1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/extable.h> 37 #include <linux/kdebug.h> 38 #include <linux/kallsyms.h> 39 #include <linux/ftrace.h> 40 #include <linux/frame.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 #include <linux/vmalloc.h> 44 #include <linux/pgtable.h> 45 46 #include <asm/text-patching.h> 47 #include <asm/cacheflush.h> 48 #include <asm/desc.h> 49 #include <linux/uaccess.h> 50 #include <asm/alternative.h> 51 #include <asm/insn.h> 52 #include <asm/debugreg.h> 53 #include <asm/set_memory.h> 54 55 #include "common.h" 56 57 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 58 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 59 60 #define stack_addr(regs) ((unsigned long *)regs->sp) 61 62 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 63 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 64 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 65 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 66 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 67 << (row % 32)) 68 /* 69 * Undefined/reserved opcodes, conditional jump, Opcode Extension 70 * Groups, and some special opcodes can not boost. 71 * This is non-const and volatile to keep gcc from statically 72 * optimizing it out, as variable_test_bit makes gcc think only 73 * *(unsigned long*) is used. 74 */ 75 static volatile u32 twobyte_is_boostable[256 / 32] = { 76 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 77 /* ---------------------------------------------- */ 78 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 79 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 80 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 81 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 82 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 83 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 84 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 85 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 86 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 87 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 88 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 89 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 90 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 91 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 92 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 93 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 94 /* ----------------------------------------------- */ 95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 96 }; 97 #undef W 98 99 struct kretprobe_blackpoint kretprobe_blacklist[] = { 100 {"__switch_to", }, /* This function switches only current task, but 101 doesn't switch kernel stack.*/ 102 {NULL, NULL} /* Terminator */ 103 }; 104 105 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 106 107 static nokprobe_inline void 108 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 109 { 110 struct __arch_relative_insn { 111 u8 op; 112 s32 raddr; 113 } __packed *insn; 114 115 insn = (struct __arch_relative_insn *)dest; 116 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 117 insn->op = op; 118 } 119 120 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 121 void synthesize_reljump(void *dest, void *from, void *to) 122 { 123 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 124 } 125 NOKPROBE_SYMBOL(synthesize_reljump); 126 127 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 128 void synthesize_relcall(void *dest, void *from, void *to) 129 { 130 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 131 } 132 NOKPROBE_SYMBOL(synthesize_relcall); 133 134 /* 135 * Skip the prefixes of the instruction. 136 */ 137 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 138 { 139 insn_attr_t attr; 140 141 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 142 while (inat_is_legacy_prefix(attr)) { 143 insn++; 144 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 145 } 146 #ifdef CONFIG_X86_64 147 if (inat_is_rex_prefix(attr)) 148 insn++; 149 #endif 150 return insn; 151 } 152 NOKPROBE_SYMBOL(skip_prefixes); 153 154 /* 155 * Returns non-zero if INSN is boostable. 