xref: /linux/arch/x86/kernel/kprobes/core.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
60 
61 #include "common.h"
62 
63 void jprobe_return_end(void);
64 
65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67 
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
72 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
73 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
74 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
75 	 << (row % 32))
76 	/*
77 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 	 * Groups, and some special opcodes can not boost.
79 	 * This is non-const and volatile to keep gcc from statically
80 	 * optimizing it out, as variable_test_bit makes gcc think only
81 	 * *(unsigned long*) is used.
82 	 */
83 static volatile u32 twobyte_is_boostable[256 / 32] = {
84 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
85 	/*      ----------------------------------------------          */
86 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
88 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
102 	/*      -----------------------------------------------         */
103 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
104 };
105 #undef W
106 
107 struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 	{"__switch_to", }, /* This function switches only current task, but
109 			      doesn't switch kernel stack.*/
110 	{NULL, NULL}	/* Terminator */
111 };
112 
113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114 
115 static nokprobe_inline void
116 __synthesize_relative_insn(void *from, void *to, u8 op)
117 {
118 	struct __arch_relative_insn {
119 		u8 op;
120 		s32 raddr;
121 	} __packed *insn;
122 
123 	insn = (struct __arch_relative_insn *)from;
124 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
125 	insn->op = op;
126 }
127 
128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
129 void synthesize_reljump(void *from, void *to)
130 {
131 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_reljump);
134 
135 /* Insert a call instruction at address 'from', which calls address 'to'.*/
136 void synthesize_relcall(void *from, void *to)
137 {
138 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
139 }
140 NOKPROBE_SYMBOL(synthesize_relcall);
141 
142 /*
143  * Skip the prefixes of the instruction.
144  */
145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
146 {
147 	insn_attr_t attr;
148 
149 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 	while (inat_is_legacy_prefix(attr)) {
151 		insn++;
152 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 	}
154 #ifdef CONFIG_X86_64
155 	if (inat_is_rex_prefix(attr))
156 		insn++;
157 #endif
158 	return insn;
159 }
160 NOKPROBE_SYMBOL(skip_prefixes);
161 
162 /*
163  * Returns non-zero if opcode is boostable.
164  * RIP relative instructions are adjusted at copying time in 64 bits mode
165  */
166 int can_boost(kprobe_opcode_t *opcodes)
167 {
168 	kprobe_opcode_t opcode;
169 	kprobe_opcode_t *orig_opcodes = opcodes;
170 
171 	if (search_exception_tables((unsigned long)opcodes))
172 		return 0;	/* Page fault may occur on this address. */
173 
174 retry:
175 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
176 		return 0;
177 	opcode = *(opcodes++);
178 
179 	/* 2nd-byte opcode */
180 	if (opcode == 0x0f) {
181 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
182 			return 0;
183 		return test_bit(*opcodes,
184 				(unsigned long *)twobyte_is_boostable);
185 	}
186 
187 	switch (opcode & 0xf0) {
188 #ifdef CONFIG_X86_64
189 	case 0x40:
190 		goto retry; /* REX prefix is boostable */
191 #endif
192 	case 0x60:
193 		if (0x63 < opcode && opcode < 0x67)
194 			goto retry; /* prefixes */
195 		/* can't boost Address-size override and bound */
196 		return (opcode != 0x62 && opcode != 0x67);
197 	case 0x70:
198 		return 0; /* can't boost conditional jump */
199 	case 0xc0:
200 		/* can't boost software-interruptions */
201 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 	case 0xd0:
203 		/* can boost AA* and XLAT */
204 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 	case 0xe0:
206 		/* can boost in/out and absolute jmps */
207 		return ((opcode & 0x04) || opcode == 0xea);
208 	case 0xf0:
209 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
210 			goto retry; /* lock/rep(ne) prefix */
211 		/* clear and set flags are boostable */
212 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 	default:
214 		/* segment override prefixes are boostable */
215 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
216 			goto retry; /* prefixes */
217 		/* CS override prefix and call are not boostable */
218 		return (opcode != 0x2e && opcode != 0x9a);
219 	}
220 }
221 
222 static unsigned long
223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
224 {
225 	struct kprobe *kp;
226 	unsigned long faddr;
227 
228 	kp = get_kprobe((void *)addr);
229 	faddr = ftrace_location(addr);
230 	/*
231 	 * Addresses inside the ftrace location are refused by
232 	 * arch_check_ftrace_location(). Something went terribly wrong
233 	 * if such an address is checked here.
