xref: /linux/arch/x86/kernel/kprobes/core.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
60 
61 #include "common.h"
62 
63 void jprobe_return_end(void);
64 
65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67 
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
72 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
73 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
74 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
75 	 << (row % 32))
76 	/*
77 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 	 * Groups, and some special opcodes can not boost.
79 	 * This is non-const and volatile to keep gcc from statically
80 	 * optimizing it out, as variable_test_bit makes gcc think only
81 	 * *(unsigned long*) is used.
82 	 */
83 static volatile u32 twobyte_is_boostable[256 / 32] = {
84 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
85 	/*      ----------------------------------------------          */
86 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
88 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
102 	/*      -----------------------------------------------         */
103 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
104 };
105 #undef W
106 
107 struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 	{"__switch_to", }, /* This function switches only current task, but
109 			      doesn't switch kernel stack.*/
110 	{NULL, NULL}	/* Terminator */
111 };
112 
113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114 
115 static nokprobe_inline void
116 __synthesize_relative_insn(void *from, void *to, u8 op)
117 {
118 	struct __arch_relative_insn {
119 		u8 op;
120 		s32 raddr;
121 	} __packed *insn;
122 
123 	insn = (struct __arch_relative_insn *)from;
124 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
125 	insn->op = op;
126 }
127 
128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
129 void synthesize_reljump(void *from, void *to)
130 {
131 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_reljump);
134 
135 /* Insert a call instruction at address 'from', which calls address 'to'.*/
136 void synthesize_relcall(void *from, void *to)
137 {
138 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
139 }
140 NOKPROBE_SYMBOL(synthesize_relcall);
141 
142 /*
143  * Skip the prefixes of the instruction.
144  */
145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
146 {
147 	insn_attr_t attr;
148 
149 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 	while (inat_is_legacy_prefix(attr)) {
151 		insn++;
152 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 	}
154 #ifdef CONFIG_X86_64
155 	if (inat_is_rex_prefix(attr))
156 		insn++;
157 #endif
158 	return insn;
159 }
160 NOKPROBE_SYMBOL(skip_prefixes);
161 
162 /*
163  * Returns non-zero if opcode is boostable.
164  * RIP relative instructions are adjusted at copying time in 64 bits mode
165  */
166 int can_boost(kprobe_opcode_t *opcodes)
167 {
168 	kprobe_opcode_t opcode;
169 	kprobe_opcode_t *orig_opcodes = opcodes;
170 
171 	if (search_exception_tables((unsigned long)opcodes))
172 		return 0;	/* Page fault may occur on this address. */
173 
174 retry:
175 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
176 		return 0;
177 	opcode = *(opcodes++);
178 
179 	/* 2nd-byte opcode */
180 	if (opcode == 0x0f) {
181 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
182 			return 0;
183 		return test_bit(*opcodes,
184 				(unsigned long *)twobyte_is_boostable);
185 	}
186 
187 	switch (opcode & 0xf0) {
188 #ifdef CONFIG_X86_64
189 	case 0x40:
190 		goto retry; /* REX prefix is boostable */
191 #endif
192 	case 0x60:
193 		if (0x63 < opcode && opcode < 0x67)
194 			goto retry; /* prefixes */
195 		/* can't boost Address-size override and bound */
196 		return (opcode != 0x62 && opcode != 0x67);
197 	case 0x70:
198 		return 0; /* can't boost conditional jump */
199 	case 0xc0:
200 		/* can't boost software-interruptions */
201 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 	case 0xd0:
203 		/* can boost AA* and XLAT */
204 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 	case 0xe0:
206 		/* can boost in/out and absolute jmps */
207 		return ((opcode & 0x04) || opcode == 0xea);
208 	case 0xf0:
209 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
210 			goto retry; /* lock/rep(ne) prefix */
211 		/* clear and set flags are boostable */
212 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 	default:
214 		/* segment override prefixes are boostable */
215 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
216 			goto retry; /* prefixes */
217 		/* CS override prefix and call are not boostable */
218 		return (opcode != 0x2e && opcode != 0x9a);
219 	}
220 }
221 
222 static unsigned long
223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
224 {
225 	struct kprobe *kp;
226 	unsigned long faddr;
227 
228 	kp = get_kprobe((void *)addr);
229 	faddr = ftrace_location(addr);
230 	/*
231 	 * Addresses inside the ftrace location are refused by
232 	 * arch_check_ftrace_location(). Something went terribly wrong
233 	 * if such an address is checked here.
