1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/module.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 #include <linux/frame.h> 53 54 #include <asm/cacheflush.h> 55 #include <asm/desc.h> 56 #include <asm/pgtable.h> 57 #include <asm/uaccess.h> 58 #include <asm/alternative.h> 59 #include <asm/insn.h> 60 #include <asm/debugreg.h> 61 62 #include "common.h" 63 64 void jprobe_return_end(void); 65 66 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 67 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 68 69 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 70 71 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 72 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 73 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 74 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 75 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 76 << (row % 32)) 77 /* 78 * Undefined/reserved opcodes, conditional jump, Opcode Extension 79 * Groups, and some special opcodes can not boost. 80 * This is non-const and volatile to keep gcc from statically 81 * optimizing it out, as variable_test_bit makes gcc think only 82 * *(unsigned long*) is used. 83 */ 84 static volatile u32 twobyte_is_boostable[256 / 32] = { 85 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 86 /* ---------------------------------------------- */ 87 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 88 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 89 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 90 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 91 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 92 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 93 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 94 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 95 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 96 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 97 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 98 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 99 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 100 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 101 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 102 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 103 /* ----------------------------------------------- */ 104 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 105 }; 106 #undef W 107 108 struct kretprobe_blackpoint kretprobe_blacklist[] = { 109 {"__switch_to", }, /* This function switches only current task, but 110 doesn't switch kernel stack.*/ 111 {NULL, NULL} /* Terminator */ 112 }; 113 114 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 115 116 static nokprobe_inline void 117 __synthesize_relative_insn(void *from, void *to, u8 op) 118 { 119 struct __arch_relative_insn { 120 u8 op; 121 s32 raddr; 122 } __packed *insn; 123 124 insn = (struct __arch_relative_insn *)from; 125 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 126 insn->op = op; 127 } 128 129 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 130 void synthesize_reljump(void *from, void *to) 131 { 132 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 133 } 134 NOKPROBE_SYMBOL(synthesize_reljump); 135 136 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 137 void synthesize_relcall(void *from, void *to) 138 { 139 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 140 } 141 NOKPROBE_SYMBOL(synthesize_relcall); 142 143 /* 144 * Skip the prefixes of the instruction. 145 */ 146 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 147 { 148 insn_attr_t attr; 149 150 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 151 while (inat_is_legacy_prefix(attr)) { 152 insn++; 153 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 154 } 155 #ifdef CONFIG_X86_64 156 if (inat_is_rex_prefix(attr)) 157 insn++; 158 #endif 159 return insn; 160 } 161 NOKPROBE_SYMBOL(skip_prefixes); 162 163 /* 164 * Returns non-zero if opcode is boostable. 