1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/perf_event.h> 37 #include <linux/extable.h> 38 #include <linux/kdebug.h> 39 #include <linux/kallsyms.h> 40 #include <linux/kgdb.h> 41 #include <linux/ftrace.h> 42 #include <linux/kasan.h> 43 #include <linux/moduleloader.h> 44 #include <linux/objtool.h> 45 #include <linux/vmalloc.h> 46 #include <linux/pgtable.h> 47 #include <linux/set_memory.h> 48 #include <linux/cfi.h> 49 50 #include <asm/text-patching.h> 51 #include <asm/cacheflush.h> 52 #include <asm/desc.h> 53 #include <linux/uaccess.h> 54 #include <asm/alternative.h> 55 #include <asm/insn.h> 56 #include <asm/debugreg.h> 57 #include <asm/ibt.h> 58 59 #include "common.h" 60 61 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 62 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 63 64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 65 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 66 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 67 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 68 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 69 << (row % 32)) 70 /* 71 * Undefined/reserved opcodes, conditional jump, Opcode Extension 72 * Groups, and some special opcodes can not boost. 73 * This is non-const and volatile to keep gcc from statically 74 * optimizing it out, as variable_test_bit makes gcc think only 75 * *(unsigned long*) is used. 76 */ 77 static volatile u32 twobyte_is_boostable[256 / 32] = { 78 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 79 /* ---------------------------------------------- */ 80 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 81 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 82 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 83 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 84 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 85 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 86 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 87 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 88 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 89 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 90 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 91 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 92 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 93 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 94 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 95 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 96 /* ----------------------------------------------- */ 97 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 98 }; 99 #undef W 100 101 struct kretprobe_blackpoint kretprobe_blacklist[] = { 102 {"__switch_to", }, /* This function switches only current task, but 103 doesn't switch kernel stack.*/ 104 {NULL, NULL} /* Terminator */ 105 }; 106 107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 108 109 static nokprobe_inline void 110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 111 { 112 struct __arch_relative_insn { 113 u8 op; 114 s32 raddr; 115 } __packed *insn; 116 117 insn = (struct __arch_relative_insn *)dest; 118 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 119 insn->op = op; 120 } 121 122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 123 void synthesize_reljump(void *dest, void *from, void *to) 124 { 125 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 126 } 127 NOKPROBE_SYMBOL(synthesize_reljump); 128 129 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 130 void synthesize_relcall(void *dest, void *from, void *to) 131 { 132 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 133 } 134 NOKPROBE_SYMBOL(synthesize_relcall); 135 136 /* 137 * Returns non-zero if INSN is boostable. 