234 	 */
235 	if (WARN_ON(faddr && faddr != addr))
236 		return 0UL;
237 	/*
238 	 * Use the current code if it is not modified by Kprobe
239 	 * and it cannot be modified by ftrace.
240 	 */
241 	if (!kp && !faddr)
242 		return addr;
243 
244 	/*
245 	 * Basically, kp->ainsn.insn has an original instruction.
246 	 * However, RIP-relative instruction can not do single-stepping
247 	 * at different place, __copy_instruction() tweaks the displacement of
248 	 * that instruction. In that case, we can't recover the instruction
249 	 * from the kp->ainsn.insn.
250 	 *
251 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
252 	 * of the first byte of the probed instruction, which is overwritten
253 	 * by int3. And the instruction at kp->addr is not modified by kprobes
254 	 * except for the first byte, we can recover the original instruction
255 	 * from it and kp->opcode.
256 	 *
257 	 * In case of Kprobes using ftrace, we do not have a copy of
258 	 * the original instruction. In fact, the ftrace location might
259 	 * be modified at anytime and even could be in an inconsistent state.
260 	 * Fortunately, we know that the original code is the ideal 5-byte
261 	 * long NOP.
262 	 */
263 	memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
264 	if (faddr)
265 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 	else
267 		buf[0] = kp->opcode;
268 	return (unsigned long)buf;
269 }
270 
271 /*
272  * Recover the probed instruction at addr for further analysis.
273  * Caller must lock kprobes by kprobe_mutex, or disable preemption
274  * for preventing to release referencing kprobes.
275  * Returns zero if the instruction can not get recovered.
276  */
277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
278 {
279 	unsigned long __addr;
280 
281 	__addr = __recover_optprobed_insn(buf, addr);
282 	if (__addr != addr)
283 		return __addr;
284 
285 	return __recover_probed_insn(buf, addr);
286 }
287 
288 /* Check if paddr is at an instruction boundary */
289 static int can_probe(unsigned long paddr)
290 {
291 	unsigned long addr, __addr, offset = 0;
292 	struct insn insn;
293 	kprobe_opcode_t buf[MAX_INSN_SIZE];
294 
295 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
296 		return 0;
297 
298 	/* Decode instructions */
299 	addr = paddr - offset;
300 	while (addr < paddr) {
301 		/*
302 		 * Check if the instruction has been modified by another
303 		 * kprobe, in which case we replace the breakpoint by the
304 		 * original instruction in our buffer.
305 		 * Also, jump optimization will change the breakpoint to
306 		 * relative-jump. Since the relative-jump itself is
307 		 * normally used, we just go through if there is no kprobe.
308 		 */
309 		__addr = recover_probed_instruction(buf, addr);
310 		if (!__addr)
311 			return 0;
312 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
313 		insn_get_length(&insn);
314 
315 		/*
316 		 * Another debugging subsystem might insert this breakpoint.
317 		 * In that case, we can't recover it.
318 		 */
319 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 			return 0;
321 		addr += insn.length;
322 	}
323 
324 	return (addr == paddr);
325 }
326 
327 /*
328  * Returns non-zero if opcode modifies the interrupt flag.
329  */
330 static int is_IF_modifier(kprobe_opcode_t *insn)
331 {
332 	/* Skip prefixes */
333 	insn = skip_prefixes(insn);
334 
335 	switch (*insn) {
336 	case 0xfa:		/* cli */
337 	case 0xfb:		/* sti */
338 	case 0xcf:		/* iret/iretd */
339 	case 0x9d:		/* popf/popfd */
340 		return 1;
341 	}
342 
343 	return 0;
344 }
345 
346 /*
347  * Copy an instruction and adjust the displacement if the instruction
348  * uses the %rip-relative addressing mode.
349  * If it does, Return the address of the 32-bit displacement word.
350  * If not, return null.
351  * Only applicable to 64-bit x86.
