xref: /linux/arch/x86/kernel/kprobes/core.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 #include <linux/frame.h>
53 
54 #include <asm/cacheflush.h>
55 #include <asm/desc.h>
56 #include <asm/pgtable.h>
57 #include <asm/uaccess.h>
58 #include <asm/alternative.h>
59 #include <asm/insn.h>
60 #include <asm/debugreg.h>
61 
62 #include "common.h"
63 
64 void jprobe_return_end(void);
65 
66 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
67 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
68 
69 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
70 
71 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
72 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
73 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
74 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
75 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
76 	 << (row % 32))
77 	/*
78 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
79 	 * Groups, and some special opcodes can not boost.
80 	 * This is non-const and volatile to keep gcc from statically
81 	 * optimizing it out, as variable_test_bit makes gcc think only
82 	 * *(unsigned long*) is used.
83 	 */
84 static volatile u32 twobyte_is_boostable[256 / 32] = {
85 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
86 	/*      ----------------------------------------------          */
87 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
88 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
89 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
90 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
91 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
92 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
93 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
94 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
95 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
96 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
97 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
98 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
99 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
100 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
101 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
102 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
103 	/*      -----------------------------------------------         */
104 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
105 };
106 #undef W
107 
108 struct kretprobe_blackpoint kretprobe_blacklist[] = {
109 	{"__switch_to", }, /* This function switches only current task, but
110 			      doesn't switch kernel stack.*/
111 	{NULL, NULL}	/* Terminator */
112 };
113 
114 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
115 
116 static nokprobe_inline void
117 __synthesize_relative_insn(void *from, void *to, u8 op)
118 {
119 	struct __arch_relative_insn {
120 		u8 op;
121 		s32 raddr;
122 	} __packed *insn;
123 
124 	insn = (struct __arch_relative_insn *)from;
125 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
126 	insn->op = op;
127 }
128 
129 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
130 void synthesize_reljump(void *from, void *to)
131 {
132 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
133 }
134 NOKPROBE_SYMBOL(synthesize_reljump);
135 
136 /* Insert a call instruction at address 'from', which calls address 'to'.*/
137 void synthesize_relcall(void *from, void *to)
138 {
139 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
140 }
141 NOKPROBE_SYMBOL(synthesize_relcall);
142 
143 /*
144  * Skip the prefixes of the instruction.
145  */
146 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
147 {
148 	insn_attr_t attr;
149 
150 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
151 	while (inat_is_legacy_prefix(attr)) {
152 		insn++;
153 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
154 	}
155 #ifdef CONFIG_X86_64
156 	if (inat_is_rex_prefix(attr))
157 		insn++;
158 #endif
159 	return insn;
160 }
161 NOKPROBE_SYMBOL(skip_prefixes);
162 
163 /*
164  * Returns non-zero if opcode is boostable.
165  * RIP relative instructions are adjusted at copying time in 64 bits mode
166  */
167 int can_boost(kprobe_opcode_t *opcodes)
168 {
169 	kprobe_opcode_t opcode;
170 	kprobe_opcode_t *orig_opcodes = opcodes;
171 
172 	if (search_exception_tables((unsigned long)opcodes))
173 		return 0;	/* Page fault may occur on this address. */
174 
175 retry:
176 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
177 		return 0;
178 	opcode = *(opcodes++);
179 
180 	/* 2nd-byte opcode */
181 	if (opcode == 0x0f) {
182 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
183 			return 0;
184 		return test_bit(*opcodes,
185 				(unsigned long *)twobyte_is_boostable);
186 	}
187 
188 	switch (opcode & 0xf0) {
189 #ifdef CONFIG_X86_64
190 	case 0x40:
191 		goto retry; /* REX prefix is boostable */
192 #endif
193 	case 0x60:
194 		if (0x63 < opcode && opcode < 0x67)
195 			goto retry; /* prefixes */
196 		/* can't boost Address-size override and bound */
197 		return (opcode != 0x62 && opcode != 0x67);
198 	case 0x70:
199 		return 0; /* can't boost conditional jump */
200 	case 0xc0:
201 		/* can't boost software-interruptions */
202 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
203 	case 0xd0:
204 		/* can boost AA* and XLAT */
205 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
206 	case 0xe0:
207 		/* can boost in/out and absolute jmps */
208 		return ((opcode & 0x04) || opcode == 0xea);
209 	case 0xf0:
210 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
211 			goto retry; /* lock/rep(ne) prefix */
212 		/* clear and set flags are boostable */
213 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
214 	default:
215 		/* segment override prefixes are boostable */
216 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
217 			goto retry; /* prefixes */
218 		/* CS override prefix and call are not boostable */
219 		return (opcode != 0x2e && opcode != 0x9a);
220 	}
221 }
222 
223 static unsigned long
224 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
225 {
226 	struct kprobe *kp;
227 	unsigned long faddr;
228 
229 	kp = get_kprobe((void *)addr);
230 	faddr = ftrace_location(addr);
231 	/*
232 	 * Addresses inside the ftrace location are refused by
233 	 * arch_check_ftrace_location(). Something went terribly wrong
234 	 * if such an address is checked here.