234 	 */
235 	if (WARN_ON(faddr && faddr != addr))
236 		return 0UL;
237 	/*
238 	 * Use the current code if it is not modified by Kprobe
239 	 * and it cannot be modified by ftrace.
240 	 */
241 	if (!kp && !faddr)
242 		return addr;
243 
244 	/*
245 	 * Basically, kp->ainsn.insn has an original instruction.
246 	 * However, RIP-relative instruction can not do single-stepping
247 	 * at different place, __copy_instruction() tweaks the displacement of
248 	 * that instruction. In that case, we can't recover the instruction
249 	 * from the kp->ainsn.insn.
250 	 *
251 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
252 	 * of the first byte of the probed instruction, which is overwritten
253 	 * by int3. And the instruction at kp->addr is not modified by kprobes
254 	 * except for the first byte, we can recover the original instruction
255 	 * from it and kp->opcode.
256 	 *
257 	 * In case of Kprobes using ftrace, we do not have a copy of
258 	 * the original instruction. In fact, the ftrace location might
259 	 * be modified at anytime and even could be in an inconsistent state.
260 	 * Fortunately, we know that the original code is the ideal 5-byte
261 	 * long NOP.
262 	 */
263 	memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
264 	if (faddr)
265 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 	else
267 		buf[0] = kp->opcode;
268 	return (unsigned long)buf;
269 }
270 
271 /*
272  * Recover the probed instruction at addr for further analysis.
273  * Caller must lock kprobes by kprobe_mutex, or disable preemption
274  * for preventing to release referencing kprobes.
275  * Returns zero if the instruction can not get recovered.
276  */
277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
278 {
279 	unsigned long __addr;
280 
281 	__addr = __recover_optprobed_insn(buf, addr);
282 	if (__addr != addr)
283 		return __addr;
284 
285 	return __recover_probed_insn(buf, addr);
286 }
287 
288 /* Check if paddr is at an instruction boundary */
289 static int can_probe(unsigned long paddr)
290 {
291 	unsigned long addr, __addr, offset = 0;
292 	struct insn insn;
293 	kprobe_opcode_t buf[MAX_INSN_SIZE];
294 
295 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
296 		return 0;
297 
298 	/* Decode instructions */
299 	addr = paddr - offset;
300 	while (addr < paddr) {
301 		/*
302 		 * Check if the instruction has been modified by another
303 		 * kprobe, in which case we replace the breakpoint by the
304 		 * original instruction in our buffer.
305 		 * Also, jump optimization will change the breakpoint to
306 		 * relative-jump. Since the relative-jump itself is
307 		 * normally used, we just go through if there is no kprobe.
308 		 */
309 		__addr = recover_probed_instruction(buf, addr);
310 		if (!__addr)
311 			return 0;
312 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
313 		insn_get_length(&insn);
314 
315 		/*
316 		 * Another debugging subsystem might insert this breakpoint.
317 		 * In that case, we can't recover it.
318 		 */
319 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 			return 0;
321 		addr += insn.length;
322 	}
323 
324 	return (addr == paddr);
325 }
326 
327 /*
328  * Returns non-zero if opcode modifies the interrupt flag.
329  */
330 static int is_IF_modifier(kprobe_opcode_t *insn)
331 {
332 	/* Skip prefixes */
333 	insn = skip_prefixes(insn);
334 
335 	switch (*insn) {
336 	case 0xfa:		/* cli */
337 	case 0xfb:		/* sti */
338 	case 0xcf:		/* iret/iretd */
339 	case 0x9d:		/* popf/popfd */
340 		return 1;
341 	}
342 
343 	return 0;
344 }
345 
346 /*
347  * Copy an instruction and adjust the displacement if the instruction
348  * uses the %rip-relative addressing mode.
349  * If it does, Return the address of the 32-bit displacement word.
350  * If not, return null.
351  * Only applicable to 64-bit x86.