138 * RIP relative instructions are adjusted at copying time in 64 bits mode 139 */ 140 bool can_boost(struct insn *insn, void *addr) 141 { 142 kprobe_opcode_t opcode; 143 insn_byte_t prefix; 144 int i; 145 146 if (search_exception_tables((unsigned long)addr)) 147 return false; /* Page fault may occur on this address. */ 148 149 /* 2nd-byte opcode */ 150 if (insn->opcode.nbytes == 2) 151 return test_bit(insn->opcode.bytes[1], 152 (unsigned long *)twobyte_is_boostable); 153 154 if (insn->opcode.nbytes != 1) 155 return false; 156 157 for_each_insn_prefix(insn, i, prefix) { 158 insn_attr_t attr; 159 160 attr = inat_get_opcode_attribute(prefix); 161 /* Can't boost Address-size override prefix and CS override prefix */ 162 if (prefix == 0x2e || inat_is_address_size_prefix(attr)) 163 return false; 164 } 165 166 opcode = insn->opcode.bytes[0]; 167 168 switch (opcode) { 169 case 0x62: /* bound */ 170 case 0x70 ... 0x7f: /* Conditional jumps */ 171 case 0x9a: /* Call far */ 172 case 0xcc ... 0xce: /* software exceptions */ 173 case 0xd6: /* (UD) */ 174 case 0xd8 ... 0xdf: /* ESC */ 175 case 0xe0 ... 0xe3: /* LOOP*, JCXZ */ 176 case 0xe8 ... 0xe9: /* near Call, JMP */ 177 case 0xeb: /* Short JMP */ 178 case 0xf0 ... 0xf4: /* LOCK/REP, HLT */ 179 /* ... are not boostable */ 180 return false; 181 case 0xc0 ... 0xc1: /* Grp2 */ 182 case 0xd0 ... 0xd3: /* Grp2 */ 183 /* 184 * AMD uses nnn == 110 as SHL/SAL, but Intel makes it reserved. 185 */ 186 return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b110; 187 case 0xf6 ... 0xf7: /* Grp3 */ 188 /* AMD uses nnn == 001 as TEST, but Intel makes it reserved. */ 189 return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b001; 190 case 0xfe: /* Grp4 */ 191 /* Only INC and DEC are boostable */ 192 return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 || 193 X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001; 194 case 0xff: /* Grp5 */ 195 /* Only INC, DEC, and indirect JMP are boostable */ 196 return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 || 197 X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001 || 198 X86_MODRM_REG(insn->modrm.bytes[0]) == 0b100; 199 default: 200 return true; 201 } 202 } 203 204 static unsigned long 205 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 206 { 207 struct kprobe *kp; 208 bool faddr; 209 210 kp = get_kprobe((void *)addr); 211 faddr = ftrace_location(addr) == addr; 212 /* 213 * Use the current code if it is not modified by Kprobe 214 * and it cannot be modified by ftrace. 215 */ 216 if (!kp && !faddr) 217 return addr; 218 219 /* 220 * Basically, kp->ainsn.insn has an original instruction. 221 * However, RIP-relative instruction can not do single-stepping 222 * at different place, __copy_instruction() tweaks the displacement of 223 * that instruction. In that case, we can't recover the instruction 224 * from the kp->ainsn.insn. 225 * 226 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 227 * of the first byte of the probed instruction, which is overwritten 228 * by int3. And the instruction at kp->addr is not modified by kprobes 229 * except for the first byte, we can recover the original instruction 230 * from it and kp->opcode. 231 * 232 * In case of Kprobes using ftrace, we do not have a copy of 233 * the original instruction. In fact, the ftrace location might 234 * be modified at anytime and even could be in an inconsistent state. 235 * Fortunately, we know that the original code is the ideal 5-byte 236 * long NOP. 237 */ 238 if (copy_from_kernel_nofault(buf, (void *)addr, 239 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 240 return 0UL; 241 242 if (faddr) 243 memcpy(buf, x86_nops[5], 5); 244 else 245 buf[0] = kp->opcode; 246 return (unsigned long)buf; 247 } 248 249 /* 250 * Recover the probed instruction at addr for further analysis. 251 * Caller must lock kprobes by kprobe_mutex, or disable preemption 252 * for preventing to release referencing kprobes. 253 * Returns zero if the instruction can not get recovered (or access failed). 