235 	 */
236 	if (WARN_ON(faddr && faddr != addr))
237 		return 0UL;
238 	/*
239 	 * Use the current code if it is not modified by Kprobe
240 	 * and it cannot be modified by ftrace.
241 	 */
242 	if (!kp && !faddr)
243 		return addr;
244 
245 	/*
246 	 * Basically, kp->ainsn.insn has an original instruction.
247 	 * However, RIP-relative instruction can not do single-stepping
248 	 * at different place, __copy_instruction() tweaks the displacement of
249 	 * that instruction. In that case, we can't recover the instruction
250 	 * from the kp->ainsn.insn.
251 	 *
252 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
253 	 * of the first byte of the probed instruction, which is overwritten
254 	 * by int3. And the instruction at kp->addr is not modified by kprobes
255 	 * except for the first byte, we can recover the original instruction
256 	 * from it and kp->opcode.
257 	 *
258 	 * In case of Kprobes using ftrace, we do not have a copy of
259 	 * the original instruction. In fact, the ftrace location might
260 	 * be modified at anytime and even could be in an inconsistent state.
261 	 * Fortunately, we know that the original code is the ideal 5-byte
262 	 * long NOP.
263 	 */
264 	memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
265 	if (faddr)
266 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
267 	else
268 		buf[0] = kp->opcode;
269 	return (unsigned long)buf;
270 }
271 
272 /*
273  * Recover the probed instruction at addr for further analysis.
274  * Caller must lock kprobes by kprobe_mutex, or disable preemption
275  * for preventing to release referencing kprobes.
276  * Returns zero if the instruction can not get recovered.
277  */
278 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
279 {
280 	unsigned long __addr;
281 
282 	__addr = __recover_optprobed_insn(buf, addr);
283 	if (__addr != addr)
284 		return __addr;
285 
286 	return __recover_probed_insn(buf, addr);
287 }
288 
289 /* Check if paddr is at an instruction boundary */
290 static int can_probe(unsigned long paddr)
291 {
292 	unsigned long addr, __addr, offset = 0;
293 	struct insn insn;
294 	kprobe_opcode_t buf[MAX_INSN_SIZE];
295 
296 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
297 		return 0;
298 
299 	/* Decode instructions */
300 	addr = paddr - offset;
301 	while (addr < paddr) {
302 		/*
303 		 * Check if the instruction has been modified by another
304 		 * kprobe, in which case we replace the breakpoint by the
305 		 * original instruction in our buffer.
306 		 * Also, jump optimization will change the breakpoint to
307 		 * relative-jump. Since the relative-jump itself is
308 		 * normally used, we just go through if there is no kprobe.
309 		 */
310 		__addr = recover_probed_instruction(buf, addr);
311 		if (!__addr)
312 			return 0;
313 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
314 		insn_get_length(&insn);
315 
316 		/*
317 		 * Another debugging subsystem might insert this breakpoint.
318 		 * In that case, we can't recover it.
319 		 */
320 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
321 			return 0;
322 		addr += insn.length;
323 	}
324 
325 	return (addr == paddr);
326 }
327 
328 /*
329  * Returns non-zero if opcode modifies the interrupt flag.
330  */
331 static int is_IF_modifier(kprobe_opcode_t *insn)
332 {
333 	/* Skip prefixes */
334 	insn = skip_prefixes(insn);
335 
336 	switch (*insn) {
337 	case 0xfa:		/* cli */
338 	case 0xfb:		/* sti */
339 	case 0xcf:		/* iret/iretd */
340 	case 0x9d:		/* popf/popfd */
341 		return 1;
342 	}
343 
344 	return 0;
345 }
346 
347 /*
348  * Copy an instruction and adjust the displacement if the instruction
349  * uses the %rip-relative addressing mode.