352  */
353 int __copy_instruction(u8 *dest, u8 *src)
354 {
355 	struct insn insn;
356 	kprobe_opcode_t buf[MAX_INSN_SIZE];
357 	unsigned long recovered_insn =
358 		recover_probed_instruction(buf, (unsigned long)src);
359 
360 	if (!recovered_insn)
361 		return 0;
362 	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
363 	insn_get_length(&insn);
364 	/* Another subsystem puts a breakpoint, failed to recover */
365 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
366 		return 0;
367 	memcpy(dest, insn.kaddr, insn.length);
368 
369 #ifdef CONFIG_X86_64
370 	if (insn_rip_relative(&insn)) {
371 		s64 newdisp;
372 		u8 *disp;
373 		kernel_insn_init(&insn, dest, insn.length);
374 		insn_get_displacement(&insn);
375 		/*
376 		 * The copied instruction uses the %rip-relative addressing
377 		 * mode.  Adjust the displacement for the difference between
378 		 * the original location of this instruction and the location
379 		 * of the copy that will actually be run.  The tricky bit here
380 		 * is making sure that the sign extension happens correctly in
381 		 * this calculation, since we need a signed 32-bit result to
382 		 * be sign-extended to 64 bits when it's added to the %rip
383 		 * value and yield the same 64-bit result that the sign-
384 		 * extension of the original signed 32-bit displacement would
385 		 * have given.
386 		 */
387 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
388 		if ((s64) (s32) newdisp != newdisp) {
389 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
390 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
391 			return 0;
392 		}
393 		disp = (u8 *) dest + insn_offset_displacement(&insn);
394 		*(s32 *) disp = (s32) newdisp;
395 	}
396 #endif
397 	return insn.length;
398 }
399 
400 static int arch_copy_kprobe(struct kprobe *p)
401 {
402 	int ret;
403 
404 	/* Copy an instruction with recovering if other optprobe modifies it.*/
405 	ret = __copy_instruction(p->ainsn.insn, p->addr);
406 	if (!ret)
407 		return -EINVAL;
408 
409 	/*
410 	 * __copy_instruction can modify the displacement of the instruction,
411 	 * but it doesn't affect boostable check.
412 	 */
413 	if (can_boost(p->ainsn.insn))
414 		p->ainsn.boostable = 0;
415 	else
416 		p->ainsn.boostable = -1;
417 
418 	/* Check whether the instruction modifies Interrupt Flag or not */
419 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
420 
421 	/* Also, displacement change doesn't affect the first byte */
422 	p->opcode = p->ainsn.insn[0];
423 
424 	return 0;
425 }
426 
427 int arch_prepare_kprobe(struct kprobe *p)
428 {
429 	if (alternatives_text_reserved(p->addr, p->addr))
430 		return -EINVAL;
431 
432 	if (!can_probe((unsigned long)p->addr))
433 		return -EILSEQ;
434 	/* insn: must be on special executable page on x86. */
435 	p->ainsn.insn = get_insn_slot();
436 	if (!p->ainsn.insn)
437 		return -ENOMEM;
438 
439 	return arch_copy_kprobe(p);
440 }
441 
442 void arch_arm_kprobe(struct kprobe *p)
443 {
444 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
445 }
446 
447 void arch_disarm_kprobe(struct kprobe *p)
448 {
449 	text_poke(p->addr, &p->opcode, 1);
450 }
451 
452 void arch_remove_kprobe(struct kprobe *p)
453 {
454 	if (p->ainsn.insn) {
455 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
456 		p->ainsn.insn = NULL;
457 	}
458 }
459 
460 static nokprobe_inline void
461 save_previous_kprobe(struct kprobe_ctlblk *kcb)
462 {
463 	kcb->prev_kprobe.kp = kprobe_running();
464 	kcb->prev_kprobe.status = kcb->kprobe_status;
465 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
466 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
467 }
468 
469 static nokprobe_inline void
470 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
471 {
472 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
473 	kcb->kprobe_status = kcb->prev_kprobe.status;
474 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
475 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
476 }
477 
478 static nokprobe_inline void
479 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
480 		   struct kprobe_ctlblk *kcb)
481 {
482 	__this_cpu_write(current_kprobe, p);
483 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
484 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
485 	if (p->ainsn.if_modifier)
486 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
487 }
488 
489 static nokprobe_inline void clear_btf(void)
490 {
491 	if (test_thread_flag(TIF_BLOCKSTEP)) {
492 		unsigned long debugctl = get_debugctlmsr();
493 
494 		debugctl &= ~DEBUGCTLMSR_BTF;
495 		update_debugctlmsr(debugctl);
496 	}
497 }
498 
499 static nokprobe_inline void restore_btf(void)
500 {
501 	if (test_thread_flag(TIF_BLOCKSTEP)) {
502 		unsigned long debugctl = get_debugctlmsr();
503 
504 		debugctl |= DEBUGCTLMSR_BTF;
505 		update_debugctlmsr(debugctl);
506 	}
507 }
508 
509 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
510 {
511 	unsigned long *sara = stack_addr(regs);
512 
513 	ri->ret_addr = (kprobe_opcode_t *) *sara;
514 
515 	/* Replace the return addr with trampoline addr */
516 	*sara = (unsigned long) &kretprobe_trampoline;
517 }
518 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
519 
520 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
521 			     struct kprobe_ctlblk *kcb, int reenter)
522 {
523 	if (setup_detour_execution(p, regs, reenter))
524 		return;
525 
526 #if !defined(CONFIG_PREEMPT)
527 	if (p->ainsn.boostable == 1 && !p->post_handler) {
528 		/* Boost up -- we can execute copied instructions directly */
529 		if (!reenter)
530 			reset_current_kprobe();
531 		/*
532 		 * Reentering boosted probe doesn't reset current_kprobe,
533 		 * nor set current_kprobe, because it doesn't use single
534 		 * stepping.