156 * RIP relative instructions are adjusted at copying time in 64 bits mode 157 */ 158 int can_boost(struct insn *insn, void *addr) 159 { 160 kprobe_opcode_t opcode; 161 162 if (search_exception_tables((unsigned long)addr)) 163 return 0; /* Page fault may occur on this address. */ 164 165 /* 2nd-byte opcode */ 166 if (insn->opcode.nbytes == 2) 167 return test_bit(insn->opcode.bytes[1], 168 (unsigned long *)twobyte_is_boostable); 169 170 if (insn->opcode.nbytes != 1) 171 return 0; 172 173 /* Can't boost Address-size override prefix */ 174 if (unlikely(inat_is_address_size_prefix(insn->attr))) 175 return 0; 176 177 opcode = insn->opcode.bytes[0]; 178 179 switch (opcode & 0xf0) { 180 case 0x60: 181 /* can't boost "bound" */ 182 return (opcode != 0x62); 183 case 0x70: 184 return 0; /* can't boost conditional jump */ 185 case 0x90: 186 return opcode != 0x9a; /* can't boost call far */ 187 case 0xc0: 188 /* can't boost software-interruptions */ 189 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 190 case 0xd0: 191 /* can boost AA* and XLAT */ 192 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 193 case 0xe0: 194 /* can boost in/out and absolute jmps */ 195 return ((opcode & 0x04) || opcode == 0xea); 196 case 0xf0: 197 /* clear and set flags are boostable */ 198 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 199 default: 200 /* CS override prefix and call are not boostable */ 201 return (opcode != 0x2e && opcode != 0x9a); 202 } 203 } 204 205 static unsigned long 206 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 207 { 208 struct kprobe *kp; 209 unsigned long faddr; 210 211 kp = get_kprobe((void *)addr); 212 faddr = ftrace_location(addr); 213 /* 214 * Addresses inside the ftrace location are refused by 215 * arch_check_ftrace_location(). Something went terribly wrong 216 * if such an address is checked here. 217 */ 218 if (WARN_ON(faddr && faddr != addr)) 219 return 0UL; 220 /* 221 * Use the current code if it is not modified by Kprobe 222 * and it cannot be modified by ftrace. 223 */ 224 if (!kp && !faddr) 225 return addr; 226 227 /* 228 * Basically, kp->ainsn.insn has an original instruction. 229 * However, RIP-relative instruction can not do single-stepping 230 * at different place, __copy_instruction() tweaks the displacement of 231 * that instruction. In that case, we can't recover the instruction 232 * from the kp->ainsn.insn. 233 * 234 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 235 * of the first byte of the probed instruction, which is overwritten 236 * by int3. And the instruction at kp->addr is not modified by kprobes 237 * except for the first byte, we can recover the original instruction 238 * from it and kp->opcode. 239 * 240 * In case of Kprobes using ftrace, we do not have a copy of 241 * the original instruction. In fact, the ftrace location might 242 * be modified at anytime and even could be in an inconsistent state. 243 * Fortunately, we know that the original code is the ideal 5-byte 244 * long NOP. 245 */ 246 if (copy_from_kernel_nofault(buf, (void *)addr, 247 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 248 return 0UL; 249 250 if (faddr) 251 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 252 else 253 buf[0] = kp->opcode; 254 return (unsigned long)buf; 255 } 256 257 /* 258 * Recover the probed instruction at addr for further analysis. 259 * Caller must lock kprobes by kprobe_mutex, or disable preemption 260 * for preventing to release referencing kprobes. 261 * Returns zero if the instruction can not get recovered (or access failed). 