1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/module.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 53 #include <asm/cacheflush.h> 54 #include <asm/desc.h> 55 #include <asm/pgtable.h> 56 #include <asm/uaccess.h> 57 #include <asm/alternative.h> 58 #include <asm/insn.h> 59 #include <asm/debugreg.h> 60 61 #include "common.h" 62 63 void jprobe_return_end(void); 64 65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 67 68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 69 70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 75 << (row % 32)) 76 /* 77 * Undefined/reserved opcodes, conditional jump, Opcode Extension 78 * Groups, and some special opcodes can not boost. 79 * This is non-const and volatile to keep gcc from statically 80 * optimizing it out, as variable_test_bit makes gcc think only 81 * *(unsigned long*) is used. 82 */ 83 static volatile u32 twobyte_is_boostable[256 / 32] = { 84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 85 /* ---------------------------------------------- */ 86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 102 /* ----------------------------------------------- */ 103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 104 }; 105 #undef W 106 107 struct kretprobe_blackpoint kretprobe_blacklist[] = { 108 {"__switch_to", }, /* This function switches only current task, but 109 doesn't switch kernel stack.*/ 110 {NULL, NULL} /* Terminator */ 111 }; 112 113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 114 115 static nokprobe_inline void 116 __synthesize_relative_insn(void *from, void *to, u8 op) 117 { 118 struct __arch_relative_insn { 119 u8 op; 120 s32 raddr; 121 } __packed *insn; 122 123 insn = (struct __arch_relative_insn *)from; 124 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 125 insn->op = op; 126 } 127 128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 129 void synthesize_reljump(void *from, void *to) 130 { 131 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 132 } 133 NOKPROBE_SYMBOL(synthesize_reljump); 134 135 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 136 void synthesize_relcall(void *from, void *to) 137 { 138 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 139 } 140 NOKPROBE_SYMBOL(synthesize_relcall); 141 142 /* 143 * Skip the prefixes of the instruction. 144 */ 145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 146 { 147 insn_attr_t attr; 148 149 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 150 while (inat_is_legacy_prefix(attr)) { 151 insn++; 152 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 153 } 154 #ifdef CONFIG_X86_64 155 if (inat_is_rex_prefix(attr)) 156 insn++; 157 #endif 158 return insn; 159 } 160 NOKPROBE_SYMBOL(skip_prefixes); 161 162 /* 163 * Returns non-zero if opcode is boostable. 164 * RIP relative instructions are adjusted at copying time in 64 bits mode 165 */ 166 int can_boost(kprobe_opcode_t *opcodes) 167 { 168 kprobe_opcode_t opcode; 169 kprobe_opcode_t *orig_opcodes = opcodes; 170 171 if (search_exception_tables((unsigned long)opcodes)) 172 return 0; /* Page fault may occur on this address. */ 173 174 retry: 175 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 176 return 0; 177 opcode = *(opcodes++); 178 179 /* 2nd-byte opcode */ 180 if (opcode == 0x0f) { 181 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 182 return 0; 183 return test_bit(*opcodes, 184 (unsigned long *)twobyte_is_boostable); 185 } 186 187 switch (opcode & 0xf0) { 188 #ifdef CONFIG_X86_64 189 case 0x40: 190 goto retry; /* REX prefix is boostable */ 191 #endif 192 case 0x60: 193 if (0x63 < opcode && opcode < 0x67) 194 goto retry; /* prefixes */ 195 /* can't boost Address-size override and bound */ 196 return (opcode != 0x62 && opcode != 0x67); 197 case 0x70: 198 return 0; /* can't boost conditional jump */ 199 case 0xc0: 200 /* can't boost software-interruptions */ 201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 202 case 0xd0: 203 /* can boost AA* and XLAT */ 204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 205 