
448 		pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
449 	}
450 #ifdef CONFIG_X86_IO_APIC
451 	no_timer_check = 1;
452 #endif
453 }
454 
455 static void kvm_register_steal_time(void)
456 {
457 	int cpu = smp_processor_id();
458 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
459 
460 	if (!has_steal_clock)
461 		return;
462 
463 	memset(st, 0, sizeof(*st));
464 
465 	wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
466 	printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
467 		cpu, __pa(st));
468 }
469 
470 void __cpuinit kvm_guest_cpu_init(void)
471 {
472 	if (!kvm_para_available())
473 		return;
474 
475 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
476 		u64 pa = __pa(&__get_cpu_var(apf_reason));
477 
478 #ifdef CONFIG_PREEMPT
479 		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
480 #endif
481 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
482 		__get_cpu_var(apf_reason).enabled = 1;
483 		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
484 		       smp_processor_id());
485 	}
486 
487 	if (has_steal_clock)
488 		kvm_register_steal_time();
489 }
490 
491 static void kvm_pv_disable_apf(void *unused)
492 {
493 	if (!__get_cpu_var(apf_reason).enabled)
494 		return;
495 
496 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
497 	__get_cpu_var(apf_reason).enabled = 0;
498 
499 	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
500 	       smp_processor_id());
501 }
502 
503 static int kvm_pv_reboot_notify(struct notifier_block *nb,
504 				unsigned long code, void *unused)
505 {
506 	if (code == SYS_RESTART)
507 		on_each_cpu(kvm_pv_disable_apf, NULL, 1);
508 	return NOTIFY_DONE;
509 }
510 
511 static struct notifier_block kvm_pv_reboot_nb = {
512 	.notifier_call = kvm_pv_reboot_notify,
513 };
514 
515 static u64 kvm_steal_clock(int cpu)
516 {
517 	u64 steal;
518 	struct kvm_steal_time *src;
519 	int version;
520 
521 	src = &per_cpu(steal_time, cpu);
522 	do {
523 		version = src->version;
524 		rmb();
525 		steal = src->steal;
526 		rmb();
527 	} while ((version & 1) || (version != src->version));
528 
529 	return steal;
530 }
531 
532 void kvm_disable_steal_time(void)
533 {
534 	if (!has_steal_clock)
535 		return;
536 
537 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
538 }
539 
540 #ifdef CONFIG_SMP
541 static void __init kvm_smp_prepare_boot_cpu(void)
542 {
543 #ifdef CONFIG_KVM_CLOCK
544 	WARN_ON(kvm_register_clock("primary cpu clock"));
545 #endif
546 	kvm_guest_cpu_init();
547 	native_smp_prepare_boot_cpu();
548 }
549 
550 static void __cpuinit kvm_guest_cpu_online(void *dummy)
551 {
552 	kvm_guest_cpu_init();
553 }
554 
555 static void kvm_guest_cpu_offline(void *dummy)
556 {
557 	kvm_disable_steal_time();
558 	kvm_pv_disable_apf(NULL);
559 	apf_task_wake_all();
560 }
561 
562 static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
563 				    unsigned long action, void *hcpu)
564 {
565 	int cpu = (unsigned long)hcpu;
566 	switch (action) {
567 	case CPU_ONLINE:
568 	case CPU_DOWN_FAILED:
569 	case CPU_ONLINE_FROZEN:
570 		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
571 		break;
572 	case CPU_DOWN_PREPARE:
573 	case CPU_DOWN_PREPARE_FROZEN:
574 		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
575 		break;
576 	default:
577 		break;
578 	}
579 	return NOTIFY_OK;
580 }
581 
582 static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
583         .notifier_call  = kvm_cpu_notify,
584 };
585 #endif
586 
587 static void __init kvm_apf_trap_init(void)
588 {
589 	set_intr_gate(14, &async_page_fault);
590 }
591 
592 void __init kvm_guest_init(void)
593 {
594 	int i;
595 
596 	if (!kvm_para_available())
597 		return;
598 
599 	paravirt_ops_setup();
600 	register_reboot_notifier(&kvm_pv_reboot_nb);
601 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
602 		spin_lock_init(&async_pf_sleepers[i].lock);
603 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
604 		x86_init.irqs.trap_init = kvm_apf_trap_init;
605 
606 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
607 		has_steal_clock = 1;
608 		pv_time_ops.steal_clock = kvm_steal_clock;
609 	}
610 
611 #ifdef CONFIG_SMP
612 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
613 	register_cpu_notifier(&kvm_cpu_notifier);
614 #else
615 	kvm_guest_cpu_init();
616 #endif
617 }
618 
619 static __init int activate_jump_labels(void)
620 {
621 	if (has_steal_clock) {
622 		jump_label_inc(&paravirt_steal_enabled);
623 		if (steal_acc)
624 			jump_label_inc(&paravirt_steal_rq_enabled);
625 	}
626 
627 	return 0;
628 }
629 arch_initcall(activate_jump_labels);
630