254 */ 255 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 256 { 257 unsigned long __addr; 258 259 __addr = __recover_optprobed_insn(buf, addr); 260 if (__addr != addr) 261 return __addr; 262 263 return __recover_probed_insn(buf, addr); 264 } 265 266 /* Check if insn is INT or UD */ 267 static inline bool is_exception_insn(struct insn *insn) 268 { 269 /* UD uses 0f escape */ 270 if (insn->opcode.bytes[0] == 0x0f) { 271 /* UD0 / UD1 / UD2 */ 272 return insn->opcode.bytes[1] == 0xff || 273 insn->opcode.bytes[1] == 0xb9 || 274 insn->opcode.bytes[1] == 0x0b; 275 } 276 277 /* INT3 / INT n / INTO / INT1 */ 278 return insn->opcode.bytes[0] == 0xcc || 279 insn->opcode.bytes[0] == 0xcd || 280 insn->opcode.bytes[0] == 0xce || 281 insn->opcode.bytes[0] == 0xf1; 282 } 283 284 /* 285 * Check if paddr is at an instruction boundary and that instruction can 286 * be probed 287 */ 288 static bool can_probe(unsigned long paddr) 289 { 290 unsigned long addr, __addr, offset = 0; 291 struct insn insn; 292 kprobe_opcode_t buf[MAX_INSN_SIZE]; 293 294 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 295 return false; 296 297 /* Decode instructions */ 298 addr = paddr - offset; 299 while (addr < paddr) { 300 /* 301 * Check if the instruction has been modified by another 302 * kprobe, in which case we replace the breakpoint by the 303 * original instruction in our buffer. 304 * Also, jump optimization will change the breakpoint to 305 * relative-jump. Since the relative-jump itself is 306 * normally used, we just go through if there is no kprobe. 307 */ 308 __addr = recover_probed_instruction(buf, addr); 309 if (!__addr) 310 return false; 311 312 if (insn_decode_kernel(&insn, (void *)__addr) < 0) 313 return false; 314 315 #ifdef CONFIG_KGDB 316 /* 317 * If there is a dynamically installed kgdb sw breakpoint, 318 * this function should not be probed. 319 */ 320 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE && 321 kgdb_has_hit_break(addr)) 322 return false; 323 #endif 324 addr += insn.length; 325 } 326 327 /* Check if paddr is at an instruction boundary */ 328 if (addr != paddr) 329 return false; 330 331 __addr = recover_probed_instruction(buf, addr); 332 if (!__addr) 333 return false; 334 335 if (insn_decode_kernel(&insn, (void *)__addr) < 0) 336 return false; 337 338 /* INT and UD are special and should not be kprobed */ 339 if (is_exception_insn(&insn)) 340 return false; 341 342 if (IS_ENABLED(CONFIG_CFI_CLANG)) { 343 /* 344 * The compiler generates the following instruction sequence 345 * for indirect call checks and cfi.c decodes this; 346 * 347 * movl -<id>, %r10d ; 6 bytes 348 * addl -4(%reg), %r10d ; 4 bytes 349 * je .Ltmp1 ; 2 bytes 350 * ud2 ; <- regs->ip 351 * .Ltmp1: 352 * 353 * Also, these movl and addl are used for showing expected 354 * type. So those must not be touched. 355 */ 356 if (insn.opcode.value == 0xBA) 357 offset = 12; 358 else if (insn.opcode.value == 0x3) 359 offset = 6; 360 else 361 goto out; 362 363 /* This movl/addl is used for decoding CFI. */ 364 if (is_cfi_trap(addr + offset)) 365 return false; 366 } 367 368 out: 369 return true; 370 } 371 372 /* If x86 supports IBT (ENDBR) it must be skipped. */ 373 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset, 374 bool *on_func_entry) 375 { 376 if (is_endbr(*(u32 *)addr)) { 377 *on_func_entry = !offset || offset == 4; 378 if (*on_func_entry) 379 offset = 4; 380 381 } else { 382 *on_func_entry = !offset; 383 } 384 385 return (kprobe_opcode_t *)(addr + offset); 386 } 387 388 /* 389 * Copy an instruction with recovering modified instruction by kprobes 390 * and adjust the displacement if the instruction uses the %rip-relative 391 * addressing mode. Note that since @real will be the final place of copied 392 * instruction, displacement must be adjust by @real, not @dest. 393 * This returns the length of copied instruction, or 0 if it has an error. 394 */ 395 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 396 { 397 kprobe_opcode_t buf[MAX_INSN_SIZE]; 398 unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src); 399 int ret; 400 401 if (!recovered_insn || !insn) 402 return 0; 403 404 /* This can access kernel text if given address is not recovered */ 405 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 406 MAX_INSN_SIZE)) 407 return 0; 408 409 ret = insn_decode_kernel(insn, dest); 410 if (ret < 0) 411 return 0; 412 413 /* We can not probe force emulate prefixed instruction */ 414 if (insn_has_emulate_prefix(insn)) 415 return 0; 416 417 /* Another subsystem puts a breakpoint, failed to recover */ 418 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 419 return 