350  * If it does, Return the address of the 32-bit displacement word.
351  * If not, return null.
352  * Only applicable to 64-bit x86.
353  */
354 int __copy_instruction(u8 *dest, u8 *src)
355 {
356 	struct insn insn;
357 	kprobe_opcode_t buf[MAX_INSN_SIZE];
358 	int length;
359 	unsigned long recovered_insn =
360 		recover_probed_instruction(buf, (unsigned long)src);
361 
362 	if (!recovered_insn)
363 		return 0;
364 	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
365 	insn_get_length(&insn);
366 	length = insn.length;
367 
368 	/* Another subsystem puts a breakpoint, failed to recover */
369 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
370 		return 0;
371 	memcpy(dest, insn.kaddr, length);
372 
373 #ifdef CONFIG_X86_64
374 	if (insn_rip_relative(&insn)) {
375 		s64 newdisp;
376 		u8 *disp;
377 		kernel_insn_init(&insn, dest, length);
378 		insn_get_displacement(&insn);
379 		/*
380 		 * The copied instruction uses the %rip-relative addressing
381 		 * mode.  Adjust the displacement for the difference between
382 		 * the original location of this instruction and the location
383 		 * of the copy that will actually be run.  The tricky bit here
384 		 * is making sure that the sign extension happens correctly in
385 		 * this calculation, since we need a signed 32-bit result to
386 		 * be sign-extended to 64 bits when it's added to the %rip
387 		 * value and yield the same 64-bit result that the sign-
388 		 * extension of the original signed 32-bit displacement would
389 		 * have given.
390 		 */
391 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
392 		if ((s64) (s32) newdisp != newdisp) {
393 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
394 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
395 			return 0;
396 		}
397 		disp = (u8 *) dest + insn_offset_displacement(&insn);
398 		*(s32 *) disp = (s32) newdisp;
399 	}
400 #endif
401 	return length;
402 }
403 
404 static int arch_copy_kprobe(struct kprobe *p)
405 {
406 	int ret;
407 
408 	/* Copy an instruction with recovering if other optprobe modifies it.*/
409 	ret = __copy_instruction(p->ainsn.insn, p->addr);
410 	if (!ret)
411 		return -EINVAL;
412 
413 	/*
414 	 * __copy_instruction can modify the displacement of the instruction,
415 	 * but it doesn't affect boostable check.
416 	 */
417 	if (can_boost(p->ainsn.insn))
418 		p->ainsn.boostable = 0;
419 	else
420 		p->ainsn.boostable = -1;
421 
422 	/* Check whether the instruction modifies Interrupt Flag or not */
423 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
424 
425 	/* Also, displacement change doesn't affect the first byte */
426 	p->opcode = p->ainsn.insn[0];
427 
428 	return 0;
429 }
430 
431 int arch_prepare_kprobe(struct kprobe *p)
432 {
433 	if (alternatives_text_reserved(p->addr, p->addr))
434 		return -EINVAL;
435 
436 	if (!can_probe((unsigned long)p->addr))
437 		return -EILSEQ;
438 	/* insn: must be on special executable page on x86. */
439 	p->ainsn.insn = get_insn_slot();
440 	if (!p->ainsn.insn)
441 		return -ENOMEM;
442 
443 	return arch_copy_kprobe(p);
444 }
445 
446 void arch_arm_kprobe(struct kprobe *p)
447 {
448 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
449 }
450 
451 void arch_disarm_kprobe(struct kprobe *p)
452 {
453 	text_poke(p->addr, &p->opcode, 1);
454 }
455 
456 void arch_remove_kprobe(struct kprobe *p)
457 {
458 	if (p->ainsn.insn) {
459 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
460 		p->ainsn.insn = NULL;
461 	}
462 }
463 
464 static nokprobe_inline void
465 save_previous_kprobe(struct kprobe_ctlblk *kcb)
466 {
467 	kcb->prev_kprobe.kp = kprobe_running();
468 	kcb->prev_kprobe.status = kcb->kprobe_status;
469 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
470 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
471 }
472 
473 static nokprobe_inline void
474 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
475 {
476 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
477 	kcb->kprobe_status = kcb->prev_kprobe.status;
478 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
479 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
480 }
481 
482 static nokprobe_inline void