165 * RIP relative instructions are adjusted at copying time in 64 bits mode 166 */ 167 int can_boost(kprobe_opcode_t *opcodes) 168 { 169 kprobe_opcode_t opcode; 170 kprobe_opcode_t *orig_opcodes = opcodes; 171 172 if (search_exception_tables((unsigned long)opcodes)) 173 return 0; /* Page fault may occur on this address. */ 174 175 retry: 176 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 177 return 0; 178 opcode = *(opcodes++); 179 180 /* 2nd-byte opcode */ 181 if (opcode == 0x0f) { 182 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 183 return 0; 184 return test_bit(*opcodes, 185 (unsigned long *)twobyte_is_boostable); 186 } 187 188 switch (opcode & 0xf0) { 189 #ifdef CONFIG_X86_64 190 case 0x40: 191 goto retry; /* REX prefix is boostable */ 192 #endif 193 case 0x60: 194 if (0x63 < opcode && opcode < 0x67) 195 goto retry; /* prefixes */ 196 /* can't boost Address-size override and bound */ 197 return (opcode != 0x62 && opcode != 0x67); 198 case 0x70: 199 return 0; /* can't boost conditional jump */ 200 case 0xc0: 201 /* can't boost software-interruptions */ 202 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 203 case 0xd0: 204 /* can boost AA* and XLAT */ 205 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 206 case 0xe0: 207 /* can boost in/out and absolute jmps */ 208 return ((opcode & 0x04) || opcode == 0xea); 209 case 0xf0: 210 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 211 goto retry; /* lock/rep(ne) prefix */ 212 /* clear and set flags are boostable */ 213 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 214 default: 215 /* segment override prefixes are boostable */ 216 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 217 goto retry; /* prefixes */ 218 /* CS override prefix and call are not boostable */ 219 return (opcode != 0x2e && opcode != 0x9a); 220 } 221 } 222 223 static unsigned long 224 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 225 { 226 struct kprobe *kp; 227 unsigned long faddr; 228 229 kp = get_kprobe((void *)addr); 230 faddr = ftrace_location(addr); 231 /* 232 * Addresses inside the ftrace location are refused by 233 * arch_check_ftrace_location(). Something went terribly wrong 234 * if such an address is checked here. 235 */ 236 if (WARN_ON(faddr && faddr != addr)) 237 return 0UL; 238 /* 239 * Use the current code if it is not modified by Kprobe 240 * and it cannot be modified by ftrace. 241 */ 242 if (!kp && !faddr) 243 return addr; 244 245 /* 246 * Basically, kp->ainsn.insn has an original instruction. 247 * However, RIP-relative instruction can not do single-stepping 248 * at different place, __copy_instruction() tweaks the displacement of 249 * that instruction. In that case, we can't recover the instruction 250 * from the kp->ainsn.insn. 251 * 252 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 253 * of the first byte of the probed instruction, which is overwritten 254 * by int3. And the instruction at kp->addr is not modified by kprobes 255 * except for the first byte, we can recover the original instruction 256 * from it and kp->opcode. 257 * 258 * In case of Kprobes using ftrace, we do not have a copy of 259 * the original instruction. In fact, the ftrace location might 260 * be modified at anytime and even could be in an inconsistent state. 261 * Fortunately, we know that the original code is the ideal 5-byte 262 * long NOP. 263 */ 264 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 265 if (faddr) 266 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 267 else 268 buf[0] = kp->opcode; 269 return (unsigned long)buf; 270 } 271 272 /* 273 * Recover the probed instruction at addr for further analysis. 274 * Caller must lock kprobes by kprobe_mutex, or disable preemption 275 * for preventing to release referencing kprobes. 276 * Returns zero if the instruction can not get recovered. 