case 0xe0: 206 /* can boost in/out and absolute jmps */ 207 return ((opcode & 0x04) || opcode == 0xea); 208 case 0xf0: 209 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 210 goto retry; /* lock/rep(ne) prefix */ 211 /* clear and set flags are boostable */ 212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 213 default: 214 /* segment override prefixes are boostable */ 215 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 216 goto retry; /* prefixes */ 217 /* CS override prefix and call are not boostable */ 218 return (opcode != 0x2e && opcode != 0x9a); 219 } 220 } 221 222 static unsigned long 223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 224 { 225 struct kprobe *kp; 226 unsigned long faddr; 227 228 kp = get_kprobe((void *)addr); 229 faddr = ftrace_location(addr); 230 /* 231 * Addresses inside the ftrace location are refused by 232 * arch_check_ftrace_location(). Something went terribly wrong 233 * if such an address is checked here. 234 */ 235 if (WARN_ON(faddr && faddr != addr)) 236 return 0UL; 237 /* 238 * Use the current code if it is not modified by Kprobe 239 * and it cannot be modified by ftrace. 240 */ 241 if (!kp && !faddr) 242 return addr; 243 244 /* 245 * Basically, kp->ainsn.insn has an original instruction. 246 * However, RIP-relative instruction can not do single-stepping 247 * at different place, __copy_instruction() tweaks the displacement of 248 * that instruction. In that case, we can't recover the instruction 249 * from the kp->ainsn.insn. 250 * 251 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 252 * of the first byte of the probed instruction, which is overwritten 253 * by int3. And the instruction at kp->addr is not modified by kprobes 254 * except for the first byte, we can recover the original instruction 255 * from it and kp->opcode. 256 * 257 * In case of Kprobes using ftrace, we do not have a copy of 258 * the original instruction. In fact, the ftrace location might 259 * be modified at anytime and even could be in an inconsistent state. 260 * Fortunately, we know that the original code is the ideal 5-byte 261 * long NOP. 262 */ 263 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 264 if (faddr) 265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 266 else 267 buf[0] = kp->opcode; 268 return (unsigned long)buf; 269 } 270 271 /* 272 * Recover the probed instruction at addr for further analysis. 273 * Caller must lock kprobes by kprobe_mutex, or disable preemption 274 * for preventing to release referencing kprobes. 275 * Returns zero if the instruction can not get recovered. 276 */ 277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 278 { 279 unsigned long __addr; 280 281 __addr = __recover_optprobed_insn(buf, addr); 282 if (__addr != addr) 283 return __addr; 284 285 return __recover_probed_insn(buf, addr); 286 } 287 288 /* Check if paddr is at an instruction boundary */ 289 static int can_probe(unsigned long paddr) 290 { 291 unsigned long addr, __addr, offset = 0; 292 struct insn insn; 293 kprobe_opcode_t buf[MAX_INSN_SIZE]; 294 295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 296 return 0; 297 298 /* Decode instructions */ 299 addr = paddr - offset; 300 while (addr < paddr) { 301 /* 302 * Check if the instruction has been modified by another 303 * kprobe, in which case we replace the breakpoint by the 304 * original instruction in our buffer. 305 * Also, jump optimization will change the breakpoint to 306 * relative-jump. Since the relative-jump itself is 307 * normally used, we just go through if there is no kprobe. 308 */ 309 __addr = recover_probed_instruction(buf, addr); 310 if (!__addr) 311 return 0; 312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 313 insn_get_length(&insn); 314 315 /* 316 * Another debugging subsystem might insert this breakpoint. 