262 */ 263 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 264 { 265 unsigned long __addr; 266 267 __addr = __recover_optprobed_insn(buf, addr); 268 if (__addr != addr) 269 return __addr; 270 271 return __recover_probed_insn(buf, addr); 272 } 273 274 /* Check if paddr is at an instruction boundary */ 275 static int can_probe(unsigned long paddr) 276 { 277 unsigned long addr, __addr, offset = 0; 278 struct insn insn; 279 kprobe_opcode_t buf[MAX_INSN_SIZE]; 280 281 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 282 return 0; 283 284 /* Decode instructions */ 285 addr = paddr - offset; 286 while (addr < paddr) { 287 /* 288 * Check if the instruction has been modified by another 289 * kprobe, in which case we replace the breakpoint by the 290 * original instruction in our buffer. 291 * Also, jump optimization will change the breakpoint to 292 * relative-jump. Since the relative-jump itself is 293 * normally used, we just go through if there is no kprobe. 294 */ 295 __addr = recover_probed_instruction(buf, addr); 296 if (!__addr) 297 return 0; 298 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 299 insn_get_length(&insn); 300 301 /* 302 * Another debugging subsystem might insert this breakpoint. 303 * In that case, we can't recover it. 304 */ 305 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE) 306 return 0; 307 addr += insn.length; 308 } 309 310 return (addr == paddr); 311 } 312 313 /* 314 * Returns non-zero if opcode modifies the interrupt flag. 315 */ 316 static int is_IF_modifier(kprobe_opcode_t *insn) 317 { 318 /* Skip prefixes */ 319 insn = skip_prefixes(insn); 320 321 switch (*insn) { 322 case 0xfa: /* cli */ 323 case 0xfb: /* sti */ 324 case 0xcf: /* iret/iretd */ 325 case 0x9d: /* popf/popfd */ 326 return 1; 327 } 328 329 return 0; 330 } 331 332 /* 333 * Copy an instruction with recovering modified instruction by kprobes 334 * and adjust the displacement if the instruction uses the %rip-relative 335 * addressing mode. Note that since @real will be the final place of copied 336 * instruction, displacement must be adjust by @real, not @dest. 337 * This returns the length of copied instruction, or 0 if it has an error. 338 */ 339 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 340 { 341 kprobe_opcode_t buf[MAX_INSN_SIZE]; 342 unsigned long recovered_insn = 343 recover_probed_instruction(buf, (unsigned long)src); 344 345 if (!recovered_insn || !insn) 346 return 0; 347 348 /* This can access kernel text if given address is not recovered */ 349 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 350 MAX_INSN_SIZE)) 351 return 0; 352 353 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 354 insn_get_length(insn); 355 356 /* We can not probe force emulate prefixed instruction */ 357 if (insn_has_emulate_prefix(insn)) 358 return 0; 359 360 /* Another subsystem puts a breakpoint, failed to recover */ 361 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 362 return 0; 363 364 /* We should not singlestep on the exception masking instructions */ 365 if (insn_masking_exception(insn)) 366 return 0; 367 368 #ifdef CONFIG_X86_64 369 /* Only x86_64 has RIP relative instructions */ 370 if (insn_rip_relative(insn)) { 371 s64 newdisp; 372 u8 *disp; 373 /* 374 * The copied instruction uses the %rip-relative addressing 375 * mode. Adjust the displacement for the difference between 376 * the original location of this instruction and the location 377 * of the copy that will actually be run. The tricky bit here 378 * is making sure that the sign extension happens correctly in 379 * this calculation, since we need a signed 32-bit result to 380 * be sign-extended to 64 bits when it's added to the %rip 381 * value and yield the same 64-bit result that the sign- 382 * extension of the original signed 32-bit displacement would 383 * have given. 384 */ 385 newdisp = (u8 *) src + (s64) insn->displacement.value 386 - (u8 *) real; 387 if ((s64) (s32) newdisp != newdisp) { 388 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 389 return 0; 390 } 391 disp = (u8 *) dest + insn_offset_displacement(insn); 392 *(s32 *) disp = (s32) newdisp; 393 } 394 #endif 395 return insn->length; 396 } 397 398 /* Prepare reljump right after instruction to boost */ 399 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 400 struct insn *insn) 401 { 402 int len = insn->length; 403 404 if (can_boost(insn, p->addr) && 405 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 406 /* 407 * These instructions can be executed directly if it 408 * jumps back to correct address. 