277 */ 278 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 279 { 280 unsigned long __addr; 281 282 __addr = __recover_optprobed_insn(buf, addr); 283 if (__addr != addr) 284 return __addr; 285 286 return __recover_probed_insn(buf, addr); 287 } 288 289 /* Check if paddr is at an instruction boundary */ 290 static int can_probe(unsigned long paddr) 291 { 292 unsigned long addr, __addr, offset = 0; 293 struct insn insn; 294 kprobe_opcode_t buf[MAX_INSN_SIZE]; 295 296 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 297 return 0; 298 299 /* Decode instructions */ 300 addr = paddr - offset; 301 while (addr < paddr) { 302 /* 303 * Check if the instruction has been modified by another 304 * kprobe, in which case we replace the breakpoint by the 305 * original instruction in our buffer. 306 * Also, jump optimization will change the breakpoint to 307 * relative-jump. Since the relative-jump itself is 308 * normally used, we just go through if there is no kprobe. 309 */ 310 __addr = recover_probed_instruction(buf, addr); 311 if (!__addr) 312 return 0; 313 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 314 insn_get_length(&insn); 315 316 /* 317 * Another debugging subsystem might insert this breakpoint. 318 * In that case, we can't recover it. 319 */ 320 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 321 return 0; 322 addr += insn.length; 323 } 324 325 return (addr == paddr); 326 } 327 328 /* 329 * Returns non-zero if opcode modifies the interrupt flag. 330 */ 331 static int is_IF_modifier(kprobe_opcode_t *insn) 332 { 333 /* Skip prefixes */ 334 insn = skip_prefixes(insn); 335 336 switch (*insn) { 337 case 0xfa: /* cli */ 338 case 0xfb: /* sti */ 339 case 0xcf: /* iret/iretd */ 340 case 0x9d: /* popf/popfd */ 341 return 1; 342 } 343 344 return 0; 345 } 346 347 /* 348 * Copy an instruction and adjust the displacement if the instruction 349 * uses the %rip-relative addressing mode. 350 * If it does, Return the address of the 32-bit displacement word. 351 * If not, return null. 352 * Only applicable to 64-bit x86. 353 */ 354 int __copy_instruction(u8 *dest, u8 *src) 355 { 356 struct insn insn; 357 kprobe_opcode_t buf[MAX_INSN_SIZE]; 358 int length; 359 unsigned long recovered_insn = 360 recover_probed_instruction(buf, (unsigned long)src); 361 362 if (!recovered_insn) 363 return 0; 364 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE); 365 insn_get_length(&insn); 366 length = insn.length; 367 368 /* Another subsystem puts a breakpoint, failed to recover */ 369 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 370 return 0; 371 memcpy(dest, insn.kaddr, length); 372 373 #ifdef CONFIG_X86_64 374 if (insn_rip_relative(&insn)) { 375 s64 newdisp; 376 u8 *disp; 377 kernel_insn_init(&insn, dest, length); 378 insn_get_displacement(&insn); 379 /* 380 * The copied instruction uses the %rip-relative addressing 381 * mode. Adjust the displacement for the difference between 382 * the original location of this instruction and the location 383 * of the copy that will actually be run. The tricky bit here 384 * is making sure that the sign extension happens correctly in 385 * this calculation, since we need a signed 32-bit result to 386 * be sign-extended to 64 bits when it's added to the %rip 387 * value and yield the same 64-bit result that the sign- 388 * extension of the original signed 32-bit displacement would 389 * have given. 390 */ 391 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 392 if ((s64) (s32) newdisp != newdisp) { 393 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 394 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 395 return 0; 396 } 397 disp = (u8 *) dest + insn_offset_displacement(&insn); 398 *(s32 *) disp = (s32) newdisp; 399 } 400 #endif 401 return length; 402 } 403 404 static int arch_copy_kprobe(struct kprobe *p) 405 { 406 int ret; 407 408 /* Copy an instruction with recovering if other optprobe modifies it.*/ 409 ret = __copy_instruction(p->ainsn.insn, p->addr); 410 if (!ret) 411 return -EINVAL; 412 413 /* 414 * __copy_instruction can modify the displacement of the instruction, 415 * but it doesn't affect boostable check. 