483 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
484 		   struct kprobe_ctlblk *kcb)
485 {
486 	__this_cpu_write(current_kprobe, p);
487 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
488 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
489 	if (p->ainsn.if_modifier)
490 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
491 }
492 
493 static nokprobe_inline void clear_btf(void)
494 {
495 	if (test_thread_flag(TIF_BLOCKSTEP)) {
496 		unsigned long debugctl = get_debugctlmsr();
497 
498 		debugctl &= ~DEBUGCTLMSR_BTF;
499 		update_debugctlmsr(debugctl);
500 	}
501 }
502 
503 static nokprobe_inline void restore_btf(void)
504 {
505 	if (test_thread_flag(TIF_BLOCKSTEP)) {
506 		unsigned long debugctl = get_debugctlmsr();
507 
508 		debugctl |= DEBUGCTLMSR_BTF;
509 		update_debugctlmsr(debugctl);
510 	}
511 }
512 
513 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
514 {
515 	unsigned long *sara = stack_addr(regs);
516 
517 	ri->ret_addr = (kprobe_opcode_t *) *sara;
518 
519 	/* Replace the return addr with trampoline addr */
520 	*sara = (unsigned long) &kretprobe_trampoline;
521 }
522 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
523 
524 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
525 			     struct kprobe_ctlblk *kcb, int reenter)
526 {
527 	if (setup_detour_execution(p, regs, reenter))
528 		return;
529 
530 #if !defined(CONFIG_PREEMPT)
531 	if (p->ainsn.boostable == 1 && !p->post_handler) {
532 		/* Boost up -- we can execute copied instructions directly */
533 		if (!reenter)
534 			reset_current_kprobe();
535 		/*
536 		 * Reentering boosted probe doesn't reset current_kprobe,
537 		 * nor set current_kprobe, because it doesn't use single
538 		 * stepping.
539 		 */
540 		regs->ip = (unsigned long)p->ainsn.insn;
541 		preempt_enable_no_resched();
542 		return;
543 	}
544 #endif
545 	if (reenter) {
546 		save_previous_kprobe(kcb);
547 		set_current_kprobe(p, regs, kcb);
548 		kcb->kprobe_status = KPROBE_REENTER;
549 	} else
550 		kcb->kprobe_status = KPROBE_HIT_SS;
551 	/* Prepare real single stepping */
552 	clear_btf();
553 	regs->flags |= X86_EFLAGS_TF;
554 	regs->flags &= ~X86_EFLAGS_IF;
555 	/* single step inline if the instruction is an int3 */
556 	if (p->opcode == BREAKPOINT_INSTRUCTION)
557 		regs->ip = (unsigned long)p->addr;
558 	else
559 		regs->ip = (unsigned long)p->ainsn.insn;
560 }
561 NOKPROBE_SYMBOL(setup_singlestep);
562 
563 /*
564  * We have reentered the kprobe_handler(), since another probe was hit while
565  * within the handler. We save the original kprobes variables and just single
566  * step on the instruction of the new probe without calling any user handlers.
567  */
568 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
569 			  struct kprobe_ctlblk *kcb)
570 {
571 	switch (kcb->kprobe_status) {
572 	case KPROBE_HIT_SSDONE:
573 	case KPROBE_HIT_ACTIVE:
574 	case KPROBE_HIT_SS:
575 		kprobes_inc_nmissed_count(p);
576 		setup_singlestep(p, regs, kcb, 1);
577 		break;
578 	case KPROBE_REENTER:
579 		/* A probe has been hit in the codepath leading up to, or just
580 		 * after, single-stepping of a probed instruction. This entire
581 		 * codepath should strictly reside in .kprobes.text section.
582 		 * Raise a BUG or we'll continue in an endless reentering loop
583 		 * and eventually a stack overflow.
584 		 */
585 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
586 		       p->addr);
587 		dump_kprobe(p);
588 		BUG();
589 	default:
590 		/* impossible cases */
591 		WARN_ON(1);
592 		return 0;
593 	}
594 
595 	return 1;
596 }
597 NOKPROBE_SYMBOL(reenter_kprobe);
598 
599 /*
600  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
601  * remain disabled throughout this function.
602  */
603 int kprobe_int3_handler(struct pt_regs *regs)
604 {
605 	kprobe_opcode_t *addr;
606 	struct kprobe *p;
607 	struct kprobe_ctlblk *kcb;
608 
609 	if (user_mode(regs))
610 		return 0;
611 
612 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
613 	/*
614 	 * We don't want to be preempted for the entire
615 	 * duration of kprobe processing. We conditionally
616 	 * re-enable preemption at the end of this function,
617 	 * and also in reenter_kprobe() and setup_singlestep().