409 */ 410 synthesize_reljump(buf + len, p->ainsn.insn + len, 411 p->addr + insn->length); 412 len += JMP32_INSN_SIZE; 413 p->ainsn.boostable = true; 414 } else { 415 p->ainsn.boostable = false; 416 } 417 418 return len; 419 } 420 421 /* Make page to RO mode when allocate it */ 422 void *alloc_insn_page(void) 423 { 424 void *page; 425 426 page = module_alloc(PAGE_SIZE); 427 if (!page) 428 return NULL; 429 430 set_vm_flush_reset_perms(page); 431 /* 432 * First make the page read-only, and only then make it executable to 433 * prevent it from being W+X in between. 434 */ 435 set_memory_ro((unsigned long)page, 1); 436 437 /* 438 * TODO: Once additional kernel code protection mechanisms are set, ensure 439 * that the page was not maliciously altered and it is still zeroed. 440 */ 441 set_memory_x((unsigned long)page, 1); 442 443 return page; 444 } 445 446 /* Recover page to RW mode before releasing it */ 447 void free_insn_page(void *page) 448 { 449 module_memfree(page); 450 } 451 452 static int arch_copy_kprobe(struct kprobe *p) 453 { 454 struct insn insn; 455 kprobe_opcode_t buf[MAX_INSN_SIZE]; 456 int len; 457 458 /* Copy an instruction with recovering if other optprobe modifies it.*/ 459 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 460 if (!len) 461 return -EINVAL; 462 463 /* 464 * __copy_instruction can modify the displacement of the instruction, 465 * but it doesn't affect boostable check. 466 */ 467 len = prepare_boost(buf, p, &insn); 468 469 /* Check whether the instruction modifies Interrupt Flag or not */ 470 p->ainsn.if_modifier = is_IF_modifier(buf); 471 472 /* Also, displacement change doesn't affect the first byte */ 473 p->opcode = buf[0]; 474 475 /* OK, write back the instruction(s) into ROX insn buffer */ 476 text_poke(p->ainsn.insn, buf, len); 477 478 return 0; 479 } 480 481 int arch_prepare_kprobe(struct kprobe *p) 482 { 483 int ret; 484 485 if (alternatives_text_reserved(p->addr, p->addr)) 486 return -EINVAL; 487 488 if (!can_probe((unsigned long)p->addr)) 489 return -EILSEQ; 490 /* insn: must be on special executable page on x86. */ 491 p->ainsn.insn = get_insn_slot(); 492 if (!p->ainsn.insn) 493 return -ENOMEM; 494 495 ret = arch_copy_kprobe(p); 496 if (ret) { 497 free_insn_slot(p->ainsn.insn, 0); 498 p->ainsn.insn = NULL; 499 } 500 501 return ret; 502 } 503 504 void arch_arm_kprobe(struct kprobe *p) 505 { 506 text_poke(p->addr, ((unsigned char []){INT3_INSN_OPCODE}), 1); 507 text_poke_sync(); 508 } 509 510 void arch_disarm_kprobe(struct kprobe *p) 511 { 512 text_poke(p->addr, &p->opcode, 1); 513 text_poke_sync(); 514 } 515 516 void arch_remove_kprobe(struct kprobe *p) 517 { 518 if (p->ainsn.insn) { 519 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 520 p->ainsn.insn = NULL; 521 } 522 } 523 524 static nokprobe_inline void 525 save_previous_kprobe(struct kprobe_ctlblk *kcb) 526 { 527 kcb->prev_kprobe.kp = kprobe_running(); 528 kcb->prev_kprobe.status = kcb->kprobe_status; 529 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 530 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 531 } 532 533 static nokprobe_inline void 534 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 535 { 536 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 537 kcb->kprobe_status = kcb->prev_kprobe.status; 538 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 539 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 540 } 541 542 static nokprobe_inline void 543 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 544 struct kprobe_ctlblk *kcb) 545 { 546 __this_cpu_write(current_kprobe, p); 547 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 548 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 549 if (p->ainsn.if_modifier) 550 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 551 } 552 553 static nokprobe_inline void clear_btf(void) 