0; 420 421 /* We should not singlestep on the exception masking instructions */ 422 if (insn_masking_exception(insn)) 423 return 0; 424 425 #ifdef CONFIG_X86_64 426 /* Only x86_64 has RIP relative instructions */ 427 if (insn_rip_relative(insn)) { 428 s64 newdisp; 429 u8 *disp; 430 /* 431 * The copied instruction uses the %rip-relative addressing 432 * mode. Adjust the displacement for the difference between 433 * the original location of this instruction and the location 434 * of the copy that will actually be run. The tricky bit here 435 * is making sure that the sign extension happens correctly in 436 * this calculation, since we need a signed 32-bit result to 437 * be sign-extended to 64 bits when it's added to the %rip 438 * value and yield the same 64-bit result that the sign- 439 * extension of the original signed 32-bit displacement would 440 * have given. 441 */ 442 newdisp = (u8 *) src + (s64) insn->displacement.value 443 - (u8 *) real; 444 if ((s64) (s32) newdisp != newdisp) { 445 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 446 return 0; 447 } 448 disp = (u8 *) dest + insn_offset_displacement(insn); 449 *(s32 *) disp = (s32) newdisp; 450 } 451 #endif 452 return insn->length; 453 } 454 455 /* Prepare reljump or int3 right after instruction */ 456 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p, 457 struct insn *insn) 458 { 459 int len = insn->length; 460 461 if (!IS_ENABLED(CONFIG_PREEMPTION) && 462 !p->post_handler && can_boost(insn, p->addr) && 463 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 464 /* 465 * These instructions can be executed directly if it 466 * jumps back to correct address. 467 */ 468 synthesize_reljump(buf + len, p->ainsn.insn + len, 469 p->addr + insn->length); 470 len += JMP32_INSN_SIZE; 471 p->ainsn.boostable = 1; 472 } else { 473 /* Otherwise, put an int3 for trapping singlestep */ 474 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE) 475 return -ENOSPC; 476 477 buf[len] = INT3_INSN_OPCODE; 478 len += INT3_INSN_SIZE; 479 } 480 481 return len; 482 } 483 484 /* Make page to RO mode when allocate it */ 485 void *alloc_insn_page(void) 486 { 487 void *page; 488 489 page = module_alloc(PAGE_SIZE); 490 if (!page) 491 return NULL; 492 493 /* 494 * TODO: Once additional kernel code protection mechanisms are set, ensure 495 * that the page was not maliciously altered and it is still zeroed. 496 */ 497 set_memory_rox((unsigned long)page, 1); 498 499 return page; 500 } 501 502 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */ 503 504 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs) 505 { 506 switch (p->ainsn.opcode) { 507 case 0xfa: /* cli */ 508 regs->flags &= ~(X86_EFLAGS_IF); 509 break; 510 case 0xfb: /* sti */ 511 regs->flags |= X86_EFLAGS_IF; 512 break; 513 case 0x9c: /* pushf */ 514 int3_emulate_push(regs, regs->flags); 515 break; 516 case 0x9d: /* popf */ 517 regs->flags = int3_emulate_pop(regs); 518 break; 519 } 520 regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 521 } 522 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers); 523 524 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs) 525 { 526 int3_emulate_ret(regs); 527 } 528 NOKPROBE_SYMBOL(kprobe_emulate_ret); 529 530 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs) 531 { 532 unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 533 534 func += p->ainsn.rel32; 535 int3_emulate_call(regs, func); 536 } 537 NOKPROBE_SYMBOL(kprobe_emulate_call); 538 539 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs) 540 { 541 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 542 543 ip += p->ainsn.rel32; 544 int3_emulate_jmp(regs, ip); 545 } 546 NOKPROBE_SYMBOL(kprobe_emulate_jmp); 547 548 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs) 549 { 550 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 551 552 int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32); 553 } 554 NOKPROBE_SYMBOL(kprobe_emulate_jcc); 555 556 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs) 557 { 558 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 559 bool match; 560 561 if (p->ainsn.loop.type != 3) { /* LOOP* */ 562 if (p->ainsn.loop.asize == 32) 563 match = ((*(u32 *)®s->cx)--) != 0; 564 #ifdef CONFIG_X86_64 565 else if (p->ainsn.loop.asize == 64) 566 match = ((*(u64 *)®s->cx)--) != 0; 567 #endif 568 else 569 match = ((*(u16 *)®s->cx)--) != 0; 570 } else { /* JCXZ */ 571 if (p->ainsn.loop.asize == 32) 572 match = *(u32 *)(®s->cx) == 0; 573 #ifdef CONFIG_X86_64 574 else if (p->ainsn.loop.asize == 64) 575 match = *(u64 *)(®s->cx) == 0; 576 #endif 577 else 578 match = *(u16 *)(®s->cx) == 0; 579 } 580 581 if (p->ainsn.loop.type == 0) /* LOOPNE */ 582 match = match && !