352  */
353 int __copy_instruction(u8 *dest, u8 *src)
354 {
355 	struct insn insn;
356 	kprobe_opcode_t buf[MAX_INSN_SIZE];
357 	int length;
358 	unsigned long recovered_insn =
359 		recover_probed_instruction(buf, (unsigned long)src);
360 
361 	if (!recovered_insn)
362 		return 0;
363 	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
364 	insn_get_length(&insn);
365 	length = insn.length;
366 
367 	/* Another subsystem puts a breakpoint, failed to recover */
368 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
369 		return 0;
370 	memcpy(dest, insn.kaddr, length);
371 
372 #ifdef CONFIG_X86_64
373 	if (insn_rip_relative(&insn)) {
374 		s64 newdisp;
375 		u8 *disp;
376 		kernel_insn_init(&insn, dest, length);
377 		insn_get_displacement(&insn);
378 		/*
379 		 * The copied instruction uses the %rip-relative addressing
380 		 * mode.  Adjust the displacement for the difference between
381 		 * the original location of this instruction and the location
382 		 * of the copy that will actually be run.  The tricky bit here
383 		 * is making sure that the sign extension happens correctly in
384 		 * this calculation, since we need a signed 32-bit result to
385 		 * be sign-extended to 64 bits when it's added to the %rip
386 		 * value and yield the same 64-bit result that the sign-
387 		 * extension of the original signed 32-bit displacement would
388 		 * have given.
389 		 */
390 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
391 		if ((s64) (s32) newdisp != newdisp) {
392 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
393 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
394 			return 0;
395 		}
396 		disp = (u8 *) dest + insn_offset_displacement(&insn);
397 		*(s32 *) disp = (s32) newdisp;
398 	}
399 #endif
400 	return length;
401 }
402 
403 static int arch_copy_kprobe(struct kprobe *p)
404 {
405 	int ret;
406 
407 	/* Copy an instruction with recovering if other optprobe modifies it.*/
408 	ret = __copy_instruction(p->ainsn.insn, p->addr);
409 	if (!ret)
410 		return -EINVAL;
411 
412 	/*
413 	 * __copy_instruction can modify the displacement of the instruction,
414 	 * but it doesn't affect boostable check.
415 	 */
416 	if (can_boost(p->ainsn.insn))
417 		p->ainsn.boostable = 0;
418 	else
419 		p->ainsn.boostable = -1;
420 
421 	/* Check whether the instruction modifies Interrupt Flag or not */
422 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
423 
424 	/* Also, displacement change doesn't affect the first byte */
425 	p->opcode = p->ainsn.insn[0];
426 
427 	return 0;
428 }
429 
430 int arch_prepare_kprobe(struct kprobe *p)
431 {
432 	if (alternatives_text_reserved(p->addr, p->addr))
433 		return -EINVAL;
434 
435 	if (!can_probe((unsigned long)p->addr))
436 		return -EILSEQ;
437 	/* insn: must be on special executable page on x86. */
438 	p->ainsn.insn = get_insn_slot();
439 	if (!p->ainsn.insn)
440 		return -ENOMEM;
441 
442 	return arch_copy_kprobe(p);
443 }
444 
445 void arch_arm_kprobe(struct kprobe *p)
446 {
447 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
448 }
449 
450 void arch_disarm_kprobe(struct kprobe *p)
451 {
452 	text_poke(p->addr, &p->opcode, 1);
453 }
454 
455 void arch_remove_kprobe(struct kprobe *p)
456 {
457 	if (p->ainsn.insn) {
458 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
459 		p->ainsn.insn = NULL;
460 	}
461 }
462 
463 static nokprobe_inline void
464 save_previous_kprobe(struct kprobe_ctlblk *kcb)
465 {
466 	kcb->prev_kprobe.kp = kprobe_running();
467 	kcb->prev_kprobe.status = kcb->kprobe_status;
468 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
469 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
470 }
471 
472 static nokprobe_inline void
473 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
474 {
475 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
476 	kcb->kprobe_status = kcb->prev_kprobe.status;
477 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
478 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
479 }
480 
481 static nokprobe_inline void
482 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
483 		   struct kprobe_ctlblk *kcb)
484 {
485 	__this_cpu_write(current_kprobe, p);
486 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
487 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
488 	if (p->ainsn.if_modifier)
489 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
490 }
491 
492 static nokprobe_inline void clear_btf(void)
493 {
494 	if (test_thread_flag(TIF_BLOCKSTEP)) {
495 		unsigned long debugctl = get_debugctlmsr();
496 
497 		debugctl &= ~DEBUGCTLMSR_BTF;
498 		update_debugctlmsr(debugctl);
499 	}
500 }
501 
502 static nokprobe_inline void restore_btf(void)
503 {
504 	if (test_thread_flag(TIF_BLOCKSTEP)) {
505 		unsigned long debugctl = get_debugctlmsr();
506 
507 		debugctl |= DEBUGCTLMSR_BTF;
508 		update_debugctlmsr(debugctl);
509 	}
510 }
511 
512 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
513 {
514 	unsigned long *sara = stack_addr(regs);
515 
516 	ri->ret_addr = (kprobe_opcode_t *) *sara;
517 
518 	/* Replace the return addr with trampoline addr */
519 	*sara = (unsigned long) &kretprobe_trampoline;
520 }
521 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
522 
523 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
524 			     struct kprobe_ctlblk *kcb, int reenter)
525 {
526 	if (setup_detour_execution(p, regs, reenter))
527 		return;
528 
529 #if !defined(CONFIG_PREEMPT)
530 	if (p->ainsn.boostable == 1 && !p->post_handler) {
531 		/* Boost up -- we can execute copied instructions directly */
532 		if (!reenter)
533 			reset_current_kprobe();
534 		/*
535 		 * Reentering boosted probe doesn't reset current_kprobe,
536 		 * nor set current_kprobe, because it doesn't use single
537 		 * stepping.