317 * In that case, we can't recover it. 318 */ 319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 320 return 0; 321 addr += insn.length; 322 } 323 324 return (addr == paddr); 325 } 326 327 /* 328 * Returns non-zero if opcode modifies the interrupt flag. 329 */ 330 static int is_IF_modifier(kprobe_opcode_t *insn) 331 { 332 /* Skip prefixes */ 333 insn = skip_prefixes(insn); 334 335 switch (*insn) { 336 case 0xfa: /* cli */ 337 case 0xfb: /* sti */ 338 case 0xcf: /* iret/iretd */ 339 case 0x9d: /* popf/popfd */ 340 return 1; 341 } 342 343 return 0; 344 } 345 346 /* 347 * Copy an instruction and adjust the displacement if the instruction 348 * uses the %rip-relative addressing mode. 349 * If it does, Return the address of the 32-bit displacement word. 350 * If not, return null. 351 * Only applicable to 64-bit x86. 352 */ 353 int __copy_instruction(u8 *dest, u8 *src) 354 { 355 struct insn insn; 356 kprobe_opcode_t buf[MAX_INSN_SIZE]; 357 unsigned long recovered_insn = 358 recover_probed_instruction(buf, (unsigned long)src); 359 360 if (!recovered_insn) 361 return 0; 362 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE); 363 insn_get_length(&insn); 364 /* Another subsystem puts a breakpoint, failed to recover */ 365 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 366 return 0; 367 memcpy(dest, insn.kaddr, insn.length); 368 369 #ifdef CONFIG_X86_64 370 if (insn_rip_relative(&insn)) { 371 s64 newdisp; 372 u8 *disp; 373 kernel_insn_init(&insn, dest, insn.length); 374 insn_get_displacement(&insn); 375 /* 376 * The copied instruction uses the %rip-relative addressing 377 * mode. Adjust the displacement for the difference between 378 * the original location of this instruction and the location 379 * of the copy that will actually be run. The tricky bit here 380 * is making sure that the sign extension happens correctly in 381 * this calculation, since we need a signed 32-bit result to 382 * be sign-extended to 64 bits when it's added to the %rip 383 * value and yield the same 64-bit result that the sign- 384 * extension of the original signed 32-bit displacement would 385 * have given. 386 */ 387 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 388 if ((s64) (s32) newdisp != newdisp) { 389 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 390 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 391 return 0; 392 } 393 disp = (u8 *) dest + insn_offset_displacement(&insn); 394 *(s32 *) disp = (s32) newdisp; 395 } 396 #endif 397 return insn.length; 398 } 399 400 static int arch_copy_kprobe(struct kprobe *p) 401 { 402 int ret; 403 404 /* Copy an instruction with recovering if other optprobe modifies it.*/ 405 ret = __copy_instruction(p->ainsn.insn, p->addr); 406 if (!ret) 407 return -EINVAL; 408 409 /* 410 * __copy_instruction can modify the displacement of the instruction, 411 * but it doesn't affect boostable check. 412 */ 413 if (can_boost(p->ainsn.insn)) 414 p->ainsn.boostable = 0; 415 else 416 p->ainsn.boostable = -1; 417 418 /* Check whether the instruction modifies Interrupt Flag or not */ 419 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 420 421 /* Also, displacement change doesn't affect the first byte */ 422 p->opcode = p->ainsn.insn[0]; 423 424 return 0; 425 } 426 427 int arch_prepare_kprobe(struct kprobe *p) 428 { 429 if (alternatives_text_reserved(p->addr, p->addr)) 430 return -EINVAL; 431 432 if (!can_probe((unsigned long)p->addr)) 433 return -EILSEQ; 434 /* insn: must be on special executable page on x86. */ 435 p->ainsn.insn = get_insn_slot(); 436 if (!p->ainsn.insn) 437 return -ENOMEM; 438 439 return arch_copy_kprobe(p); 440 } 441 442 void arch_arm_kprobe(struct kprobe *p) 443 { 444 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 445 } 446 447 void arch_disarm_kprobe(struct kprobe *p) 448 { 449 text_poke(p->addr, &p->opcode, 1); 450 } 451 452 void arch_remove_kprobe(struct kprobe *p) 453 { 454 if (p->ainsn.insn) { 455 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 456 p->ainsn.insn = NULL; 457 } 458 } 459 460 static nokprobe_inline void 461 save_previous_kprobe(struct kprobe_ctlblk *kcb) 462 { 463 kcb->prev_kprobe.kp = kprobe_running(); 464 kcb->prev_kprobe.status = kcb->kprobe_status; 465 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 