554 { 555 if (test_thread_flag(TIF_BLOCKSTEP)) { 556 unsigned long debugctl = get_debugctlmsr(); 557 558 debugctl &= ~DEBUGCTLMSR_BTF; 559 update_debugctlmsr(debugctl); 560 } 561 } 562 563 static nokprobe_inline void restore_btf(void) 564 { 565 if (test_thread_flag(TIF_BLOCKSTEP)) { 566 unsigned long debugctl = get_debugctlmsr(); 567 568 debugctl |= DEBUGCTLMSR_BTF; 569 update_debugctlmsr(debugctl); 570 } 571 } 572 573 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 574 { 575 unsigned long *sara = stack_addr(regs); 576 577 ri->ret_addr = (kprobe_opcode_t *) *sara; 578 ri->fp = sara; 579 580 /* Replace the return addr with trampoline addr */ 581 *sara = (unsigned long) &kretprobe_trampoline; 582 } 583 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 584 585 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 586 struct kprobe_ctlblk *kcb, int reenter) 587 { 588 if (setup_detour_execution(p, regs, reenter)) 589 return; 590 591 #if !defined(CONFIG_PREEMPTION) 592 if (p->ainsn.boostable && !p->post_handler) { 593 /* Boost up -- we can execute copied instructions directly */ 594 if (!reenter) 595 reset_current_kprobe(); 596 /* 597 * Reentering boosted probe doesn't reset current_kprobe, 598 * nor set current_kprobe, because it doesn't use single 599 * stepping. 600 */ 601 regs->ip = (unsigned long)p->ainsn.insn; 602 return; 603 } 604 #endif 605 if (reenter) { 606 save_previous_kprobe(kcb); 607 set_current_kprobe(p, regs, kcb); 608 kcb->kprobe_status = KPROBE_REENTER; 609 } else 610 kcb->kprobe_status = KPROBE_HIT_SS; 611 /* Prepare real single stepping */ 612 clear_btf(); 613 regs->flags |= X86_EFLAGS_TF; 614 regs->flags &= ~X86_EFLAGS_IF; 615 /* single step inline if the instruction is an int3 */ 616 if (p->opcode == INT3_INSN_OPCODE) 617 regs->ip = (unsigned long)p->addr; 618 else 619 regs->ip = (unsigned long)p->ainsn.insn; 620 } 621 NOKPROBE_SYMBOL(setup_singlestep); 622 623 /* 624 * We have reentered the kprobe_handler(), since another probe was hit while 625 * within the handler. We save the original kprobes variables and just single 626 * step on the instruction of the new probe without calling any user handlers. 627 */ 628 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 629 struct kprobe_ctlblk *kcb) 630 { 631 switch (kcb->kprobe_status) { 632 case KPROBE_HIT_SSDONE: 633 case KPROBE_HIT_ACTIVE: 634 case KPROBE_HIT_SS: 635 kprobes_inc_nmissed_count(p); 636 setup_singlestep(p, regs, kcb, 1); 637 break; 638 case KPROBE_REENTER: 639 /* A probe has been hit in the codepath leading up to, or just 640 * after, single-stepping of a probed instruction. This entire 641 * codepath should strictly reside in .kprobes.text section. 642 * Raise a BUG or we'll continue in an endless reentering loop 643 * and eventually a stack overflow. 644 */ 645 pr_err("Unrecoverable kprobe detected.\n"); 646 dump_kprobe(p); 647 BUG(); 648 default: 649 /* impossible cases */ 650 WARN_ON(1); 651 return 0; 652 } 653 654 return 1; 655 } 656 NOKPROBE_SYMBOL(reenter_kprobe); 657 658 /* 659 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 660 * remain disabled throughout this function. 661 */ 662 int kprobe_int3_handler(struct pt_regs *regs) 663 { 664 kprobe_opcode_t *addr; 665 struct kprobe *p; 666 struct kprobe_ctlblk *kcb; 667 668 if (user_mode(regs)) 669 return 0; 670 671 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 672 /* 673 * We don't want to be preempted for the entire duration of kprobe 674 * processing. Since int3 and debug trap disables irqs and we clear 675 * IF while singlestepping, it must be no preemptible. 676 */ 677 678 kcb = get_kprobe_ctlblk(); 679 p = get_kprobe(addr); 680 681 if (p) { 682 if (kprobe_running()) { 683 if (reenter_kprobe(p, regs, kcb)) 684 return 1; 685 } else { 686 set_current_kprobe(p, regs, kcb); 687 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 688 689 /* 690 * If we have no pre-handler or it returned 0, we 691 * continue with normal processing. If we have a 692 * pre-handler and it returned non-zero, that means 693 * user handler setup registers to exit to another 694 * instruction, we must skip the single stepping. 