538 		 */
539 		regs->ip = (unsigned long)p->ainsn.insn;
540 		preempt_enable_no_resched();
541 		return;
542 	}
543 #endif
544 	if (reenter) {
545 		save_previous_kprobe(kcb);
546 		set_current_kprobe(p, regs, kcb);
547 		kcb->kprobe_status = KPROBE_REENTER;
548 	} else
549 		kcb->kprobe_status = KPROBE_HIT_SS;
550 	/* Prepare real single stepping */
551 	clear_btf();
552 	regs->flags |= X86_EFLAGS_TF;
553 	regs->flags &= ~X86_EFLAGS_IF;
554 	/* single step inline if the instruction is an int3 */
555 	if (p->opcode == BREAKPOINT_INSTRUCTION)
556 		regs->ip = (unsigned long)p->addr;
557 	else
558 		regs->ip = (unsigned long)p->ainsn.insn;
559 }
560 NOKPROBE_SYMBOL(setup_singlestep);
561 
562 /*
563  * We have reentered the kprobe_handler(), since another probe was hit while
564  * within the handler. We save the original kprobes variables and just single
565  * step on the instruction of the new probe without calling any user handlers.
566  */
567 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
568 			  struct kprobe_ctlblk *kcb)
569 {
570 	switch (kcb->kprobe_status) {
571 	case KPROBE_HIT_SSDONE:
572 	case KPROBE_HIT_ACTIVE:
573 	case KPROBE_HIT_SS:
574 		kprobes_inc_nmissed_count(p);
575 		setup_singlestep(p, regs, kcb, 1);
576 		break;
577 	case KPROBE_REENTER:
578 		/* A probe has been hit in the codepath leading up to, or just
579 		 * after, single-stepping of a probed instruction. This entire
580 		 * codepath should strictly reside in .kprobes.text section.
581 		 * Raise a BUG or we'll continue in an endless reentering loop
582 		 * and eventually a stack overflow.
583 		 */
584 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
585 		       p->addr);
586 		dump_kprobe(p);
587 		BUG();
588 	default:
589 		/* impossible cases */
590 		WARN_ON(1);
591 		return 0;
592 	}
593 
594 	return 1;
595 }
596 NOKPROBE_SYMBOL(reenter_kprobe);
597 
598 /*
599  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
600  * remain disabled throughout this function.
601  */
602 int kprobe_int3_handler(struct pt_regs *regs)
603 {
604 	kprobe_opcode_t *addr;
605 	struct kprobe *p;
606 	struct kprobe_ctlblk *kcb;
607 
608 	if (user_mode(regs))
609 		return 0;
610 
611 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
612 	/*
613 	 * We don't want to be preempted for the entire
614 	 * duration of kprobe processing. We conditionally
615 	 * re-enable preemption at the end of this function,
616 	 * and also in reenter_kprobe() and setup_singlestep().