535 		 */
536 		regs->ip = (unsigned long)p->ainsn.insn;
537 		preempt_enable_no_resched();
538 		return;
539 	}
540 #endif
541 	if (reenter) {
542 		save_previous_kprobe(kcb);
543 		set_current_kprobe(p, regs, kcb);
544 		kcb->kprobe_status = KPROBE_REENTER;
545 	} else
546 		kcb->kprobe_status = KPROBE_HIT_SS;
547 	/* Prepare real single stepping */
548 	clear_btf();
549 	regs->flags |= X86_EFLAGS_TF;
550 	regs->flags &= ~X86_EFLAGS_IF;
551 	/* single step inline if the instruction is an int3 */
552 	if (p->opcode == BREAKPOINT_INSTRUCTION)
553 		regs->ip = (unsigned long)p->addr;
554 	else
555 		regs->ip = (unsigned long)p->ainsn.insn;
556 }
557 NOKPROBE_SYMBOL(setup_singlestep);
558 
559 /*
560  * We have reentered the kprobe_handler(), since another probe was hit while
561  * within the handler. We save the original kprobes variables and just single
562  * step on the instruction of the new probe without calling any user handlers.
563  */
564 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
565 			  struct kprobe_ctlblk *kcb)
566 {
567 	switch (kcb->kprobe_status) {
568 	case KPROBE_HIT_SSDONE:
569 	case KPROBE_HIT_ACTIVE:
570 	case KPROBE_HIT_SS:
571 		kprobes_inc_nmissed_count(p);
572 		setup_singlestep(p, regs, kcb, 1);
573 		break;
574 	case KPROBE_REENTER:
575 		/* A probe has been hit in the codepath leading up to, or just
576 		 * after, single-stepping of a probed instruction. This entire
577 		 * codepath should strictly reside in .kprobes.text section.
578 		 * Raise a BUG or we'll continue in an endless reentering loop
579 		 * and eventually a stack overflow.
580 		 */
581 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
582 		       p->addr);
583 		dump_kprobe(p);
584 		BUG();
585 	default:
586 		/* impossible cases */
587 		WARN_ON(1);
588 		return 0;
589 	}
590 
591 	return 1;
592 }
593 NOKPROBE_SYMBOL(reenter_kprobe);
594 
595 /*
596  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
597  * remain disabled throughout this function.
598  */
599 int kprobe_int3_handler(struct pt_regs *regs)
600 {
601 	kprobe_opcode_t *addr;
602 	struct kprobe *p;
603 	struct kprobe_ctlblk *kcb;
604 
605 	if (user_mode_vm(regs))
606 		return 0;
607 
608 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
609 	/*
610 	 * We don't want to be preempted for the entire
611 	 * duration of kprobe processing. We conditionally
612 	 * re-enable preemption at the end of this function,
613 	 * and also in reenter_kprobe() and setup_singlestep().