(regs->flags & X86_EFLAGS_ZF); 583 else if (p->ainsn.loop.type == 1) /* LOOPE */ 584 match = match && (regs->flags & X86_EFLAGS_ZF); 585 586 if (match) 587 ip += p->ainsn.rel32; 588 int3_emulate_jmp(regs, ip); 589 } 590 NOKPROBE_SYMBOL(kprobe_emulate_loop); 591 592 static const int addrmode_regoffs[] = { 593 offsetof(struct pt_regs, ax), 594 offsetof(struct pt_regs, cx), 595 offsetof(struct pt_regs, dx), 596 offsetof(struct pt_regs, bx), 597 offsetof(struct pt_regs, sp), 598 offsetof(struct pt_regs, bp), 599 offsetof(struct pt_regs, si), 600 offsetof(struct pt_regs, di), 601 #ifdef CONFIG_X86_64 602 offsetof(struct pt_regs, r8), 603 offsetof(struct pt_regs, r9), 604 offsetof(struct pt_regs, r10), 605 offsetof(struct pt_regs, r11), 606 offsetof(struct pt_regs, r12), 607 offsetof(struct pt_regs, r13), 608 offsetof(struct pt_regs, r14), 609 offsetof(struct pt_regs, r15), 610 #endif 611 }; 612 613 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs) 614 { 615 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 616 617 int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size); 618 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 619 } 620 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect); 621 622 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs) 623 { 624 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 625 626 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 627 } 628 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect); 629 630 static int prepare_emulation(struct kprobe *p, struct insn *insn) 631 { 632 insn_byte_t opcode = insn->opcode.bytes[0]; 633 634 switch (opcode) { 635 case 0xfa: /* cli */ 636 case 0xfb: /* sti */ 637 case 0x9c: /* pushfl */ 638 case 0x9d: /* popf/popfd */ 639 /* 640 * IF modifiers must be emulated since it will enable interrupt while 641 * int3 single stepping. 642 */ 643 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers; 644 p->ainsn.opcode = opcode; 645 break; 646 case 0xc2: /* ret/lret */ 647 case 0xc3: 648 case 0xca: 649 case 0xcb: 650 p->ainsn.emulate_op = kprobe_emulate_ret; 651 break; 652 case 0x9a: /* far call absolute -- segment is not supported */ 653 case 0xea: /* far jmp absolute -- segment is not supported */ 654 case 0xcc: /* int3 */ 655 case 0xcf: /* iret -- in-kernel IRET is not supported */ 656 return -EOPNOTSUPP; 657 break; 658 case 0xe8: /* near call relative */ 659 p->ainsn.emulate_op = kprobe_emulate_call; 660 if (insn->immediate.nbytes == 2) 661 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 662 else 663 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 664 break; 665 case 0xeb: /* short jump relative */ 666 case 0xe9: /* near jump relative */ 667 p->ainsn.emulate_op = kprobe_emulate_jmp; 668 if (insn->immediate.nbytes == 1) 669 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 670 else if (insn->immediate.nbytes == 2) 671 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 672 else 673 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 674 break; 675 case 0x70 ... 