416 */ 417 if (can_boost(p->ainsn.insn)) 418 p->ainsn.boostable = 0; 419 else 420 p->ainsn.boostable = -1; 421 422 /* Check whether the instruction modifies Interrupt Flag or not */ 423 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 424 425 /* Also, displacement change doesn't affect the first byte */ 426 p->opcode = p->ainsn.insn[0]; 427 428 return 0; 429 } 430 431 int arch_prepare_kprobe(struct kprobe *p) 432 { 433 if (alternatives_text_reserved(p->addr, p->addr)) 434 return -EINVAL; 435 436 if (!can_probe((unsigned long)p->addr)) 437 return -EILSEQ; 438 /* insn: must be on special executable page on x86. */ 439 p->ainsn.insn = get_insn_slot(); 440 if (!p->ainsn.insn) 441 return -ENOMEM; 442 443 return arch_copy_kprobe(p); 444 } 445 446 void arch_arm_kprobe(struct kprobe *p) 447 { 448 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 449 } 450 451 void arch_disarm_kprobe(struct kprobe *p) 452 { 453 text_poke(p->addr, &p->opcode, 1); 454 } 455 456 void arch_remove_kprobe(struct kprobe *p) 457 { 458 if (p->ainsn.insn) { 459 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 460 p->ainsn.insn = NULL; 461 } 462 } 463 464 static nokprobe_inline void 465 save_previous_kprobe(struct kprobe_ctlblk *kcb) 466 { 467 kcb->prev_kprobe.kp = kprobe_running(); 468 kcb->prev_kprobe.status = kcb->kprobe_status; 469 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 470 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 471 } 472 473 static nokprobe_inline void 474 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 475 { 476 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 477 kcb->kprobe_status = kcb->prev_kprobe.status; 478 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 479 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 480 } 481 482 static nokprobe_inline void 483 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 484 struct kprobe_ctlblk *kcb) 485 { 486 __this_cpu_write(current_kprobe, p); 487 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 488 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 489 if (p->ainsn.if_modifier) 490 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 491 } 492 493 static nokprobe_inline void clear_btf(void) 494 { 495 if (test_thread_flag(TIF_BLOCKSTEP)) { 496 unsigned long debugctl = get_debugctlmsr(); 497 498 debugctl &= ~DEBUGCTLMSR_BTF; 499 update_debugctlmsr(debugctl); 500 } 501 } 502 503 static nokprobe_inline void restore_btf(void) 504 { 505 if (test_thread_flag(TIF_BLOCKSTEP)) { 506 unsigned long debugctl = get_debugctlmsr(); 507 508 debugctl |= DEBUGCTLMSR_BTF; 509 update_debugctlmsr(debugctl); 510 } 511 } 512 513 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 514 { 515 unsigned long *sara = stack_addr(regs); 516 517 ri->ret_addr = (kprobe_opcode_t *) *sara; 518 519 /* Replace the return addr with trampoline addr */ 520 *sara = (unsigned long) &kretprobe_trampoline; 521 } 522 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 523 524 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 525 struct kprobe_ctlblk *kcb, int reenter) 526 { 527 if (setup_detour_execution(p, regs, reenter)) 528 return; 529 530 #if !defined(CONFIG_PREEMPT) 531 if (p->ainsn.boostable == 1 && !p->post_handler) { 532 /* Boost up -- we can execute copied instructions directly */ 533 if (!reenter) 534 reset_current_kprobe(); 535 /* 536 * Reentering boosted probe doesn't reset current_kprobe, 537 * nor set current_kprobe, because it doesn't use single 538 * stepping. 539 */ 540 regs->ip = (unsigned long)p->ainsn.insn; 541 preempt_enable_no_resched(); 542 return; 543 } 544 #endif 545 if (reenter) { 546 save_previous_kprobe(kcb); 547 set_current_kprobe(p, regs, kcb); 548 kcb->kprobe_status = KPROBE_REENTER; 549 } else 550 kcb->kprobe_status = KPROBE_HIT_SS; 551 /* Prepare real single stepping */ 552 clear_btf(); 553 regs->flags |= X86_EFLAGS_TF; 554 regs->flags &= ~X86_EFLAGS_IF; 555 /* single step inline if the instruction is an int3 */ 556 if (p->opcode == BREAKPOINT_INSTRUCTION) 557 regs->ip = (unsigned long)p->addr; 558 else 559 regs->ip = (unsigned long)p->ainsn.insn; 560 } 561 NOKPROBE_SYMBOL(setup_singlestep); 562 563 /* 564 * We have reentered the kprobe_handler(), since another probe was hit while 565 * within the handler. We save the original kprobes variables and just single 566 * step on the instruction of the new probe without calling any user handlers. 