614 	 */
615 	preempt_disable();
616 
617 	kcb = get_kprobe_ctlblk();
618 	p = get_kprobe(addr);
619 
620 	if (p) {
621 		if (kprobe_running()) {
622 			if (reenter_kprobe(p, regs, kcb))
623 				return 1;
624 		} else {
625 			set_current_kprobe(p, regs, kcb);
626 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
627 
628 			/*
629 			 * If we have no pre-handler or it returned 0, we
630 			 * continue with normal processing.  If we have a
631 			 * pre-handler and it returned non-zero, it prepped
632 			 * for calling the break_handler below on re-entry
633 			 * for jprobe processing, so get out doing nothing
634 			 * more here.
635 			 */
636 			if (!p->pre_handler || !p->pre_handler(p, regs))
637 				setup_singlestep(p, regs, kcb, 0);
638 			return 1;
639 		}
640 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
641 		/*
642 		 * The breakpoint instruction was removed right
643 		 * after we hit it.  Another cpu has removed
644 		 * either a probepoint or a debugger breakpoint
645 		 * at this address.  In either case, no further
646 		 * handling of this interrupt is appropriate.
647 		 * Back up over the (now missing) int3 and run
648 		 * the original instruction.
649 		 */
650 		regs->ip = (unsigned long)addr;
651 		preempt_enable_no_resched();
652 		return 1;
653 	} else if (kprobe_running()) {
654 		p = __this_cpu_read(current_kprobe);
655 		if (p->break_handler && p->break_handler(p, regs)) {
656 			if (!skip_singlestep(p, regs, kcb))
657 				setup_singlestep(p, regs, kcb, 0);
658 			return 1;
659 		}
660 	} /* else: not a kprobe fault; let the kernel handle it */
661 
662 	preempt_enable_no_resched();
663 	return 0;
664 }
665 NOKPROBE_SYMBOL(kprobe_int3_handler);
666 
667 /*
668  * When a retprobed function returns, this code saves registers and
669  * calls trampoline_handler() runs, which calls the kretprobe's handler.
670  */
671 static void __used kretprobe_trampoline_holder(void)
672 {
673 	asm volatile (
674 			".global kretprobe_trampoline\n"
675 			"kretprobe_trampoline: \n"
676 #ifdef CONFIG_X86_64
677 			/* We don't bother saving the ss register */
678 			"	pushq %rsp\n"
679 			"	pushfq\n"
680 			SAVE_REGS_STRING
681 			"	movq %rsp, %rdi\n"
682 			"	call trampoline_handler\n"
683 			/* Replace saved sp with true return address. */
684 			"	movq %rax, 152(%rsp)\n"
685 			RESTORE_REGS_STRING
686 			"	popfq\n"
687 #else
688 			"	pushf\n"
689 			SAVE_REGS_STRING
690 			"	movl %esp, %eax\n"
691 			"	call trampoline_handler\n"
692 			/* Move flags to cs */
693 			"	movl 56(%esp), %edx\n"
694 			"	movl %edx, 52(%esp)\n"
695 			/* Replace saved flags with true return address. */
696 			"	movl %eax, 56(%esp)\n"
697 			RESTORE_REGS_STRING
698 			"	popf\n"
699 #endif
700 			"	ret\n");
701 }
702 NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
703 NOKPROBE_SYMBOL(kretprobe_trampoline);
704 
705 /*
706  * Called from kretprobe_trampoline
707  */
708 __visible __used void *trampoline_handler(struct pt_regs *regs)
709 {
710 	struct kretprobe_instance *ri = NULL;
711 	struct hlist_head *head, empty_rp;
712 	struct hlist_node *tmp;
713 	unsigned long flags, orig_ret_address = 0;
714 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
715 	kprobe_opcode_t *correct_ret_addr = NULL;
716 
717 	INIT_HLIST_HEAD(&empty_rp);
718 	kretprobe_hash_lock(current, &head, &flags);
719 	/* fixup registers */
720 #ifdef CONFIG_X86_64
721 	regs->cs = __KERNEL_CS;
722 #else
723 	regs->cs = __KERNEL_CS | get_kernel_rpl();
724 	regs->gs = 0;
725 #endif
726 	regs->ip = trampoline_address;
727 	regs->orig_ax = ~0UL;
728 
729 	/*
730 	 * It is possible to have multiple instances associated with a given
731 	 * task either because multiple functions in the call path have
732 	 * return probes installed on them, and/or more than one
733 	 * return probe was registered for a target function.
734 	 *
735 	 * We can handle this because:
736 	 *     - instances are always pushed into the head of the list
737 	 *     - when multiple return probes are registered for the same
738 	 *	 function, the (chronologically) first instance's ret_addr
739 	 *	 will be the real return address, and all the rest will
740 	 *	 point to kretprobe_trampoline.