617 	 */
618 	preempt_disable();
619 
620 	kcb = get_kprobe_ctlblk();
621 	p = get_kprobe(addr);
622 
623 	if (p) {
624 		if (kprobe_running()) {
625 			if (reenter_kprobe(p, regs, kcb))
626 				return 1;
627 		} else {
628 			set_current_kprobe(p, regs, kcb);
629 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
630 
631 			/*
632 			 * If we have no pre-handler or it returned 0, we
633 			 * continue with normal processing.  If we have a
634 			 * pre-handler and it returned non-zero, it prepped
635 			 * for calling the break_handler below on re-entry
636 			 * for jprobe processing, so get out doing nothing
637 			 * more here.
638 			 */
639 			if (!p->pre_handler || !p->pre_handler(p, regs))
640 				setup_singlestep(p, regs, kcb, 0);
641 			return 1;
642 		}
643 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
644 		/*
645 		 * The breakpoint instruction was removed right
646 		 * after we hit it.  Another cpu has removed
647 		 * either a probepoint or a debugger breakpoint
648 		 * at this address.  In either case, no further
649 		 * handling of this interrupt is appropriate.
650 		 * Back up over the (now missing) int3 and run
651 		 * the original instruction.
652 		 */
653 		regs->ip = (unsigned long)addr;
654 		preempt_enable_no_resched();
655 		return 1;
656 	} else if (kprobe_running()) {
657 		p = __this_cpu_read(current_kprobe);
658 		if (p->break_handler && p->break_handler(p, regs)) {
659 			if (!skip_singlestep(p, regs, kcb))
660 				setup_singlestep(p, regs, kcb, 0);
661 			return 1;
662 		}
663 	} /* else: not a kprobe fault; let the kernel handle it */
664 
665 	preempt_enable_no_resched();
666 	return 0;
667 }
668 NOKPROBE_SYMBOL(kprobe_int3_handler);
669 
670 /*
671  * When a retprobed function returns, this code saves registers and
672  * calls trampoline_handler() runs, which calls the kretprobe's handler.
673  */
674 static void __used kretprobe_trampoline_holder(void)
675 {
676 	asm volatile (
677 			".global kretprobe_trampoline\n"
678 			"kretprobe_trampoline: \n"
679 #ifdef CONFIG_X86_64
680 			/* We don't bother saving the ss register */
681 			"	pushq %rsp\n"
682 			"	pushfq\n"
683 			SAVE_REGS_STRING
684 			"	movq %rsp, %rdi\n"
685 			"	call trampoline_handler\n"
686 			/* Replace saved sp with true return address. */
687 			"	movq %rax, 152(%rsp)\n"
688 			RESTORE_REGS_STRING
689 			"	popfq\n"
690 #else
691 			"	pushf\n"
692 			SAVE_REGS_STRING
693 			"	movl %esp, %eax\n"
694 			"	call trampoline_handler\n"
695 			/* Move flags to cs */
696 			"	movl 56(%esp), %edx\n"
697 			"	movl %edx, 52(%esp)\n"
698 			/* Replace saved flags with true return address. */
699 			"	movl %eax, 56(%esp)\n"
700 			RESTORE_REGS_STRING
701 			"	popf\n"
702 #endif
703 			"	ret\n");
704 }
705 NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
706 NOKPROBE_SYMBOL(kretprobe_trampoline);
707 
708 /*
709  * Called from kretprobe_trampoline
710  */
711 __visible __used void *trampoline_handler(struct pt_regs *regs)
712 {
713 	struct kretprobe_instance *ri = NULL;
714 	struct hlist_head *head, empty_rp;
715 	struct hlist_node *tmp;
716 	unsigned long flags, orig_ret_address = 0;
717 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
718 	kprobe_opcode_t *correct_ret_addr = NULL;
719 
720 	INIT_HLIST_HEAD(&empty_rp);
721 	kretprobe_hash_lock(current, &head, &flags);
722 	/* fixup registers */
723 #ifdef CONFIG_X86_64
724 	regs->cs = __KERNEL_CS;
725 #else
726 	regs->cs = __KERNEL_CS | get_kernel_rpl();
727 	regs->gs = 0;
728 #endif
729 	regs->ip = trampoline_address;
730 	regs->orig_ax = ~0UL;
731 
732 	/*
733 	 * It is possible to have multiple instances associated with a given
734 	 * task either because multiple functions in the call path have
735 	 * return probes installed on them, and/or more than one
736 	 * return probe was registered for a target function.
737 	 *
738 	 * We can handle this because:
739 	 *     - instances are always pushed into the head of the list
740 	 *     - when multiple return probes are registered for the same
741 	 *	 function, the (chronologically) first instance's ret_addr
742 	 *	 will be the real return address, and all the rest will
743 	 *	 point to kretprobe_trampoline.