466 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 467 } 468 469 static nokprobe_inline void 470 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 471 { 472 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 473 kcb->kprobe_status = kcb->prev_kprobe.status; 474 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 475 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 476 } 477 478 static nokprobe_inline void 479 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 480 struct kprobe_ctlblk *kcb) 481 { 482 __this_cpu_write(current_kprobe, p); 483 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 484 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 485 if (p->ainsn.if_modifier) 486 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 487 } 488 489 static nokprobe_inline void clear_btf(void) 490 { 491 if (test_thread_flag(TIF_BLOCKSTEP)) { 492 unsigned long debugctl = get_debugctlmsr(); 493 494 debugctl &= ~DEBUGCTLMSR_BTF; 495 update_debugctlmsr(debugctl); 496 } 497 } 498 499 static nokprobe_inline void restore_btf(void) 500 { 501 if (test_thread_flag(TIF_BLOCKSTEP)) { 502 unsigned long debugctl = get_debugctlmsr(); 503 504 debugctl |= DEBUGCTLMSR_BTF; 505 update_debugctlmsr(debugctl); 506 } 507 } 508 509 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 510 { 511 unsigned long *sara = stack_addr(regs); 512 513 ri->ret_addr = (kprobe_opcode_t *) *sara; 514 515 /* Replace the return addr with trampoline addr */ 516 *sara = (unsigned long) &kretprobe_trampoline; 517 } 518 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 519 520 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 521 struct kprobe_ctlblk *kcb, int reenter) 522 { 523 if (setup_detour_execution(p, regs, reenter)) 524 return; 525 526 #if !defined(CONFIG_PREEMPT) 527 if (p->ainsn.boostable == 1 && !p->post_handler) { 528 /* Boost up -- we can execute copied instructions directly */ 529 if (!reenter) 530 reset_current_kprobe(); 531 /* 532 * Reentering boosted probe doesn't reset current_kprobe, 533 * nor set current_kprobe, because it doesn't use single 534 * stepping. 535 */ 536 regs->ip = (unsigned long)p->ainsn.insn; 537 preempt_enable_no_resched(); 538 return; 539 } 540 #endif 541 if (reenter) { 542 save_previous_kprobe(kcb); 543 set_current_kprobe(p, regs, kcb); 544 kcb->kprobe_status = KPROBE_REENTER; 545 } else 546 kcb->kprobe_status = KPROBE_HIT_SS; 547 /* Prepare real single stepping */ 548 clear_btf(); 549 regs->flags |= X86_EFLAGS_TF; 550 regs->flags &= ~X86_EFLAGS_IF; 551 /* single step inline if the instruction is an int3 */ 552 if (p->opcode == BREAKPOINT_INSTRUCTION) 553 regs->ip = (unsigned long)p->addr; 554 else 555 regs->ip = (unsigned long)p->ainsn.insn; 556 } 557 NOKPROBE_SYMBOL(setup_singlestep); 558 559 /* 560 * We have reentered the kprobe_handler(), since another probe was hit while 561 * within the handler. We save the original kprobes variables and just single 562 * step on the instruction of the new probe without calling any user handlers. 563 */ 564 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 565 struct kprobe_ctlblk *kcb) 566 { 567 switch (kcb->kprobe_status) { 568 case KPROBE_HIT_SSDONE: 569 case KPROBE_HIT_ACTIVE: 570 case KPROBE_HIT_SS: 571 kprobes_inc_nmissed_count(p); 572 setup_singlestep(p, regs, kcb, 1); 573 break; 574 case KPROBE_REENTER: 575 /* A probe has been hit in the codepath leading up to, or just 576 * after, single-stepping of a probed instruction. This entire 577 * codepath should strictly reside in .kprobes.text section. 578 * Raise a BUG or we'll continue in an endless reentering loop 579 * and eventually a stack overflow. 580 */ 581 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 582 p->addr); 583 dump_kprobe(p); 584 BUG(); 585 default: 586 /* impossible cases */ 587 WARN_ON(1); 588 return 0; 589 } 590 591 return 1; 592 } 593 NOKPROBE_SYMBOL(reenter_kprobe); 594 595 /* 596 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 597 * remain disabled throughout this function. 