741 	 */
742 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
743 		if (ri->task != current)
744 			/* another task is sharing our hash bucket */
745 			continue;
746 
747 		orig_ret_address = (unsigned long)ri->ret_addr;
748 
749 		if (orig_ret_address != trampoline_address)
750 			/*
751 			 * This is the real return address. Any other
752 			 * instances associated with this task are for
753 			 * other calls deeper on the call stack
754 			 */
755 			break;
756 	}
757 
758 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
759 
760 	correct_ret_addr = ri->ret_addr;
761 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
762 		if (ri->task != current)
763 			/* another task is sharing our hash bucket */
764 			continue;
765 
766 		orig_ret_address = (unsigned long)ri->ret_addr;
767 		if (ri->rp && ri->rp->handler) {
768 			__this_cpu_write(current_kprobe, &ri->rp->kp);
769 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
770 			ri->ret_addr = correct_ret_addr;
771 			ri->rp->handler(ri, regs);
772 			__this_cpu_write(current_kprobe, NULL);
773 		}
774 
775 		recycle_rp_inst(ri, &empty_rp);
776 
777 		if (orig_ret_address != trampoline_address)
778 			/*
779 			 * This is the real return address. Any other
780 			 * instances associated with this task are for
781 			 * other calls deeper on the call stack
782 			 */
783 			break;
784 	}
785 
786 	kretprobe_hash_unlock(current, &flags);
787 
788 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
789 		hlist_del(&ri->hlist);
790 		kfree(ri);
791 	}
792 	return (void *)orig_ret_address;
793 }
794 NOKPROBE_SYMBOL(trampoline_handler);
795 
796 /*
797  * Called after single-stepping.  p->addr is the address of the
798  * instruction whose first byte has been replaced by the "int 3"
799  * instruction.  To avoid the SMP problems that can occur when we
800  * temporarily put back the original opcode to single-step, we
801  * single-stepped a copy of the instruction.  The address of this
802  * copy is p->ainsn.insn.
803  *
804  * This function prepares to return from the post-single-step
805  * interrupt.  We have to fix up the stack as follows:
806  *
807  * 0) Except in the case of absolute or indirect jump or call instructions,
808  * the new ip is relative to the copied instruction.  We need to make
809  * it relative to the original instruction.
810  *
811  * 1) If the single-stepped instruction was pushfl, then the TF and IF
812  * flags are set in the just-pushed flags, and may need to be cleared.
813  *
814  * 2) If the single-stepped instruction was a call, the return address
815  * that is atop the stack is the address following the copied instruction.
816  * We need to make it the address following the original instruction.
817  *
818  * If this is the first time we've single-stepped the instruction at
819  * this probepoint, and the instruction is boostable, boost it: add a
820  * jump instruction after the copied instruction, that jumps to the next
821  * instruction after the probepoint.
822  */
823 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
824 			     struct kprobe_ctlblk *kcb)
825 {
826 	unsigned long *tos = stack_addr(regs);
827 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
828 	unsigned long orig_ip = (unsigned long)p->addr;
829 	kprobe_opcode_t *insn = p->ainsn.insn;
830 
831 	/* Skip prefixes */
832 	insn = skip_prefixes(insn);
833 
834 	regs->flags &= ~X86_EFLAGS_TF;
835 	switch (*insn) {
836 	case 0x9c:	/* pushfl */
837 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
838 		*tos |= kcb->kprobe_old_flags;
839 		break;
840 	case 0xc2:	/* iret/ret/lret */
841 	case 0xc3:
842 	case 0xca:
843 	case 0xcb:
844 	case 0xcf:
845 	case 0xea:	/* jmp absolute -- ip is correct */
846 		/* ip is already adjusted, no more changes required */
847 		p->ainsn.boostable = 1;
848 		goto no_change;
849 	case 0xe8:	/* call relative - Fix return addr */
850 		*tos = orig_ip + (*tos - copy_ip);
851 		break;
852 #ifdef CONFIG_X86_32
853 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
854 		*tos = orig_ip + (*tos - copy_ip);
855 		goto no_change;
856 #endif
857 	case 0xff:
858 		if ((insn[1] & 0x30) == 0x10) {
859 			/*
860 			 * call absolute, indirect
861 			 * Fix return addr; ip is correct.