618 	 */
619 	preempt_disable();
620 
621 	kcb = get_kprobe_ctlblk();
622 	p = get_kprobe(addr);
623 
624 	if (p) {
625 		if (kprobe_running()) {
626 			if (reenter_kprobe(p, regs, kcb))
627 				return 1;
628 		} else {
629 			set_current_kprobe(p, regs, kcb);
630 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
631 
632 			/*
633 			 * If we have no pre-handler or it returned 0, we
634 			 * continue with normal processing.  If we have a
635 			 * pre-handler and it returned non-zero, it prepped
636 			 * for calling the break_handler below on re-entry
637 			 * for jprobe processing, so get out doing nothing
638 			 * more here.
639 			 */
640 			if (!p->pre_handler || !p->pre_handler(p, regs))
641 				setup_singlestep(p, regs, kcb, 0);
642 			return 1;
643 		}
644 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
645 		/*
646 		 * The breakpoint instruction was removed right
647 		 * after we hit it.  Another cpu has removed
648 		 * either a probepoint or a debugger breakpoint
649 		 * at this address.  In either case, no further
650 		 * handling of this interrupt is appropriate.
651 		 * Back up over the (now missing) int3 and run
652 		 * the original instruction.
653 		 */
654 		regs->ip = (unsigned long)addr;
655 		preempt_enable_no_resched();
656 		return 1;
657 	} else if (kprobe_running()) {
658 		p = __this_cpu_read(current_kprobe);
659 		if (p->break_handler && p->break_handler(p, regs)) {
660 			if (!skip_singlestep(p, regs, kcb))
661 				setup_singlestep(p, regs, kcb, 0);
662 			return 1;
663 		}
664 	} /* else: not a kprobe fault; let the kernel handle it */
665 
666 	preempt_enable_no_resched();
667 	return 0;
668 }
669 NOKPROBE_SYMBOL(kprobe_int3_handler);
670 
671 /*
672  * When a retprobed function returns, this code saves registers and
673  * calls trampoline_handler() runs, which calls the kretprobe's handler.
674  */
675 asm(
676 	".global kretprobe_trampoline\n"
677 	".type kretprobe_trampoline, @function\n"
678 	"kretprobe_trampoline:\n"
679 #ifdef CONFIG_X86_64
680 	/* We don't bother saving the ss register */
681 	"	pushq %rsp\n"
682 	"	pushfq\n"
683 	SAVE_REGS_STRING
684 	"	movq %rsp, %rdi\n"
685 	"	call trampoline_handler\n"
686 	/* Replace saved sp with true return address. */
687 	"	movq %rax, 152(%rsp)\n"
688 	RESTORE_REGS_STRING
689 	"	popfq\n"
690 #else
691 	"	pushf\n"
692 	SAVE_REGS_STRING
693 	"	movl %esp, %eax\n"
694 	"	call trampoline_handler\n"
695 	/* Move flags to cs */
696 	"	movl 56(%esp), %edx\n"
697 	"	movl %edx, 52(%esp)\n"
698 	/* Replace saved flags with true return address. */
699 	"	movl %eax, 56(%esp)\n"
700 	RESTORE_REGS_STRING
701 	"	popf\n"
702 #endif
703 	"	ret\n"
704 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
705 );
706 NOKPROBE_SYMBOL(kretprobe_trampoline);
707 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
708 
709 /*
710  * Called from kretprobe_trampoline
711  */
712 __visible __used void *trampoline_handler(struct pt_regs *regs)
713 {
714 	struct kretprobe_instance *ri = NULL;
715 	struct hlist_head *head, empty_rp;
716 	struct hlist_node *tmp;
717 	unsigned long flags, orig_ret_address = 0;
718 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
719 	kprobe_opcode_t *correct_ret_addr = NULL;
720 
721 	INIT_HLIST_HEAD(&empty_rp);
722 	kretprobe_hash_lock(current, &head, &flags);
723 	/* fixup registers */
724 #ifdef CONFIG_X86_64
725 	regs->cs = __KERNEL_CS;
726 #else
727 	regs->cs = __KERNEL_CS | get_kernel_rpl();
728 	regs->gs = 0;
729 #endif
730 	regs->ip = trampoline_address;
731 	regs->orig_ax = ~0UL;
732 
733 	/*
734 	 * It is possible to have multiple instances associated with a given
735 	 * task either because multiple functions in the call path have
736 	 * return probes installed on them, and/or more than one
737 	 * return probe was registered for a target function.