598 */ 599 int kprobe_int3_handler(struct pt_regs *regs) 600 { 601 kprobe_opcode_t *addr; 602 struct kprobe *p; 603 struct kprobe_ctlblk *kcb; 604 605 if (user_mode_vm(regs)) 606 return 0; 607 608 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 609 /* 610 * We don't want to be preempted for the entire 611 * duration of kprobe processing. We conditionally 612 * re-enable preemption at the end of this function, 613 * and also in reenter_kprobe() and setup_singlestep(). 614 */ 615 preempt_disable(); 616 617 kcb = get_kprobe_ctlblk(); 618 p = get_kprobe(addr); 619 620 if (p) { 621 if (kprobe_running()) { 622 if (reenter_kprobe(p, regs, kcb)) 623 return 1; 624 } else { 625 set_current_kprobe(p, regs, kcb); 626 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 627 628 /* 629 * If we have no pre-handler or it returned 0, we 630 * continue with normal processing. If we have a 631 * pre-handler and it returned non-zero, it prepped 632 * for calling the break_handler below on re-entry 633 * for jprobe processing, so get out doing nothing 634 * more here. 635 */ 636 if (!p->pre_handler || !p->pre_handler(p, regs)) 637 setup_singlestep(p, regs, kcb, 0); 638 return 1; 639 } 640 } else if (*addr != BREAKPOINT_INSTRUCTION) { 641 /* 642 * The breakpoint instruction was removed right 643 * after we hit it. Another cpu has removed 644 * either a probepoint or a debugger breakpoint 645 * at this address. In either case, no further 646 * handling of this interrupt is appropriate. 647 * Back up over the (now missing) int3 and run 648 * the original instruction. 649 */ 650 regs->ip = (unsigned long)addr; 651 preempt_enable_no_resched(); 652 return 1; 653 } else if (kprobe_running()) { 654 p = __this_cpu_read(current_kprobe); 655 if (p->break_handler && p->break_handler(p, regs)) { 656 if (!skip_singlestep(p, regs, kcb)) 657 setup_singlestep(p, regs, kcb, 0); 658 return 1; 659 } 660 } /* else: not a kprobe fault; let the kernel handle it */ 661 662 preempt_enable_no_resched(); 663 return 0; 664 } 665 NOKPROBE_SYMBOL(kprobe_int3_handler); 666 667 /* 668 * When a retprobed function returns, this code saves registers and 669 * calls trampoline_handler() runs, which calls the kretprobe's handler. 670 */ 671 static void __used kretprobe_trampoline_holder(void) 672 { 673 asm volatile ( 674 ".global kretprobe_trampoline\n" 675 "kretprobe_trampoline: \n" 676 #ifdef CONFIG_X86_64 677 /* We don't bother saving the ss register */ 678 " pushq %rsp\n" 679 " pushfq\n" 680 SAVE_REGS_STRING 681 " movq %rsp, %rdi\n" 682 " call trampoline_handler\n" 683 /* Replace saved sp with true return address. */ 684 " movq %rax, 152(%rsp)\n" 685 RESTORE_REGS_STRING 686 " popfq\n" 687 #else 688 " pushf\n" 689 SAVE_REGS_STRING 690 " movl %esp, %eax\n" 691 " call trampoline_handler\n" 692 /* Move flags to cs */ 693 " movl 56(%esp), %edx\n" 694 " movl %edx, 52(%esp)\n" 695 /* Replace saved flags with true return address. */ 696 " movl %eax, 56(%esp)\n" 697 RESTORE_REGS_STRING 698 " popf\n" 699 #endif 700 " ret\n"); 701 } 702 NOKPROBE_SYMBOL(kretprobe_trampoline_holder); 703 NOKPROBE_SYMBOL(kretprobe_trampoline); 704 705 /* 706 * Called from kretprobe_trampoline 707 */ 708 __visible __used void *trampoline_handler(struct pt_regs *regs) 709 { 710 struct kretprobe_instance *ri = NULL; 711 struct hlist_head *head, empty_rp; 712 struct hlist_node *tmp; 713 unsigned long flags, orig_ret_address = 0; 714 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 715 kprobe_opcode_t *correct_ret_addr = NULL; 716 717 INIT_HLIST_HEAD(&empty_rp); 718 kretprobe_hash_lock(current, &head, &flags); 719 /* fixup registers */ 720 #ifdef CONFIG_X86_64 721 regs->cs = __KERNEL_CS; 722 #else 723 regs->cs = __KERNEL_CS | get_kernel_rpl(); 724 regs->gs = 0; 725 #endif 726 regs->ip = trampoline_address; 727 regs->orig_ax = ~0UL; 728 729 /* 730 * It is possible to have multiple instances associated with a given 731 * task either because multiple functions in the call path have 732 * return probes installed on them, and/or more than one 733 * return probe was registered for a target function. 