862 			 * But this is not boostable
863 			 */
864 			*tos = orig_ip + (*tos - copy_ip);
865 			goto no_change;
866 		} else if (((insn[1] & 0x31) == 0x20) ||
867 			   ((insn[1] & 0x31) == 0x21)) {
868 			/*
869 			 * jmp near and far, absolute indirect
870 			 * ip is correct. And this is boostable
871 			 */
872 			p->ainsn.boostable = 1;
873 			goto no_change;
874 		}
875 	default:
876 		break;
877 	}
878 
879 	if (p->ainsn.boostable == 0) {
880 		if ((regs->ip > copy_ip) &&
881 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
882 			/*
883 			 * These instructions can be executed directly if it
884 			 * jumps back to correct address.
885 			 */
886 			synthesize_reljump((void *)regs->ip,
887 				(void *)orig_ip + (regs->ip - copy_ip));
888 			p->ainsn.boostable = 1;
889 		} else {
890 			p->ainsn.boostable = -1;
891 		}
892 	}
893 
894 	regs->ip += orig_ip - copy_ip;
895 
896 no_change:
897 	restore_btf();
898 }
899 NOKPROBE_SYMBOL(resume_execution);
900 
901 /*
902  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
903  * remain disabled throughout this function.
904  */
905 int kprobe_debug_handler(struct pt_regs *regs)
906 {
907 	struct kprobe *cur = kprobe_running();
908 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
909 
910 	if (!cur)
911 		return 0;
912 
913 	resume_execution(cur, regs, kcb);
914 	regs->flags |= kcb->kprobe_saved_flags;
915 
916 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
917 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
918 		cur->post_handler(cur, regs, 0);
919 	}
920 
921 	/* Restore back the original saved kprobes variables and continue. */
922 	if (kcb->kprobe_status == KPROBE_REENTER) {
923 		restore_previous_kprobe(kcb);
924 		goto out;
925 	}
926 	reset_current_kprobe();
927 out:
928 	preempt_enable_no_resched();
929 
930 	/*
931 	 * if somebody else is singlestepping across a probe point, flags
932 	 * will have TF set, in which case, continue the remaining processing
933 	 * of do_debug, as if this is not a probe hit.
934 	 */
935 	if (regs->flags & X86_EFLAGS_TF)
936 		return 0;
937 
938 	return 1;
939 }
940 NOKPROBE_SYMBOL(kprobe_debug_handler);
941 
942 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
943 {
944 	struct kprobe *cur = kprobe_running();
945 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
946 
947 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
948 		/* This must happen on single-stepping */
949 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
950 			kcb->kprobe_status != KPROBE_REENTER);
951 		/*
952 		 * We are here because the instruction being single
953 		 * stepped caused a page fault. We reset the current
954 		 * kprobe and the ip points back to the probe address
955 		 * and allow the page fault handler to continue as a
956 		 * normal page fault.
957 		 */
958 		regs->ip = (unsigned long)cur->addr;
959 		regs->flags |= kcb->kprobe_old_flags;
960 		if (kcb->kprobe_status == KPROBE_REENTER)
961 			restore_previous_kprobe(kcb);
962 		else
963 			reset_current_kprobe();
964 		preempt_enable_no_resched();
965 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
966 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
967 		/*
968 		 * We increment the nmissed count for accounting,
969 		 * we can also use npre/npostfault count for accounting
970 		 * these specific fault cases.
971 		 */
972 		kprobes_inc_nmissed_count(cur);
973 
974 		/*
975 		 * We come here because instructions in the pre/post
976 		 * handler caused the page_fault, this could happen
977 		 * if handler tries to access user space by
978 		 * copy_from_user(), get_user() etc. Let the
979 		 * user-specified handler try to fix it first.
980 		 */
981 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
982 			return 1;
983 
984 		/*
985 		 * In case the user-specified fault handler returned
986 		 * zero, try to fix up.
987 		 */
988 		if (fixup_exception(regs))
989 			return 1;
990 
991 		/*
992 		 * fixup routine could not handle it,
993 		 * Let do_page_fault() fix it.
994 		 */
995 	}
996 
997 	return 0;
998 }
999 NOKPROBE_SYMBOL(kprobe_fault_handler);
1000 
1001 /*
1002  * Wrapper routine for handling exceptions.