695 */ 696 if (!p->pre_handler || !p->pre_handler(p, regs)) 697 setup_singlestep(p, regs, kcb, 0); 698 else 699 reset_current_kprobe(); 700 return 1; 701 } 702 } else if (*addr != INT3_INSN_OPCODE) { 703 /* 704 * The breakpoint instruction was removed right 705 * after we hit it. Another cpu has removed 706 * either a probepoint or a debugger breakpoint 707 * at this address. In either case, no further 708 * handling of this interrupt is appropriate. 709 * Back up over the (now missing) int3 and run 710 * the original instruction. 711 */ 712 regs->ip = (unsigned long)addr; 713 return 1; 714 } /* else: not a kprobe fault; let the kernel handle it */ 715 716 return 0; 717 } 718 NOKPROBE_SYMBOL(kprobe_int3_handler); 719 720 /* 721 * When a retprobed function returns, this code saves registers and 722 * calls trampoline_handler() runs, which calls the kretprobe's handler. 723 */ 724 asm( 725 ".text\n" 726 ".global kretprobe_trampoline\n" 727 ".type kretprobe_trampoline, @function\n" 728 "kretprobe_trampoline:\n" 729 /* We don't bother saving the ss register */ 730 #ifdef CONFIG_X86_64 731 " pushq %rsp\n" 732 " pushfq\n" 733 SAVE_REGS_STRING 734 " movq %rsp, %rdi\n" 735 " call trampoline_handler\n" 736 /* Replace saved sp with true return address. */ 737 " movq %rax, 19*8(%rsp)\n" 738 RESTORE_REGS_STRING 739 " popfq\n" 740 #else 741 " pushl %esp\n" 742 " pushfl\n" 743 SAVE_REGS_STRING 744 " movl %esp, %eax\n" 745 " call trampoline_handler\n" 746 /* Replace saved sp with true return address. */ 747 " movl %eax, 15*4(%esp)\n" 748 RESTORE_REGS_STRING 749 " popfl\n" 750 #endif 751 " ret\n" 752 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 753 ); 754 NOKPROBE_SYMBOL(kretprobe_trampoline); 755 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 756 757 /* 758 * Called from kretprobe_trampoline 759 */ 760 __used __visible void *trampoline_handler(struct pt_regs *regs) 761 { 762 struct kretprobe_instance *ri = NULL; 763 struct hlist_head *head, empty_rp; 764 struct hlist_node *tmp; 765 unsigned long flags, orig_ret_address = 0; 766 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 767 kprobe_opcode_t *correct_ret_addr = NULL; 768 void *frame_pointer; 769 bool skipped = false; 770 771 /* 772 * Set a dummy kprobe for avoiding kretprobe recursion. 773 * Since kretprobe never run in kprobe handler, kprobe must not 774 * be running at this point. 775 */ 776 kprobe_busy_begin(); 777 778 INIT_HLIST_HEAD(&empty_rp); 779 kretprobe_hash_lock(current, &head, &flags); 780 /* fixup registers */ 781 regs->cs = __KERNEL_CS; 782 #ifdef CONFIG_X86_32 783 regs->cs |= get_kernel_rpl(); 784 regs->gs = 0; 785 #endif 786 /* We use pt_regs->sp for return address holder. */ 787 frame_pointer = ®s->sp; 788 regs->ip = trampoline_address; 789 regs->orig_ax = ~0UL; 790 791 /* 792 * It is possible to have multiple instances associated with a given 793 * task either because multiple functions in the call path have 794 * return probes installed on them, and/or more than one 795 * return probe was registered for a target function. 796 * 797 * We can handle this because: 798 * - instances are always pushed into the head of the list 799 * - when multiple return probes are registered for the same 800 * function, the (chronologically) first instance's ret_addr 801 * will be the real return address, and all the rest will 802 * point to kretprobe_trampoline. 803 */ 804 hlist_for_each_entry(ri, head, hlist) { 805 if (ri->task != current) 806 /* another task is sharing our hash bucket */ 807 continue; 808 /* 809 * Return probes must be pushed on this hash list correct 810 * order (same as return order) so that it can be popped 811 * correctly. However, if we find it is pushed it incorrect 812 * order, this means we find a function which should not be 813 * probed, because the wrong order entry is pushed on the 814 * path of processing other kretprobe itself. 