734 * 735 * We can handle this because: 736 * - instances are always pushed into the head of the list 737 * - when multiple return probes are registered for the same 738 * function, the (chronologically) first instance's ret_addr 739 * will be the real return address, and all the rest will 740 * point to kretprobe_trampoline. 741 */ 742 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 743 if (ri->task != current) 744 /* another task is sharing our hash bucket */ 745 continue; 746 747 orig_ret_address = (unsigned long)ri->ret_addr; 748 749 if (orig_ret_address != trampoline_address) 750 /* 751 * This is the real return address. Any other 752 * instances associated with this task are for 753 * other calls deeper on the call stack 754 */ 755 break; 756 } 757 758 kretprobe_assert(ri, orig_ret_address, trampoline_address); 759 760 correct_ret_addr = ri->ret_addr; 761 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 762 if (ri->task != current) 763 /* another task is sharing our hash bucket */ 764 continue; 765 766 orig_ret_address = (unsigned long)ri->ret_addr; 767 if (ri->rp && ri->rp->handler) { 768 __this_cpu_write(current_kprobe, &ri->rp->kp); 769 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 770 ri->ret_addr = correct_ret_addr; 771 ri->rp->handler(ri, regs); 772 __this_cpu_write(current_kprobe, NULL); 773 } 774 775 recycle_rp_inst(ri, &empty_rp); 776 777 if (orig_ret_address != trampoline_address) 778 /* 779 * This is the real return address. Any other 780 * instances associated with this task are for 781 * other calls deeper on the call stack 782 */ 783 break; 784 } 785 786 kretprobe_hash_unlock(current, &flags); 787 788 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 789 hlist_del(&ri->hlist); 790 kfree(ri); 791 } 792 return (void *)orig_ret_address; 793 } 794 NOKPROBE_SYMBOL(trampoline_handler); 795 796 /* 797 * Called after single-stepping. p->addr is the address of the 798 * instruction whose first byte has been replaced by the "int 3" 799 * instruction. To avoid the SMP problems that can occur when we 800 * temporarily put back the original opcode to single-step, we 801 * single-stepped a copy of the instruction. The address of this 802 * copy is p->ainsn.insn. 803 * 804 * This function prepares to return from the post-single-step 805 * interrupt. We have to fix up the stack as follows: 806 * 807 * 0) Except in the case of absolute or indirect jump or call instructions, 808 * the new ip is relative to the copied instruction. We need to make 809 * it relative to the original instruction. 810 * 811 * 1) If the single-stepped instruction was pushfl, then the TF and IF 812 * flags are set in the just-pushed flags, and may need to be cleared. 813 * 814 * 2) If the single-stepped instruction was a call, the return address 815 * that is atop the stack is the address following the copied instruction. 816 * We need to make it the address following the original instruction. 817 * 818 * If this is the first time we've single-stepped the instruction at 819 * this probepoint, and the instruction is boostable, boost it: add a 820 * jump instruction after the copied instruction, that jumps to the next 821 * instruction after the probepoint. 822 */ 823 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 824 struct kprobe_ctlblk *kcb) 825 { 826 unsigned long *tos = stack_addr(regs); 827 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 828 unsigned long orig_ip = (unsigned long)p->addr; 829 kprobe_opcode_t *insn = p->ainsn.insn; 830 831 /* Skip prefixes */ 832 insn = skip_prefixes(insn); 833 834 regs->flags &= ~X86_EFLAGS_TF; 835 switch (*insn) { 836 case 0x9c: /* pushfl */ 837 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 838 *tos |= kcb->kprobe_old_flags; 839 break; 840 case 0xc2: /* iret/ret/lret */ 841 case 0xc3: 842 case 0xca: 843 case 0xcb: 844 case 0xcf: 845 case 0xea: /* jmp absolute -- ip is correct */ 846 /* ip is already adjusted, no more changes required */ 847 p->ainsn.boostable = 1; 848 goto no_change; 849 case 0xe8: /* call relative - Fix return addr */ 850 *tos = orig_ip + (*tos - copy_ip); 851 break; 852 #ifdef CONFIG_X86_32 853 case 0x9a: /* call absolute -- same as call absolute, indirect */ 854 *tos = orig_ip + (*tos - copy_ip); 855 goto no_change; 856 #endif 857 case 0xff: 858 if ((insn[1] & 0x30) == 0x10) { 859 /* 860 * call absolute, indirect 861 * Fix return addr; ip is correct. 