0x7f: 676 /* 1 byte conditional jump */ 677 p->ainsn.emulate_op = kprobe_emulate_jcc; 678 p->ainsn.jcc.type = opcode & 0xf; 679 p->ainsn.rel32 = insn->immediate.value; 680 break; 681 case 0x0f: 682 opcode = insn->opcode.bytes[1]; 683 if ((opcode & 0xf0) == 0x80) { 684 /* 2 bytes Conditional Jump */ 685 p->ainsn.emulate_op = kprobe_emulate_jcc; 686 p->ainsn.jcc.type = opcode & 0xf; 687 if (insn->immediate.nbytes == 2) 688 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 689 else 690 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 691 } else if (opcode == 0x01 && 692 X86_MODRM_REG(insn->modrm.bytes[0]) == 0 && 693 X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) { 694 /* VM extensions - not supported */ 695 return -EOPNOTSUPP; 696 } 697 break; 698 case 0xe0: /* Loop NZ */ 699 case 0xe1: /* Loop */ 700 case 0xe2: /* Loop */ 701 case 0xe3: /* J*CXZ */ 702 p->ainsn.emulate_op = kprobe_emulate_loop; 703 p->ainsn.loop.type = opcode & 0x3; 704 p->ainsn.loop.asize = insn->addr_bytes * 8; 705 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 706 break; 707 case 0xff: 708 /* 709 * Since the 0xff is an extended group opcode, the instruction 710 * is determined by the MOD/RM byte. 711 */ 712 opcode = insn->modrm.bytes[0]; 713 switch (X86_MODRM_REG(opcode)) { 714 case 0b010: /* FF /2, call near, absolute indirect */ 715 p->ainsn.emulate_op = kprobe_emulate_call_indirect; 716 break; 717 case 0b100: /* FF /4, jmp near, absolute indirect */ 718 p->ainsn.emulate_op = kprobe_emulate_jmp_indirect; 719 break; 720 case 0b011: /* FF /3, call far, absolute indirect */ 721 case 0b101: /* FF /5, jmp far, absolute indirect */ 722 return -EOPNOTSUPP; 723 } 724 725 if (!p->ainsn.emulate_op) 726 break; 727 728 if (insn->addr_bytes != sizeof(unsigned long)) 729 return -EOPNOTSUPP; /* Don't support different size */ 730 if (X86_MODRM_MOD(opcode) != 3) 731 return -EOPNOTSUPP; /* TODO: support memory addressing */ 732 733 p->ainsn.indirect.reg = X86_MODRM_RM(opcode); 734 #ifdef CONFIG_X86_64 735 if (X86_REX_B(insn->rex_prefix.value)) 736 p->ainsn.indirect.reg += 8; 737 #endif 738 break; 739 default: 740 break; 741 } 742 p->ainsn.size = insn->length; 743 744 return 0; 745 } 746 747 static int arch_copy_kprobe(struct kprobe *p) 748 { 749 struct insn insn; 750 kprobe_opcode_t buf[MAX_INSN_SIZE]; 751 int ret, len; 752 753 /* Copy an instruction with recovering if other optprobe modifies it.*/ 754 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 755 if (!len) 756 return -EINVAL; 757 758 /* Analyze the opcode and setup emulate functions */ 759 ret = prepare_emulation(p, &insn); 760 if (ret < 0) 761 return ret; 762 763 /* Add int3 for single-step or booster jmp */ 764 len = prepare_singlestep(buf, p, &insn); 765 if (len < 0) 766 return len; 767 768 /* Also, displacement change doesn't affect the first byte */ 769 p->opcode = buf[0]; 770 771 p->ainsn.tp_len = len; 772 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); 773 774 /* OK, write back the instruction(s) into ROX insn buffer */ 775 text_poke(p->ainsn.insn, buf, len); 776 777 return 0; 778 } 779 780 int arch_prepare_kprobe(struct kprobe *p) 781 { 782 int ret; 783 784 if (alternatives_text_reserved(p->addr, p->addr)) 785 return -EINVAL; 786 787 if (!can_probe((unsigned long)p->addr)) 788 return -EILSEQ; 789 790 memset(&p->ainsn, 0, sizeof(p->ainsn)); 791 792 /* insn: must be on special executable page on x86. */ 793 p->ainsn.insn = get_insn_slot(); 794 if (!p->ainsn.insn) 795 return -ENOMEM; 796 797 ret = arch_copy_kprobe(p); 798 if (ret) { 799 free_insn_slot(p->ainsn.insn, 0); 800 p->ainsn.insn = NULL; 801 } 802 803 return ret; 804 } 805 806 void arch_arm_kprobe(struct kprobe *p) 807 { 808 u8 int3 = INT3_INSN_OPCODE; 809 810 text_poke(p->addr, &int3, 1); 811 text_poke_sync(); 812 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); 813 } 814 815 void arch_disarm_kprobe(struct kprobe *p) 816 { 817 u8 int3 = INT3_INSN_OPCODE; 818 819 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); 820 text_poke(p->addr, &p->opcode, 1); 821 text_poke_sync(); 822 } 823 824 void arch_remove_kprobe(struct kprobe *p) 825 { 826 if (p->ainsn.insn) { 827 /* Record the perf event before freeing the slot */ 828 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, 829 p->ainsn.tp_len, NULL, 0); 830 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 831 p->ainsn.insn = NULL; 832 } 833 } 834 835 static nokprobe_inline void 836 save_previous_kprobe(struct kprobe_ctlblk *kcb) 837 { 838 kcb->prev_kprobe.kp = kprobe_running(); 839 kcb->prev_kprobe.status = kcb->kprobe_status; 840 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 841 