744 	 */
745 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
746 		if (ri->task != current)
747 			/* another task is sharing our hash bucket */
748 			continue;
749 
750 		orig_ret_address = (unsigned long)ri->ret_addr;
751 
752 		if (orig_ret_address != trampoline_address)
753 			/*
754 			 * This is the real return address. Any other
755 			 * instances associated with this task are for
756 			 * other calls deeper on the call stack
757 			 */
758 			break;
759 	}
760 
761 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
762 
763 	correct_ret_addr = ri->ret_addr;
764 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
765 		if (ri->task != current)
766 			/* another task is sharing our hash bucket */
767 			continue;
768 
769 		orig_ret_address = (unsigned long)ri->ret_addr;
770 		if (ri->rp && ri->rp->handler) {
771 			__this_cpu_write(current_kprobe, &ri->rp->kp);
772 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
773 			ri->ret_addr = correct_ret_addr;
774 			ri->rp->handler(ri, regs);
775 			__this_cpu_write(current_kprobe, NULL);
776 		}
777 
778 		recycle_rp_inst(ri, &empty_rp);
779 
780 		if (orig_ret_address != trampoline_address)
781 			/*
782 			 * This is the real return address. Any other
783 			 * instances associated with this task are for
784 			 * other calls deeper on the call stack
785 			 */
786 			break;
787 	}
788 
789 	kretprobe_hash_unlock(current, &flags);
790 
791 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
792 		hlist_del(&ri->hlist);
793 		kfree(ri);
794 	}
795 	return (void *)orig_ret_address;
796 }
797 NOKPROBE_SYMBOL(trampoline_handler);
798 
799 /*
800  * Called after single-stepping.  p->addr is the address of the
801  * instruction whose first byte has been replaced by the "int 3"
802  * instruction.  To avoid the SMP problems that can occur when we
803  * temporarily put back the original opcode to single-step, we
804  * single-stepped a copy of the instruction.  The address of this
805  * copy is p->ainsn.insn.
806  *
807  * This function prepares to return from the post-single-step
808  * interrupt.  We have to fix up the stack as follows:
809  *
810  * 0) Except in the case of absolute or indirect jump or call instructions,
811  * the new ip is relative to the copied instruction.  We need to make
812  * it relative to the original instruction.
813  *
814  * 1) If the single-stepped instruction was pushfl, then the TF and IF
815  * flags are set in the just-pushed flags, and may need to be cleared.
816  *
817  * 2) If the single-stepped instruction was a call, the return address
818  * that is atop the stack is the address following the copied instruction.
819  * We need to make it the address following the original instruction.
820  *
821  * If this is the first time we've single-stepped the instruction at
822  * this probepoint, and the instruction is boostable, boost it: add a
823  * jump instruction after the copied instruction, that jumps to the next
824  * instruction after the probepoint.
825  */
826 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
827 			     struct kprobe_ctlblk *kcb)
828 {
829 	unsigned long *tos = stack_addr(regs);
830 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
831 	unsigned long orig_ip = (unsigned long)p->addr;
832 	kprobe_opcode_t *insn = p->ainsn.insn;
833 
834 	/* Skip prefixes */
835 	insn = skip_prefixes(insn);
836 
837 	regs->flags &= ~X86_EFLAGS_TF;
838 	switch (*insn) {
839 	case 0x9c:	/* pushfl */
840 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
841 		*tos |= kcb->kprobe_old_flags;
842 		break;
843 	case 0xc2:	/* iret/ret/lret */
844 	case 0xc3:
845 	case 0xca:
846 	case 0xcb:
847 	case 0xcf:
848 	case 0xea:	/* jmp absolute -- ip is correct */
849 		/* ip is already adjusted, no more changes required */
850 		p->ainsn.boostable = 1;
851 		goto no_change;
852 	case 0xe8:	/* call relative - Fix return addr */
853 		*tos = orig_ip + (*tos - copy_ip);
854 		break;
855 #ifdef CONFIG_X86_32
856 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
857 		*tos = orig_ip + (*tos - copy_ip);
858 		goto no_change;
859 #endif
860 	case 0xff:
861 		if ((insn[1] & 0x30) == 0x10) {
862 			/*
863 			 * call absolute, indirect
864 			 * Fix return addr; ip is correct.