862 * But this is not boostable 863 */ 864 *tos = orig_ip + (*tos - copy_ip); 865 goto no_change; 866 } else if (((insn[1] & 0x31) == 0x20) || 867 ((insn[1] & 0x31) == 0x21)) { 868 /* 869 * jmp near and far, absolute indirect 870 * ip is correct. And this is boostable 871 */ 872 p->ainsn.boostable = 1; 873 goto no_change; 874 } 875 default: 876 break; 877 } 878 879 if (p->ainsn.boostable == 0) { 880 if ((regs->ip > copy_ip) && 881 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 882 /* 883 * These instructions can be executed directly if it 884 * jumps back to correct address. 885 */ 886 synthesize_reljump((void *)regs->ip, 887 (void *)orig_ip + (regs->ip - copy_ip)); 888 p->ainsn.boostable = 1; 889 } else { 890 p->ainsn.boostable = -1; 891 } 892 } 893 894 regs->ip += orig_ip - copy_ip; 895 896 no_change: 897 restore_btf(); 898 } 899 NOKPROBE_SYMBOL(resume_execution); 900 901 /* 902 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 903 * remain disabled throughout this function. 904 */ 905 int kprobe_debug_handler(struct pt_regs *regs) 906 { 907 struct kprobe *cur = kprobe_running(); 908 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 909 910 if (!cur) 911 return 0; 912 913 resume_execution(cur, regs, kcb); 914 regs->flags |= kcb->kprobe_saved_flags; 915 916 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 917 kcb->kprobe_status = KPROBE_HIT_SSDONE; 918 cur->post_handler(cur, regs, 0); 919 } 920 921 /* Restore back the original saved kprobes variables and continue. */ 922 if (kcb->kprobe_status == KPROBE_REENTER) { 923 restore_previous_kprobe(kcb); 924 goto out; 925 } 926 reset_current_kprobe(); 927 out: 928 preempt_enable_no_resched(); 929 930 /* 931 * if somebody else is singlestepping across a probe point, flags 932 * will have TF set, in which case, continue the remaining processing 933 * of do_debug, as if this is not a probe hit. 934 */ 935 if (regs->flags & X86_EFLAGS_TF) 936 return 0; 937 938 return 1; 939 } 940 NOKPROBE_SYMBOL(kprobe_debug_handler); 941 942 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 943 { 944 struct kprobe *cur = kprobe_running(); 945 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 946 947 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 948 /* This must happen on single-stepping */ 949 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 950 kcb->kprobe_status != KPROBE_REENTER); 951 /* 952 * We are here because the instruction being single 953 * stepped caused a page fault. We reset the current 954 * kprobe and the ip points back to the probe address 955 * and allow the page fault handler to continue as a 956 * normal page fault. 957 */ 958 regs->ip = (unsigned long)cur->addr; 959 regs->flags |= kcb->kprobe_old_flags; 960 if (kcb->kprobe_status == KPROBE_REENTER) 961 restore_previous_kprobe(kcb); 962 else 963 reset_current_kprobe(); 964 preempt_enable_no_resched(); 965 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 966 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 967 /* 968 * We increment the nmissed count for accounting, 969 * we can also use npre/npostfault count for accounting 970 * these specific fault cases. 971 */ 972 kprobes_inc_nmissed_count(cur); 973 974 /* 975 * We come here because instructions in the pre/post 976 * handler caused the page_fault, this could happen 977 * if handler tries to access user space by 978 * copy_from_user(), get_user() etc. Let the 979 * user-specified handler try to fix it first. 