815 */ 816 if (ri->fp != frame_pointer) { 817 if (!skipped) 818 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); 819 skipped = true; 820 continue; 821 } 822 823 orig_ret_address = (unsigned long)ri->ret_addr; 824 if (skipped) 825 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", 826 ri->rp->kp.addr); 827 828 if (orig_ret_address != trampoline_address) 829 /* 830 * This is the real return address. Any other 831 * instances associated with this task are for 832 * other calls deeper on the call stack 833 */ 834 break; 835 } 836 837 kretprobe_assert(ri, orig_ret_address, trampoline_address); 838 839 correct_ret_addr = ri->ret_addr; 840 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 841 if (ri->task != current) 842 /* another task is sharing our hash bucket */ 843 continue; 844 if (ri->fp != frame_pointer) 845 continue; 846 847 orig_ret_address = (unsigned long)ri->ret_addr; 848 if (ri->rp && ri->rp->handler) { 849 __this_cpu_write(current_kprobe, &ri->rp->kp); 850 ri->ret_addr = correct_ret_addr; 851 ri->rp->handler(ri, regs); 852 __this_cpu_write(current_kprobe, &kprobe_busy); 853 } 854 855 recycle_rp_inst(ri, &empty_rp); 856 857 if (orig_ret_address != trampoline_address) 858 /* 859 * This is the real return address. Any other 860 * instances associated with this task are for 861 * other calls deeper on the call stack 862 */ 863 break; 864 } 865 866 kretprobe_hash_unlock(current, &flags); 867 868 kprobe_busy_end(); 869 870 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 871 hlist_del(&ri->hlist); 872 kfree(ri); 873 } 874 return (void *)orig_ret_address; 875 } 876 NOKPROBE_SYMBOL(trampoline_handler); 877 878 /* 879 * Called after single-stepping. p->addr is the address of the 880 * instruction whose first byte has been replaced by the "int 3" 881 * instruction. To avoid the SMP problems that can occur when we 882 * temporarily put back the original opcode to single-step, we 883 * single-stepped a copy of the instruction. The address of this 884 * copy is p->ainsn.insn. 885 * 886 * This function prepares to return from the post-single-step 887 * interrupt. We have to fix up the stack as follows: 888 * 889 * 0) Except in the case of absolute or indirect jump or call instructions, 890 * the new ip is relative to the copied instruction. We need to make 891 * it relative to the original instruction. 892 * 893 * 1) If the single-stepped instruction was pushfl, then the TF and IF 894 * flags are set in the just-pushed flags, and may need to be cleared. 895 * 896 * 2) If the single-stepped instruction was a call, the return address 897 * that is atop the stack is the address following the copied instruction. 898 * We need to make it the address following the original instruction. 899 * 900 * If this is the first time we've single-stepped the instruction at 901 * this probepoint, and the instruction is boostable, boost it: add a 902 * jump instruction after the copied instruction, that jumps to the next 903 * instruction after the probepoint. 904 */ 905 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 906 struct kprobe_ctlblk *kcb) 907 { 908 unsigned long *tos = stack_addr(regs); 909 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 910 unsigned long orig_ip = (unsigned long)p->addr; 911 kprobe_opcode_t *insn = p->ainsn.insn; 912 913 /* Skip prefixes */ 914 insn = skip_prefixes(insn); 915 916 regs->flags &= ~X86_EFLAGS_TF; 917 switch (*insn) { 918 case 0x9c: /* pushfl */ 919 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 920 *tos |= kcb->kprobe_old_flags; 921 break; 922 case 0xc2: /* iret/ret/lret */ 923 case 0xc3: 924 case 0xca: 925 case 0xcb: 926 case 0xcf: 927 case 0xea: /* jmp absolute -- ip is correct */ 928 /* ip is already adjusted, no more changes required */ 929 p->ainsn.boostable = true; 930 goto no_change; 931 case 0xe8: /* call relative - Fix return addr */ 932 *tos = orig_ip + (*tos - copy_ip); 933 break; 934 #ifdef CONFIG_X86_32 935 case 0x9a: /* call absolute -- same as call absolute, indirect */ 936 *tos = orig_ip + (*tos - copy_ip); 937 goto no_change; 938 #endif 939 case 0xff: 940 if ((insn[1] & 0x30) == 0x10) { 941 /* 942 * call absolute, indirect 943 * Fix return addr; ip is correct. 