865 			 * But this is not boostable
866 			 */
867 			*tos = orig_ip + (*tos - copy_ip);
868 			goto no_change;
869 		} else if (((insn[1] & 0x31) == 0x20) ||
870 			   ((insn[1] & 0x31) == 0x21)) {
871 			/*
872 			 * jmp near and far, absolute indirect
873 			 * ip is correct. And this is boostable
874 			 */
875 			p->ainsn.boostable = 1;
876 			goto no_change;
877 		}
878 	default:
879 		break;
880 	}
881 
882 	if (p->ainsn.boostable == 0) {
883 		if ((regs->ip > copy_ip) &&
884 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
885 			/*
886 			 * These instructions can be executed directly if it
887 			 * jumps back to correct address.
888 			 */
889 			synthesize_reljump((void *)regs->ip,
890 				(void *)orig_ip + (regs->ip - copy_ip));
891 			p->ainsn.boostable = 1;
892 		} else {
893 			p->ainsn.boostable = -1;
894 		}
895 	}
896 
897 	regs->ip += orig_ip - copy_ip;
898 
899 no_change:
900 	restore_btf();
901 }
902 NOKPROBE_SYMBOL(resume_execution);
903 
904 /*
905  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
906  * remain disabled throughout this function.
907  */
908 int kprobe_debug_handler(struct pt_regs *regs)
909 {
910 	struct kprobe *cur = kprobe_running();
911 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
912 
913 	if (!cur)
914 		return 0;
915 
916 	resume_execution(cur, regs, kcb);
917 	regs->flags |= kcb->kprobe_saved_flags;
918 
919 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
920 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
921 		cur->post_handler(cur, regs, 0);
922 	}
923 
924 	/* Restore back the original saved kprobes variables and continue. */
925 	if (kcb->kprobe_status == KPROBE_REENTER) {
926 		restore_previous_kprobe(kcb);
927 		goto out;
928 	}
929 	reset_current_kprobe();
930 out:
931 	preempt_enable_no_resched();
932 
933 	/*
934 	 * if somebody else is singlestepping across a probe point, flags
935 	 * will have TF set, in which case, continue the remaining processing
936 	 * of do_debug, as if this is not a probe hit.
937 	 */
938 	if (regs->flags & X86_EFLAGS_TF)
939 		return 0;
940 
941 	return 1;
942 }
943 NOKPROBE_SYMBOL(kprobe_debug_handler);
944 
945 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
946 {
947 	struct kprobe *cur = kprobe_running();
948 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
949 
950 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
951 		/* This must happen on single-stepping */
952 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
953 			kcb->kprobe_status != KPROBE_REENTER);
954 		/*
955 		 * We are here because the instruction being single
956 		 * stepped caused a page fault. We reset the current
957 		 * kprobe and the ip points back to the probe address
958 		 * and allow the page fault handler to continue as a
959 		 * normal page fault.
960 		 */
961 		regs->ip = (unsigned long)cur->addr;
962 		regs->flags |= kcb->kprobe_old_flags;
963 		if (kcb->kprobe_status == KPROBE_REENTER)
964 			restore_previous_kprobe(kcb);
965 		else
966 			reset_current_kprobe();
967 		preempt_enable_no_resched();
968 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
969 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
970 		/*
971 		 * We increment the nmissed count for accounting,
972 		 * we can also use npre/npostfault count for accounting
973 		 * these specific fault cases.
974 		 */
975 		kprobes_inc_nmissed_count(cur);
976 
977 		/*
978 		 * We come here because instructions in the pre/post
979 		 * handler caused the page_fault, this could happen
980 		 * if handler tries to access user space by
981 		 * copy_from_user(), get_user() etc. Let the
982 		 * user-specified handler try to fix it first.
983 		 */
984 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
985 			return 1;
986 
987 		/*
988 		 * In case the user-specified fault handler returned
989 		 * zero, try to fix up.
990 		 */
991 		if (fixup_exception(regs))
992 			return 1;
993 
994 		/*
995 		 * fixup routine could not handle it,
996 		 * Let do_page_fault() fix it.
997 		 */
998 	}
999 
1000 	return 0;
1001 }
1002 NOKPROBE_SYMBOL(kprobe_fault_handler);
1003 
1004 /*
1005  * Wrapper routine for handling exceptions.