738 	 *
739 	 * We can handle this because:
740 	 *     - instances are always pushed into the head of the list
741 	 *     - when multiple return probes are registered for the same
742 	 *	 function, the (chronologically) first instance's ret_addr
743 	 *	 will be the real return address, and all the rest will
744 	 *	 point to kretprobe_trampoline.
745 	 */
746 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
747 		if (ri->task != current)
748 			/* another task is sharing our hash bucket */
749 			continue;
750 
751 		orig_ret_address = (unsigned long)ri->ret_addr;
752 
753 		if (orig_ret_address != trampoline_address)
754 			/*
755 			 * This is the real return address. Any other
756 			 * instances associated with this task are for
757 			 * other calls deeper on the call stack
758 			 */
759 			break;
760 	}
761 
762 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
763 
764 	correct_ret_addr = ri->ret_addr;
765 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
766 		if (ri->task != current)
767 			/* another task is sharing our hash bucket */
768 			continue;
769 
770 		orig_ret_address = (unsigned long)ri->ret_addr;
771 		if (ri->rp && ri->rp->handler) {
772 			__this_cpu_write(current_kprobe, &ri->rp->kp);
773 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
774 			ri->ret_addr = correct_ret_addr;
775 			ri->rp->handler(ri, regs);
776 			__this_cpu_write(current_kprobe, NULL);
777 		}
778 
779 		recycle_rp_inst(ri, &empty_rp);
780 
781 		if (orig_ret_address != trampoline_address)
782 			/*
783 			 * This is the real return address. Any other
784 			 * instances associated with this task are for
785 			 * other calls deeper on the call stack
786 			 */
787 			break;
788 	}
789 
790 	kretprobe_hash_unlock(current, &flags);
791 
792 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
793 		hlist_del(&ri->hlist);
794 		kfree(ri);
795 	}
796 	return (void *)orig_ret_address;
797 }
798 NOKPROBE_SYMBOL(trampoline_handler);
799 
800 /*
801  * Called after single-stepping.  p->addr is the address of the
802  * instruction whose first byte has been replaced by the "int 3"
803  * instruction.  To avoid the SMP problems that can occur when we
804  * temporarily put back the original opcode to single-step, we
805  * single-stepped a copy of the instruction.  The address of this
806  * copy is p->ainsn.insn.
807  *
808  * This function prepares to return from the post-single-step
809  * interrupt.  We have to fix up the stack as follows:
810  *
811  * 0) Except in the case of absolute or indirect jump or call instructions,
812  * the new ip is relative to the copied instruction.  We need to make
813  * it relative to the original instruction.
814  *
815  * 1) If the single-stepped instruction was pushfl, then the TF and IF
816  * flags are set in the just-pushed flags, and may need to be cleared.
817  *
818  * 2) If the single-stepped instruction was a call, the return address
819  * that is atop the stack is the address following the copied instruction.
820  * We need to make it the address following the original instruction.
821  *
822  * If this is the first time we've single-stepped the instruction at
823  * this probepoint, and the instruction is boostable, boost it: add a
824  * jump instruction after the copied instruction, that jumps to the next
825  * instruction after the probepoint.
826  */
827 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
828 			     struct kprobe_ctlblk *kcb)
829 {
830 	unsigned long *tos = stack_addr(regs);
831 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
832 	unsigned long orig_ip = (unsigned long)p->addr;
833 	kprobe_opcode_t *insn = p->ainsn.insn;
834 
835 	/* Skip prefixes */
836 	insn = skip_prefixes(insn);
837 
838 	regs->flags &= ~X86_EFLAGS_TF;
839 	switch (*insn) {
840 	case 0x9c:	/* pushfl */
841 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
842 		*tos |= kcb->kprobe_old_flags;
843 		break;
844 	case 0xc2:	/* iret/ret/lret */
845 	case 0xc3:
846 	case 0xca:
847 	case 0xcb:
848 	case 0xcf:
849 	case 0xea:	/* jmp absolute -- ip is correct */
850 		/* ip is already adjusted, no more changes required */
851 		p->ainsn.boostable = 1;
852 		goto no_change;
853 	case 0xe8:	/* call relative - Fix return addr */
854 		*tos = orig_ip + (*tos - copy_ip);
855 		break;
856 #ifdef CONFIG_X86_32
857 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
858 		*tos = orig_ip + (*tos - copy_ip);
859 		goto no_change;
860 #endif
861 	case 0xff:
862 		if ((insn[1] & 0x30) == 0x10) {
863 			/*
864 			 * call absolute, indirect
865 			 * Fix return addr; ip is correct.