567 */ 568 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 569 struct kprobe_ctlblk *kcb) 570 { 571 switch (kcb->kprobe_status) { 572 case KPROBE_HIT_SSDONE: 573 case KPROBE_HIT_ACTIVE: 574 case KPROBE_HIT_SS: 575 kprobes_inc_nmissed_count(p); 576 setup_singlestep(p, regs, kcb, 1); 577 break; 578 case KPROBE_REENTER: 579 /* A probe has been hit in the codepath leading up to, or just 580 * after, single-stepping of a probed instruction. This entire 581 * codepath should strictly reside in .kprobes.text section. 582 * Raise a BUG or we'll continue in an endless reentering loop 583 * and eventually a stack overflow. 584 */ 585 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 586 p->addr); 587 dump_kprobe(p); 588 BUG(); 589 default: 590 /* impossible cases */ 591 WARN_ON(1); 592 return 0; 593 } 594 595 return 1; 596 } 597 NOKPROBE_SYMBOL(reenter_kprobe); 598 599 /* 600 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 601 * remain disabled throughout this function. 602 */ 603 int kprobe_int3_handler(struct pt_regs *regs) 604 { 605 kprobe_opcode_t *addr; 606 struct kprobe *p; 607 struct kprobe_ctlblk *kcb; 608 609 if (user_mode(regs)) 610 return 0; 611 612 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 613 /* 614 * We don't want to be preempted for the entire 615 * duration of kprobe processing. We conditionally 616 * re-enable preemption at the end of this function, 617 * and also in reenter_kprobe() and setup_singlestep(). 618 */ 619 preempt_disable(); 620 621 kcb = get_kprobe_ctlblk(); 622 p = get_kprobe(addr); 623 624 if (p) { 625 if (kprobe_running()) { 626 if (reenter_kprobe(p, regs, kcb)) 627 return 1; 628 } else { 629 set_current_kprobe(p, regs, kcb); 630 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 631 632 /* 633 * If we have no pre-handler or it returned 0, we 634 * continue with normal processing. If we have a 635 * pre-handler and it returned non-zero, it prepped 636 * for calling the break_handler below on re-entry 637 * for jprobe processing, so get out doing nothing 638 * more here. 639 */ 640 if (!p->pre_handler || !p->pre_handler(p, regs)) 641 setup_singlestep(p, regs, kcb, 0); 642 return 1; 643 } 644 } else if (*addr != BREAKPOINT_INSTRUCTION) { 645 /* 646 * The breakpoint instruction was removed right 647 * after we hit it. Another cpu has removed 648 * either a probepoint or a debugger breakpoint 649 * at this address. In either case, no further 650 * handling of this interrupt is appropriate. 651 * Back up over the (now missing) int3 and run 652 * the original instruction. 653 */ 654 regs->ip = (unsigned long)addr; 655 preempt_enable_no_resched(); 656 return 1; 657 } else if (kprobe_running()) { 658 p = __this_cpu_read(current_kprobe); 659 if (p->break_handler && p->break_handler(p, regs)) { 660 if (!skip_singlestep(p, regs, kcb)) 661 setup_singlestep(p, regs, kcb, 0); 662 return 1; 663 } 664 } /* else: not a kprobe fault; let the kernel handle it */ 665 666 preempt_enable_no_resched(); 667 return 0; 668 } 669 NOKPROBE_SYMBOL(kprobe_int3_handler); 670 671 /* 672 * When a retprobed function returns, this code saves registers and 673 * calls trampoline_handler() runs, which calls the kretprobe's handler. 674 */ 675 asm( 676 ".global kretprobe_trampoline\n" 677 ".type kretprobe_trampoline, @function\n" 678 "kretprobe_trampoline:\n" 679 #ifdef CONFIG_X86_64 680 /* We don't bother saving the ss register */ 681 " pushq %rsp\n" 682 " pushfq\n" 683 SAVE_REGS_STRING 684 " movq %rsp, %rdi\n" 685 " call trampoline_handler\n" 686 /* Replace saved sp with true return address. */ 687 " movq %rax, 152(%rsp)\n" 688 RESTORE_REGS_STRING 689 " popfq\n" 690 #else 691 " pushf\n" 692 SAVE_REGS_STRING 693 " movl %esp, %eax\n" 694 " call trampoline_handler\n" 695 /* Move flags to cs */ 696 " movl 56(%esp), %edx\n" 697 " movl %edx, 52(%esp)\n" 698 /* Replace saved flags with true return address. */ 699 " movl %eax, 56(%esp)\n" 700 RESTORE_REGS_STRING 701 " popf\n" 702 #endif 703 " ret\n" 704 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 705 ); 706 