1006  */
1007 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1008 			     void *data)
1009 {
1010 	struct die_args *args = data;
1011 	int ret = NOTIFY_DONE;
1012 
1013 	if (args->regs && user_mode(args->regs))
1014 		return ret;
1015 
1016 	if (val == DIE_GPF) {
1017 		/*
1018 		 * To be potentially processing a kprobe fault and to
1019 		 * trust the result from kprobe_running(), we have
1020 		 * be non-preemptible.
1021 		 */
1022 		if (!preemptible() && kprobe_running() &&
1023 		    kprobe_fault_handler(args->regs, args->trapnr))
1024 			ret = NOTIFY_STOP;
1025 	}
1026 	return ret;
1027 }
1028 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1029 
1030 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1031 {
1032 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1033 	unsigned long addr;
1034 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1035 
1036 	kcb->jprobe_saved_regs = *regs;
1037 	kcb->jprobe_saved_sp = stack_addr(regs);
1038 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1039 
1040 	/*
1041 	 * As Linus pointed out, gcc assumes that the callee
1042 	 * owns the argument space and could overwrite it, e.g.
1043 	 * tailcall optimization. So, to be absolutely safe
1044 	 * we also save and restore enough stack bytes to cover
1045 	 * the argument area.
1046 	 */
1047 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1048 	       MIN_STACK_SIZE(addr));
1049 	regs->flags &= ~X86_EFLAGS_IF;
1050 	trace_hardirqs_off();
1051 	regs->ip = (unsigned long)(jp->entry);
1052 
1053 	/*
1054 	 * jprobes use jprobe_return() which skips the normal return
1055 	 * path of the function, and this messes up the accounting of the
1056 	 * function graph tracer to get messed up.
1057 	 *
1058 	 * Pause function graph tracing while performing the jprobe function.
1059 	 */
1060 	pause_graph_tracing();
1061 	return 1;
1062 }
1063 NOKPROBE_SYMBOL(setjmp_pre_handler);
1064 
1065 void jprobe_return(void)
1066 {
1067 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1068 
1069 	asm volatile (
1070 #ifdef CONFIG_X86_64
1071 			"       xchg   %%rbx,%%rsp	\n"
1072 #else
1073 			"       xchgl   %%ebx,%%esp	\n"
1074 #endif
1075 			"       int3			\n"
1076 			"       .globl jprobe_return_end\n"
1077 			"       jprobe_return_end:	\n"
1078 			"       nop			\n"::"b"
1079 			(kcb->jprobe_saved_sp):"memory");
1080 }
1081 NOKPROBE_SYMBOL(jprobe_return);
1082 NOKPROBE_SYMBOL(jprobe_return_end);
1083 
1084 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1085 {
1086 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1087 	u8 *addr = (u8 *) (regs->ip - 1);
1088 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1089 	void *saved_sp = kcb->jprobe_saved_sp;
1090 
1091 	if ((addr > (u8 *) jprobe_return) &&
1092 	    (addr < (u8 *) jprobe_return_end)) {
1093 		if (stack_addr(regs) != saved_sp) {
1094 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1095 			printk(KERN_ERR
1096 			       "current sp %p does not match saved sp %p\n",
1097 			       stack_addr(regs), saved_sp);
1098 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1099 			show_regs(saved_regs);
1100 			printk(KERN_ERR "Current registers\n");
1101 			show_regs(regs);
1102 			BUG();
1103 		}
1104 		/* It's OK to start function graph tracing again */
1105 		unpause_graph_tracing();
1106 		*regs = kcb->jprobe_saved_regs;
1107 		memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1108 		preempt_enable_no_resched();
1109 		return 1;
1110 	}
1111 	return 0;
1112 }
1113 NOKPROBE_SYMBOL(longjmp_break_handler);
1114 
1115 bool arch_within_kprobe_blacklist(unsigned long addr)
1116 {
1117 	return  (addr >= (unsigned long)__kprobes_text_start &&
1118 		 addr < (unsigned long)__kprobes_text_end) ||
1119 		(addr >= (unsigned long)__entry_text_start &&
1120 		 addr < (unsigned long)__entry_text_end);
1121 }
1122 
1123 int __init arch_init_kprobes(void)
1124 {
1125 	return 0;
1126 }
1127 
1128 int arch_trampoline_kprobe(struct kprobe *p)
1129 {
1130 	return 0;
1131 }
1132