1003  */
1004 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1005 			     void *data)
1006 {
1007 	struct die_args *args = data;
1008 	int ret = NOTIFY_DONE;
1009 
1010 	if (args->regs && user_mode_vm(args->regs))
1011 		return ret;
1012 
1013 	if (val == DIE_GPF) {
1014 		/*
1015 		 * To be potentially processing a kprobe fault and to
1016 		 * trust the result from kprobe_running(), we have
1017 		 * be non-preemptible.
1018 		 */
1019 		if (!preemptible() && kprobe_running() &&
1020 		    kprobe_fault_handler(args->regs, args->trapnr))
1021 			ret = NOTIFY_STOP;
1022 	}
1023 	return ret;
1024 }
1025 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1026 
1027 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1028 {
1029 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1030 	unsigned long addr;
1031 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1032 
1033 	kcb->jprobe_saved_regs = *regs;
1034 	kcb->jprobe_saved_sp = stack_addr(regs);
1035 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1036 
1037 	/*
1038 	 * As Linus pointed out, gcc assumes that the callee
1039 	 * owns the argument space and could overwrite it, e.g.
1040 	 * tailcall optimization. So, to be absolutely safe
1041 	 * we also save and restore enough stack bytes to cover
1042 	 * the argument area.
1043 	 */
1044 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1045 	       MIN_STACK_SIZE(addr));
1046 	regs->flags &= ~X86_EFLAGS_IF;
1047 	trace_hardirqs_off();
1048 	regs->ip = (unsigned long)(jp->entry);
1049 
1050 	/*
1051 	 * jprobes use jprobe_return() which skips the normal return
1052 	 * path of the function, and this messes up the accounting of the
1053 	 * function graph tracer to get messed up.
1054 	 *
1055 	 * Pause function graph tracing while performing the jprobe function.
1056 	 */
1057 	pause_graph_tracing();
1058 	return 1;
1059 }
1060 NOKPROBE_SYMBOL(setjmp_pre_handler);
1061 
1062 void jprobe_return(void)
1063 {
1064 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1065 
1066 	asm volatile (
1067 #ifdef CONFIG_X86_64
1068 			"       xchg   %%rbx,%%rsp	\n"
1069 #else
1070 			"       xchgl   %%ebx,%%esp	\n"
1071 #endif
1072 			"       int3			\n"
1073 			"       .globl jprobe_return_end\n"
1074 			"       jprobe_return_end:	\n"
1075 			"       nop			\n"::"b"
1076 			(kcb->jprobe_saved_sp):"memory");
1077 }
1078 NOKPROBE_SYMBOL(jprobe_return);
1079 NOKPROBE_SYMBOL(jprobe_return_end);
1080 
1081 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1082 {
1083 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084 	u8 *addr = (u8 *) (regs->ip - 1);
1085 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1086 	void *saved_sp = kcb->jprobe_saved_sp;
1087 
1088 	if ((addr > (u8 *) jprobe_return) &&
1089 	    (addr < (u8 *) jprobe_return_end)) {
1090 		if (stack_addr(regs) != saved_sp) {
1091 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1092 			printk(KERN_ERR
1093 			       "current sp %p does not match saved sp %p\n",
1094 			       stack_addr(regs), saved_sp);
1095 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1096 			show_regs(saved_regs);
1097 			printk(KERN_ERR "Current registers\n");
1098 			show_regs(regs);
1099 			BUG();
1100 		}
1101 		/* It's OK to start function graph tracing again */
1102 		unpause_graph_tracing();
1103 		*regs = kcb->jprobe_saved_regs;
1104 		memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1105 		preempt_enable_no_resched();
1106 		return 1;
1107 	}
1108 	return 0;
1109 }
1110 NOKPROBE_SYMBOL(longjmp_break_handler);
1111 
1112 bool arch_within_kprobe_blacklist(unsigned long addr)
1113 {
1114 	return  (addr >= (unsigned long)__kprobes_text_start &&
1115 		 addr < (unsigned long)__kprobes_text_end) ||
1116 		(addr >= (unsigned long)__entry_text_start &&
1117 		 addr < (unsigned long)__entry_text_end);
1118 }
1119 
1120 int __init arch_init_kprobes(void)
1121 {
1122 	return 0;
1123 }
1124 
1125 int arch_trampoline_kprobe(struct kprobe *p)
1126 {
1127 	return 0;
1128 }
1129