NOKPROBE_SYMBOL(kretprobe_trampoline); 707 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 708 709 /* 710 * Called from kretprobe_trampoline 711 */ 712 __visible __used void *trampoline_handler(struct pt_regs *regs) 713 { 714 struct kretprobe_instance *ri = NULL; 715 struct hlist_head *head, empty_rp; 716 struct hlist_node *tmp; 717 unsigned long flags, orig_ret_address = 0; 718 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 719 kprobe_opcode_t *correct_ret_addr = NULL; 720 721 INIT_HLIST_HEAD(&empty_rp); 722 kretprobe_hash_lock(current, &head, &flags); 723 /* fixup registers */ 724 #ifdef CONFIG_X86_64 725 regs->cs = __KERNEL_CS; 726 #else 727 regs->cs = __KERNEL_CS | get_kernel_rpl(); 728 regs->gs = 0; 729 #endif 730 regs->ip = trampoline_address; 731 regs->orig_ax = ~0UL; 732 733 /* 734 * It is possible to have multiple instances associated with a given 735 * task either because multiple functions in the call path have 736 * return probes installed on them, and/or more than one 737 * return probe was registered for a target function. 738 * 739 * We can handle this because: 740 * - instances are always pushed into the head of the list 741 * - when multiple return probes are registered for the same 742 * function, the (chronologically) first instance's ret_addr 743 * will be the real return address, and all the rest will 744 * point to kretprobe_trampoline. 745 */ 746 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 747 if (ri->task != current) 748 /* another task is sharing our hash bucket */ 749 continue; 750 751 orig_ret_address = (unsigned long)ri->ret_addr; 752 753 if (orig_ret_address != trampoline_address) 754 /* 755 * This is the real return address. Any other 756 * instances associated with this task are for 757 * other calls deeper on the call stack 758 */ 759 break; 760 } 761 762 kretprobe_assert(ri, orig_ret_address, trampoline_address); 763 764 correct_ret_addr = ri->ret_addr; 765 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 766 if (ri->task != current) 767 /* another task is sharing our hash bucket */ 768 continue; 769 770 orig_ret_address = (unsigned long)ri->ret_addr; 771 if (ri->rp && ri->rp->handler) { 772 __this_cpu_write(current_kprobe, &ri->rp->kp); 773 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 774 ri->ret_addr = correct_ret_addr; 775 ri->rp->handler(ri, regs); 776 __this_cpu_write(current_kprobe, NULL); 777 } 778 779 recycle_rp_inst(ri, &empty_rp); 780 781 if (orig_ret_address != trampoline_address) 782 /* 783 * This is the real return address. Any other 784 * instances associated with this task are for 785 * other calls deeper on the call stack 786 */ 787 break; 788 } 789 790 kretprobe_hash_unlock(current, &flags); 791 792 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 793 hlist_del(&ri->hlist); 794 kfree(ri); 795 } 796 return (void *)orig_ret_address; 797 } 798 NOKPROBE_SYMBOL(trampoline_handler); 799 800 /* 801 * Called after single-stepping. p->addr is the address of the 802 * instruction whose first byte has been replaced by the "int 3" 803 * instruction. To avoid the SMP problems that can occur when we 804 * temporarily put back the original opcode to single-step, we 805 * single-stepped a copy of the instruction. The address of this 806 * copy is p->ainsn.insn. 807 * 808 * This function prepares to return from the post-single-step 809 * interrupt. We have to fix up the stack as follows: 810 * 811 * 0) Except in the case of absolute or indirect jump or call instructions, 812 * the new ip is relative to the copied instruction. We need to make 813 * it relative to the original instruction. 814 * 815 * 1) If the single-stepped instruction was pushfl, then the TF and IF 816 * flags are set in the just-pushed flags, and may need to be cleared. 817 * 818 * 2) If the single-stepped instruction was a call, the return address 819 * that is atop the stack is the address following the copied instruction. 820 * We need to make it the address following the original instruction. 