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 842 } 843 844 static nokprobe_inline void 845 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 846 { 847 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 848 kcb->kprobe_status = kcb->prev_kprobe.status; 849 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 850 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 851 } 852 853 static nokprobe_inline void 854 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 855 struct kprobe_ctlblk *kcb) 856 { 857 __this_cpu_write(current_kprobe, p); 858 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 859 = (regs->flags & X86_EFLAGS_IF); 860 } 861 862 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs, 863 struct kprobe_ctlblk *kcb) 864 { 865 /* Restore back the original saved kprobes variables and continue. */ 866 if (kcb->kprobe_status == KPROBE_REENTER) { 867 /* This will restore both kcb and current_kprobe */ 868 restore_previous_kprobe(kcb); 869 } else { 870 /* 871 * Always update the kcb status because 872 * reset_curent_kprobe() doesn't update kcb. 873 */ 874 kcb->kprobe_status = KPROBE_HIT_SSDONE; 875 if (cur->post_handler) 876 cur->post_handler(cur, regs, 0); 877 reset_current_kprobe(); 878 } 879 } 880 NOKPROBE_SYMBOL(kprobe_post_process); 881 882 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 883 struct kprobe_ctlblk *kcb, int reenter) 884 { 885 if (setup_detour_execution(p, regs, reenter)) 886 return; 887 888 #if !defined(CONFIG_PREEMPTION) 889 if (p->ainsn.boostable) { 890 /* Boost up -- we can execute copied instructions directly */ 891 if (!reenter) 892 reset_current_kprobe(); 893 /* 894 * Reentering boosted probe doesn't reset current_kprobe, 895 * nor set current_kprobe, because it doesn't use single 896 * stepping. 897 */ 898 regs->ip = (unsigned long)p->ainsn.insn; 899 return; 900 } 901 #endif 902 if (reenter) { 903 save_previous_kprobe(kcb); 904 set_current_kprobe(p, regs, kcb); 905 kcb->kprobe_status = KPROBE_REENTER; 906 } else 907 kcb->kprobe_status = KPROBE_HIT_SS; 908 909 if (p->ainsn.emulate_op) { 910 p->ainsn.emulate_op(p, regs); 911 kprobe_post_process(p, regs, kcb); 912 return; 913 } 914 915 /* Disable interrupt, and set ip register on trampoline */ 916 regs->flags &= ~X86_EFLAGS_IF; 917 regs->ip = (unsigned long)p->ainsn.insn; 918 } 919 NOKPROBE_SYMBOL(setup_singlestep); 920 921 /* 922 * Called after single-stepping. p->addr is the address of the 923 * instruction whose first byte has been replaced by the "int3" 924 * instruction. To avoid the SMP problems that can occur when we 925 * temporarily put back the original opcode to single-step, we 926 * single-stepped a copy of the instruction. The address of this 927 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again 928 * right after the copied instruction. 929 * Different from the trap single-step, "int3" single-step can not 930 * handle the instruction which changes the ip register, e.g. jmp, 931 * call, conditional jmp, and the instructions which changes the IF 932 * flags because interrupt must be disabled around the single-stepping. 933 * Such instructions are software emulated, but others are single-stepped 934 * using "int3". 935 * 936 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to 937 * be adjusted, so that we can resume execution on correct code. 938 */ 939 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs, 940 struct kprobe_ctlblk *kcb) 941 { 942 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 943 unsigned long orig_ip = (unsigned long)p->addr; 944 945 /* Restore saved interrupt flag and ip register */ 946 regs->flags |= kcb->kprobe_saved_flags; 947 /* Note that regs->ip is executed int3 so must be a step back */ 948 regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE; 949 } 950 NOKPROBE_SYMBOL(resume_singlestep); 951 952 /* 953 * We have reentered the kprobe_handler(), since another probe was hit while 954 * within the handler. We save the original kprobes variables and just single 955 * step on the instruction of the new probe without calling any user handlers. 