944 * But this is not boostable 945 */ 946 *tos = orig_ip + (*tos - copy_ip); 947 goto no_change; 948 } else if (((insn[1] & 0x31) == 0x20) || 949 ((insn[1] & 0x31) == 0x21)) { 950 /* 951 * jmp near and far, absolute indirect 952 * ip is correct. And this is boostable 953 */ 954 p->ainsn.boostable = true; 955 goto no_change; 956 } 957 default: 958 break; 959 } 960 961 regs->ip += orig_ip - copy_ip; 962 963 no_change: 964 restore_btf(); 965 } 966 NOKPROBE_SYMBOL(resume_execution); 967 968 /* 969 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 970 * remain disabled throughout this function. 971 */ 972 int kprobe_debug_handler(struct pt_regs *regs) 973 { 974 struct kprobe *cur = kprobe_running(); 975 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 976 977 if (!cur) 978 return 0; 979 980 resume_execution(cur, regs, kcb); 981 regs->flags |= kcb->kprobe_saved_flags; 982 983 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 984 kcb->kprobe_status = KPROBE_HIT_SSDONE; 985 cur->post_handler(cur, regs, 0); 986 } 987 988 /* Restore back the original saved kprobes variables and continue. */ 989 if (kcb->kprobe_status == KPROBE_REENTER) { 990 restore_previous_kprobe(kcb); 991 goto out; 992 } 993 reset_current_kprobe(); 994 out: 995 /* 996 * if somebody else is singlestepping across a probe point, flags 997 * will have TF set, in which case, continue the remaining processing 998 * of do_debug, as if this is not a probe hit. 999 */ 1000 if (regs->flags & X86_EFLAGS_TF) 1001 return 0; 1002 1003 return 1; 1004 } 1005 NOKPROBE_SYMBOL(kprobe_debug_handler); 1006 1007 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1008 { 1009 struct kprobe *cur = kprobe_running(); 1010 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1011 1012 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1013 /* This must happen on single-stepping */ 1014 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1015 kcb->kprobe_status != KPROBE_REENTER); 1016 /* 1017 * We are here because the instruction being single 1018 * stepped caused a page fault. We reset the current 1019 * kprobe and the ip points back to the probe address 1020 * and allow the page fault handler to continue as a 1021 * normal page fault. 1022 */ 1023 regs->ip = (unsigned long)cur->addr; 1024 /* 1025 * Trap flag (TF) has been set here because this fault 1026 * happened where the single stepping will be done. 1027 * So clear it by resetting the current kprobe: 1028 */ 1029 regs->flags &= ~X86_EFLAGS_TF; 1030 1031 /* 1032 * If the TF flag was set before the kprobe hit, 1033 * don't touch it: 1034 */ 1035 regs->flags |= kcb->kprobe_old_flags; 1036 1037 if (kcb->kprobe_status == KPROBE_REENTER) 1038 restore_previous_kprobe(kcb); 1039 else 1040 reset_current_kprobe(); 1041 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1042 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1043 /* 1044 * We increment the nmissed count for accounting, 1045 * we can also use npre/npostfault count for accounting 1046 * these specific fault cases. 1047 */ 1048 kprobes_inc_nmissed_count(cur); 1049 1050 /* 1051 * We come here because instructions in the pre/post 1052 * handler caused the page_fault, this could happen 1053 * if handler tries to access user space by 1054 * copy_from_user(), get_user() etc. Let the 1055 * user-specified handler try to fix it first. 1056 */ 1057 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1058 return 1; 1059 } 1060 1061 return 0; 1062 } 1063 NOKPROBE_SYMBOL(kprobe_fault_handler); 1064 1065 int __init arch_populate_kprobe_blacklist(void) 1066 { 1067 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1068 (unsigned long)__entry_text_end); 1069 } 1070 1071 int __init arch_init_kprobes(void) 1072 { 1073 return 0; 1074 } 1075 1076 int arch_trampoline_kprobe(struct kprobe *p) 1077 { 1078 return 0; 1079 } 1080