980 */ 981 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 982 return 1; 983 984 /* 985 * In case the user-specified fault handler returned 986 * zero, try to fix up. 987 */ 988 if (fixup_exception(regs)) 989 return 1; 990 991 /* 992 * fixup routine could not handle it, 993 * Let do_page_fault() fix it. 994 */ 995 } 996 997 return 0; 998 } 999 NOKPROBE_SYMBOL(kprobe_fault_handler); 1000 1001 /* 1002 * Wrapper routine for handling exceptions. 1003 */ 1004 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1005 void *data) 1006 { 1007 struct die_args *args = data; 1008 int ret = NOTIFY_DONE; 1009 1010 if (args->regs && user_mode_vm(args->regs)) 1011 return ret; 1012 1013 if (val == DIE_GPF) { 1014 /* 1015 * To be potentially processing a kprobe fault and to 1016 * trust the result from kprobe_running(), we have 1017 * be non-preemptible. 1018 */ 1019 if (!preemptible() && kprobe_running() && 1020 kprobe_fault_handler(args->regs, args->trapnr)) 1021 ret = NOTIFY_STOP; 1022 } 1023 return ret; 1024 } 1025 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1026 1027 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1028 { 1029 struct jprobe *jp = container_of(p, struct jprobe, kp); 1030 unsigned long addr; 1031 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1032 1033 kcb->jprobe_saved_regs = *regs; 1034 kcb->jprobe_saved_sp = stack_addr(regs); 1035 addr = (unsigned long)(kcb->jprobe_saved_sp); 1036 1037 /* 1038 * As Linus pointed out, gcc assumes that the callee 1039 * owns the argument space and could overwrite it, e.g. 1040 * tailcall optimization. So, to be absolutely safe 1041 * we also save and restore enough stack bytes to cover 1042 * the argument area. 1043 */ 1044 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, 1045 MIN_STACK_SIZE(addr)); 1046 regs->flags &= ~X86_EFLAGS_IF; 1047 trace_hardirqs_off(); 1048 regs->ip = (unsigned long)(jp->entry); 1049 1050 /* 1051 * jprobes use jprobe_return() which skips the normal return 1052 * path of the function, and this messes up the accounting of the 1053 * function graph tracer to get messed up. 1054 * 1055 * Pause function graph tracing while performing the jprobe function. 1056 */ 1057 pause_graph_tracing(); 1058 return 1; 1059 } 1060 NOKPROBE_SYMBOL(setjmp_pre_handler); 1061 1062 void jprobe_return(void) 1063 { 1064 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1065 1066 asm volatile ( 1067 #ifdef CONFIG_X86_64 1068 " xchg %%rbx,%%rsp \n" 1069 #else 1070 " xchgl %%ebx,%%esp \n" 1071 #endif 1072 " int3 \n" 1073 " .globl jprobe_return_end\n" 1074 " jprobe_return_end: \n" 1075 " nop \n"::"b" 1076 (kcb->jprobe_saved_sp):"memory"); 1077 } 1078 NOKPROBE_SYMBOL(jprobe_return); 1079 NOKPROBE_SYMBOL(jprobe_return_end); 1080 1081 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1082 { 1083 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1084 u8 *addr = (u8 *) (regs->ip - 1); 1085 struct jprobe *jp = container_of(p, struct jprobe, kp); 1086 void *saved_sp = kcb->jprobe_saved_sp; 1087 1088 if ((addr > (u8 *) jprobe_return) && 1089 (addr < (u8 *) jprobe_return_end)) { 1090 if (stack_addr(regs) != saved_sp) { 1091 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1092 printk(KERN_ERR 1093 "current sp %p does not match saved sp %p\n", 1094 stack_addr(regs), saved_sp); 1095 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1096 show_regs(saved_regs); 1097 printk(KERN_ERR "Current registers\n"); 1098 show_regs(regs); 1099 BUG(); 1100 } 1101 /* It's OK to start function graph tracing again */ 1102 unpause_graph_tracing(); 1103 *regs = kcb->jprobe_saved_regs; 1104 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1105 preempt_enable_no_resched(); 1106 return 1; 1107 } 1108 return 0; 1109 } 1110 NOKPROBE_SYMBOL(longjmp_break_handler); 1111 1112 bool arch_within_kprobe_blacklist(unsigned long addr) 1113 { 1114 return (addr >= (unsigned long)__kprobes_text_start && 1115 addr < (unsigned long)__kprobes_text_end) || 1116 (addr >= (unsigned long)__entry_text_start && 1117 addr < (unsigned long)__entry_text_end); 1118 } 1119 1120 int __init arch_init_kprobes(void) 1121 { 1122 return 0; 1123 } 1124 1125 int arch_trampoline_kprobe(struct kprobe *p) 1126 { 1127 return 0; 1128 } 1129