821 * 822 * If this is the first time we've single-stepped the instruction at 823 * this probepoint, and the instruction is boostable, boost it: add a 824 * jump instruction after the copied instruction, that jumps to the next 825 * instruction after the probepoint. 826 */ 827 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 828 struct kprobe_ctlblk *kcb) 829 { 830 unsigned long *tos = stack_addr(regs); 831 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 832 unsigned long orig_ip = (unsigned long)p->addr; 833 kprobe_opcode_t *insn = p->ainsn.insn; 834 835 /* Skip prefixes */ 836 insn = skip_prefixes(insn); 837 838 regs->flags &= ~X86_EFLAGS_TF; 839 switch (*insn) { 840 case 0x9c: /* pushfl */ 841 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 842 *tos |= kcb->kprobe_old_flags; 843 break; 844 case 0xc2: /* iret/ret/lret */ 845 case 0xc3: 846 case 0xca: 847 case 0xcb: 848 case 0xcf: 849 case 0xea: /* jmp absolute -- ip is correct */ 850 /* ip is already adjusted, no more changes required */ 851 p->ainsn.boostable = 1; 852 goto no_change; 853 case 0xe8: /* call relative - Fix return addr */ 854 *tos = orig_ip + (*tos - copy_ip); 855 break; 856 #ifdef CONFIG_X86_32 857 case 0x9a: /* call absolute -- same as call absolute, indirect */ 858 *tos = orig_ip + (*tos - copy_ip); 859 goto no_change; 860 #endif 861 case 0xff: 862 if ((insn[1] & 0x30) == 0x10) { 863 /* 864 * call absolute, indirect 865 * Fix return addr; ip is correct. 866 * But this is not boostable 867 */ 868 *tos = orig_ip + (*tos - copy_ip); 869 goto no_change; 870 } else if (((insn[1] & 0x31) == 0x20) || 871 ((insn[1] & 0x31) == 0x21)) { 872 /* 873 * jmp near and far, absolute indirect 874 * ip is correct. And this is boostable 875 */ 876 p->ainsn.boostable = 1; 877 goto no_change; 878 } 879 default: 880 break; 881 } 882 883 if (p->ainsn.boostable == 0) { 884 if ((regs->ip > copy_ip) && 885 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 886 /* 887 * These instructions can be executed directly if it 888 * jumps back to correct address. 889 */ 890 synthesize_reljump((void *)regs->ip, 891 (void *)orig_ip + (regs->ip - copy_ip)); 892 p->ainsn.boostable = 1; 893 } else { 894 p->ainsn.boostable = -1; 895 } 896 } 897 898 regs->ip += orig_ip - copy_ip; 899 900 no_change: 901 restore_btf(); 902 } 903 NOKPROBE_SYMBOL(resume_execution); 904 905 /* 906 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 907 * remain disabled throughout this function. 908 */ 909 int kprobe_debug_handler(struct pt_regs *regs) 910 { 911 struct kprobe *cur = kprobe_running(); 912 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 913 914 if (!cur) 915 return 0; 916 917 resume_execution(cur, regs, kcb); 918 regs->flags |= kcb->kprobe_saved_flags; 919 920 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 921 kcb->kprobe_status = KPROBE_HIT_SSDONE; 922 cur->post_handler(cur, regs, 0); 923 } 924 925 /* Restore back the original saved kprobes variables and continue. */ 926 if (kcb->kprobe_status == KPROBE_REENTER) { 927 restore_previous_kprobe(kcb); 928 goto out; 929 } 930 reset_current_kprobe(); 931 out: 932 preempt_enable_no_resched(); 933 934 /* 935 * if somebody else is singlestepping across a probe point, flags 936 * will have TF set, in which case, continue the remaining processing 937 * of do_debug, as if this is not a probe hit. 938 */ 939 if (regs->flags & X86_EFLAGS_TF) 940 return 0; 941 942 return 1; 943 } 944 NOKPROBE_SYMBOL(kprobe_debug_handler); 945 946 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 947 { 948 struct kprobe *cur = kprobe_running(); 949 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 950 951 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 952 /* This must happen on single-stepping */ 953 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 954 kcb->kprobe_status != KPROBE_REENTER); 955 /* 956 * We are here because the instruction being single 957 * stepped caused a page fault. We reset the current 958 * kprobe and the ip points back to the probe address 959 * and allow the page fault handler to continue as a 960 * normal page fault. 