866 			 * But this is not boostable
867 			 */
868 			*tos = orig_ip + (*tos - copy_ip);
869 			goto no_change;
870 		} else if (((insn[1] & 0x31) == 0x20) ||
871 			   ((insn[1] & 0x31) == 0x21)) {
872 			/*
873 			 * jmp near and far, absolute indirect
874 			 * ip is correct. And this is boostable
875 			 */
876 			p->ainsn.boostable = 1;
877 			goto no_change;
878 		}
879 	default:
880 		break;
881 	}
882 
883 	if (p->ainsn.boostable == 0) {
884 		if ((regs->ip > copy_ip) &&
885 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
886 			/*
887 			 * These instructions can be executed directly if it
888 			 * jumps back to correct address.
889 			 */
890 			synthesize_reljump((void *)regs->ip,
891 				(void *)orig_ip + (regs->ip - copy_ip));
892 			p->ainsn.boostable = 1;
893 		} else {
894 			p->ainsn.boostable = -1;
895 		}
896 	}
897 
898 	regs->ip += orig_ip - copy_ip;
899 
900 no_change:
901 	restore_btf();
902 }
903 NOKPROBE_SYMBOL(resume_execution);
904 
905 /*
906  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
907  * remain disabled throughout this function.
908  */
909 int kprobe_debug_handler(struct pt_regs *regs)
910 {
911 	struct kprobe *cur = kprobe_running();
912 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
913 
914 	if (!cur)
915 		return 0;
916 
917 	resume_execution(cur, regs, kcb);
918 	regs->flags |= kcb->kprobe_saved_flags;
919 
920 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
921 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
922 		cur->post_handler(cur, regs, 0);
923 	}
924 
925 	/* Restore back the original saved kprobes variables and continue. */
926 	if (kcb->kprobe_status == KPROBE_REENTER) {
927 		restore_previous_kprobe(kcb);
928 		goto out;
929 	}
930 	reset_current_kprobe();
931 out:
932 	preempt_enable_no_resched();
933 
934 	/*
935 	 * if somebody else is singlestepping across a probe point, flags
936 	 * will have TF set, in which case, continue the remaining processing
937 	 * of do_debug, as if this is not a probe hit.
938 	 */
939 	if (regs->flags & X86_EFLAGS_TF)
940 		return 0;
941 
942 	return 1;
943 }
944 NOKPROBE_SYMBOL(kprobe_debug_handler);
945 
946 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
947 {
948 	struct kprobe *cur = kprobe_running();
949 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
950 
951 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
952 		/* This must happen on single-stepping */
953 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
954 			kcb->kprobe_status != KPROBE_REENTER);
955 		/*
956 		 * We are here because the instruction being single
957 		 * stepped caused a page fault. We reset the current
958 		 * kprobe and the ip points back to the probe address
959 		 * and allow the page fault handler to continue as a
960 		 * normal page fault.
961 		 */
962 		regs->ip = (unsigned long)cur->addr;
963 		regs->flags |= kcb->kprobe_old_flags;
964 		if (kcb->kprobe_status == KPROBE_REENTER)
965 			restore_previous_kprobe(kcb);
966 		else
967 			reset_current_kprobe();
968 		preempt_enable_no_resched();
969 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
970 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
971 		/*
972 		 * We increment the nmissed count for accounting,
973 		 * we can also use npre/npostfault count for accounting
974 		 * these specific fault cases.
975 		 */
976 		kprobes_inc_nmissed_count(cur);
977 
978 		/*
979 		 * We come here because instructions in the pre/post
980 		 * handler caused the page_fault, this could happen
981 		 * if handler tries to access user space by
982 		 * copy_from_user(), get_user() etc. Let the
983 		 * user-specified handler try to fix it first.
984 		 */
985 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
986 			return 1;
987 
988 		/*
989 		 * In case the user-specified fault handler returned
990 		 * zero, try to fix up.
991 		 */
992 		if (fixup_exception(regs, trapnr))
993 			return 1;
994 
995 		/*
996 		 * fixup routine could not handle it,
997 		 * Let do_page_fault() fix it.
998 		 */
999 	}
1000 
1001 	return 0;
1002 }
1003 NOKPROBE_SYMBOL(kprobe_fault_handler);
1004 
1005 /*
1006  * Wrapper routine for handling exceptions.