956 */ 957 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 958 struct kprobe_ctlblk *kcb) 959 { 960 switch (kcb->kprobe_status) { 961 case KPROBE_HIT_SSDONE: 962 case KPROBE_HIT_ACTIVE: 963 case KPROBE_HIT_SS: 964 kprobes_inc_nmissed_count(p); 965 setup_singlestep(p, regs, kcb, 1); 966 break; 967 case KPROBE_REENTER: 968 /* A probe has been hit in the codepath leading up to, or just 969 * after, single-stepping of a probed instruction. This entire 970 * codepath should strictly reside in .kprobes.text section. 971 * Raise a BUG or we'll continue in an endless reentering loop 972 * and eventually a stack overflow. 973 */ 974 pr_err("Unrecoverable kprobe detected.\n"); 975 dump_kprobe(p); 976 BUG(); 977 default: 978 /* impossible cases */ 979 WARN_ON(1); 980 return 0; 981 } 982 983 return 1; 984 } 985 NOKPROBE_SYMBOL(reenter_kprobe); 986 987 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb) 988 { 989 return (kcb->kprobe_status == KPROBE_HIT_SS || 990 kcb->kprobe_status == KPROBE_REENTER); 991 } 992 993 /* 994 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 995 * remain disabled throughout this function. 996 */ 997 int kprobe_int3_handler(struct pt_regs *regs) 998 { 999 kprobe_opcode_t *addr; 1000 struct kprobe *p; 1001 struct kprobe_ctlblk *kcb; 1002 1003 if (user_mode(regs)) 1004 return 0; 1005 1006 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 1007 /* 1008 * We don't want to be preempted for the entire duration of kprobe 1009 * processing. Since int3 and debug trap disables irqs and we clear 1010 * IF while singlestepping, it must be no preemptible. 1011 */ 1012 1013 kcb = get_kprobe_ctlblk(); 1014 p = get_kprobe(addr); 1015 1016 if (p) { 1017 if (kprobe_running()) { 1018 if (reenter_kprobe(p, regs, kcb)) 1019 return 1; 1020 } else { 1021 set_current_kprobe(p, regs, kcb); 1022 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1023 1024 /* 1025 * If we have no pre-handler or it returned 0, we 1026 * continue with normal processing. If we have a 1027 * pre-handler and it returned non-zero, that means 1028 * user handler setup registers to exit to another 1029 * instruction, we must skip the single stepping. 1030 */ 1031 if (!p->pre_handler || !p->pre_handler(p, regs)) 1032 setup_singlestep(p, regs, kcb, 0); 1033 else 1034 reset_current_kprobe(); 1035 return 1; 1036 } 1037 } else if (kprobe_is_ss(kcb)) { 1038 p = kprobe_running(); 1039 if ((unsigned long)p->ainsn.insn < regs->ip && 1040 (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) { 1041 /* Most provably this is the second int3 for singlestep */ 1042 resume_singlestep(p, regs, kcb); 1043 kprobe_post_process(p, regs, kcb); 1044 return 1; 1045 } 1046 } /* else: not a kprobe fault; let the kernel handle it */ 1047 1048 return 0; 1049 } 1050 NOKPROBE_SYMBOL(kprobe_int3_handler); 1051 1052 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1053 { 1054 struct kprobe *cur = kprobe_running(); 1055 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1056 1057 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1058 /* This must happen on single-stepping */ 1059 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1060 kcb->kprobe_status != KPROBE_REENTER); 1061 /* 1062 * We are here because the instruction being single 1063 * stepped caused a page fault. We reset the current 1064 * kprobe and the ip points back to the probe address 1065 * and allow the page fault handler to continue as a 1066 * normal page fault. 1067 */ 1068 regs->ip = (unsigned long)cur->addr; 1069 1070 /* 1071 * If the IF flag was set before the kprobe hit, 1072 * don't touch it: 1073 */ 1074 regs->flags |= kcb->kprobe_old_flags; 1075 1076 if (kcb->kprobe_status == KPROBE_REENTER) 1077 restore_previous_kprobe(kcb); 1078 else 1079 reset_current_kprobe(); 1080 } 1081 1082 return 0; 1083 } 1084 NOKPROBE_SYMBOL(kprobe_fault_handler); 1085 1086 int __init arch_populate_kprobe_blacklist(void) 1087 { 1088 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1089 (unsigned long)__entry_text_end); 1090 } 1091 1092 int __init arch_init_kprobes(void) 1093 { 1094 return 0; 1095 } 1096 1097 int arch_trampoline_kprobe(struct kprobe *p) 1098 { 1099 return 0; 1100 } 1101