1007  */
1008 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1009 			     void *data)
1010 {
1011 	struct die_args *args = data;
1012 	int ret = NOTIFY_DONE;
1013 
1014 	if (args->regs && user_mode(args->regs))
1015 		return ret;
1016 
1017 	if (val == DIE_GPF) {
1018 		/*
1019 		 * To be potentially processing a kprobe fault and to
1020 		 * trust the result from kprobe_running(), we have
1021 		 * be non-preemptible.
1022 		 */
1023 		if (!preemptible() && kprobe_running() &&
1024 		    kprobe_fault_handler(args->regs, args->trapnr))
1025 			ret = NOTIFY_STOP;
1026 	}
1027 	return ret;
1028 }
1029 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1030 
1031 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1032 {
1033 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1034 	unsigned long addr;
1035 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1036 
1037 	kcb->jprobe_saved_regs = *regs;
1038 	kcb->jprobe_saved_sp = stack_addr(regs);
1039 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1040 
1041 	/*
1042 	 * As Linus pointed out, gcc assumes that the callee
1043 	 * owns the argument space and could overwrite it, e.g.
1044 	 * tailcall optimization. So, to be absolutely safe
1045 	 * we also save and restore enough stack bytes to cover
1046 	 * the argument area.
1047 	 */
1048 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1049 	       MIN_STACK_SIZE(addr));
1050 	regs->flags &= ~X86_EFLAGS_IF;
1051 	trace_hardirqs_off();
1052 	regs->ip = (unsigned long)(jp->entry);
1053 
1054 	/*
1055 	 * jprobes use jprobe_return() which skips the normal return
1056 	 * path of the function, and this messes up the accounting of the
1057 	 * function graph tracer to get messed up.
1058 	 *
1059 	 * Pause function graph tracing while performing the jprobe function.
1060 	 */
1061 	pause_graph_tracing();
1062 	return 1;
1063 }
1064 NOKPROBE_SYMBOL(setjmp_pre_handler);
1065 
1066 void jprobe_return(void)
1067 {
1068 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1069 
1070 	asm volatile (
1071 #ifdef CONFIG_X86_64
1072 			"       xchg   %%rbx,%%rsp	\n"
1073 #else
1074 			"       xchgl   %%ebx,%%esp	\n"
1075 #endif
1076 			"       int3			\n"
1077 			"       .globl jprobe_return_end\n"
1078 			"       jprobe_return_end:	\n"
1079 			"       nop			\n"::"b"
1080 			(kcb->jprobe_saved_sp):"memory");
1081 }
1082 NOKPROBE_SYMBOL(jprobe_return);
1083 NOKPROBE_SYMBOL(jprobe_return_end);
1084 
1085 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1086 {
1087 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1088 	u8 *addr = (u8 *) (regs->ip - 1);
1089 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1090 	void *saved_sp = kcb->jprobe_saved_sp;
1091 
1092 	if ((addr > (u8 *) jprobe_return) &&
1093 	    (addr < (u8 *) jprobe_return_end)) {
1094 		if (stack_addr(regs) != saved_sp) {
1095 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1096 			printk(KERN_ERR
1097 			       "current sp %p does not match saved sp %p\n",
1098 			       stack_addr(regs), saved_sp);
1099 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1100 			show_regs(saved_regs);
1101 			printk(KERN_ERR "Current registers\n");
1102 			show_regs(regs);
1103 			BUG();
1104 		}
1105 		/* It's OK to start function graph tracing again */
1106 		unpause_graph_tracing();
1107 		*regs = kcb->jprobe_saved_regs;
1108 		memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1109 		preempt_enable_no_resched();
1110 		return 1;
1111 	}
1112 	return 0;
1113 }
1114 NOKPROBE_SYMBOL(longjmp_break_handler);
1115 
1116 bool arch_within_kprobe_blacklist(unsigned long addr)
1117 {
1118 	return  (addr >= (unsigned long)__kprobes_text_start &&
1119 		 addr < (unsigned long)__kprobes_text_end) ||
1120 		(addr >= (unsigned long)__entry_text_start &&
1121 		 addr < (unsigned long)__entry_text_end);
1122 }
1123 
1124 int __init arch_init_kprobes(void)
1125 {
1126 	return 0;
1127 }
1128 
1129 int arch_trampoline_kprobe(struct kprobe *p)
1130 {
1131 	return 0;
1132 }
1133