961 */ 962 regs->ip = (unsigned long)cur->addr; 963 regs->flags |= kcb->kprobe_old_flags; 964 if (kcb->kprobe_status == KPROBE_REENTER) 965 restore_previous_kprobe(kcb); 966 else 967 reset_current_kprobe(); 968 preempt_enable_no_resched(); 969 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 970 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 971 /* 972 * We increment the nmissed count for accounting, 973 * we can also use npre/npostfault count for accounting 974 * these specific fault cases. 975 */ 976 kprobes_inc_nmissed_count(cur); 977 978 /* 979 * We come here because instructions in the pre/post 980 * handler caused the page_fault, this could happen 981 * if handler tries to access user space by 982 * copy_from_user(), get_user() etc. Let the 983 * user-specified handler try to fix it first. 984 */ 985 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 986 return 1; 987 988 /* 989 * In case the user-specified fault handler returned 990 * zero, try to fix up. 991 */ 992 if (fixup_exception(regs, trapnr)) 993 return 1; 994 995 /* 996 * fixup routine could not handle it, 997 * Let do_page_fault() fix it. 998 */ 999 } 1000 1001 return 0; 1002 } 1003 NOKPROBE_SYMBOL(kprobe_fault_handler); 1004 1005 /* 1006 * Wrapper routine for handling exceptions. 1007 */ 1008 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1009 void *data) 1010 { 1011 struct die_args *args = data; 1012 int ret = NOTIFY_DONE; 1013 1014 if (args->regs && user_mode(args->regs)) 1015 return ret; 1016 1017 if (val == DIE_GPF) { 1018 /* 1019 * To be potentially processing a kprobe fault and to 1020 * trust the result from kprobe_running(), we have 1021 * be non-preemptible. 1022 */ 1023 if (!preemptible() && kprobe_running() && 1024 kprobe_fault_handler(args->regs, args->trapnr)) 1025 ret = NOTIFY_STOP; 1026 } 1027 return ret; 1028 } 1029 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1030 1031 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1032 { 1033 struct jprobe *jp = container_of(p, struct jprobe, kp); 1034 unsigned long addr; 1035 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1036 1037 kcb->jprobe_saved_regs = *regs; 1038 kcb->jprobe_saved_sp = stack_addr(regs); 1039 addr = (unsigned long)(kcb->jprobe_saved_sp); 1040 1041 /* 1042 * As Linus pointed out, gcc assumes that the callee 1043 * owns the argument space and could overwrite it, e.g. 1044 * tailcall optimization. So, to be absolutely safe 1045 * we also save and restore enough stack bytes to cover 1046 * the argument area. 1047 */ 1048 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, 1049 MIN_STACK_SIZE(addr)); 1050 regs->flags &= ~X86_EFLAGS_IF; 1051 trace_hardirqs_off(); 1052 regs->ip = (unsigned long)(jp->entry); 1053 1054 /* 1055 * jprobes use jprobe_return() which skips the normal return 1056 * path of the function, and this messes up the accounting of the 1057 * function graph tracer to get messed up. 1058 * 1059 * Pause function graph tracing while performing the jprobe function. 1060 */ 1061 pause_graph_tracing(); 1062 return 1; 1063 } 1064 NOKPROBE_SYMBOL(setjmp_pre_handler); 1065 1066 void jprobe_return(void) 1067 { 1068 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1069 1070 asm volatile ( 1071 #ifdef CONFIG_X86_64 1072 " xchg %%rbx,%%rsp \n" 1073 #else 1074 " xchgl %%ebx,%%esp \n" 1075 #endif 1076 " int3 \n" 1077 " .globl jprobe_return_end\n" 1078 " jprobe_return_end: \n" 1079 " nop \n"::"b" 1080 (kcb->jprobe_saved_sp):"memory"); 1081 } 1082 NOKPROBE_SYMBOL(jprobe_return); 1083 NOKPROBE_SYMBOL(jprobe_return_end); 1084 1085 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1086 { 1087 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1088 u8 *addr = (u8 *) (regs->ip - 1); 1089 struct jprobe *jp = container_of(p, struct jprobe, kp); 1090 void *saved_sp = kcb->jprobe_saved_sp; 1091 1092 if ((addr > (u8 *) jprobe_return) && 1093 (addr < (u8 *) jprobe_return_end)) { 1094 if (stack_addr(regs) != saved_sp) { 1095 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1096 printk(KERN_ERR 1097 "current sp %p does not match saved sp %p\n", 1098 stack_addr(regs), saved_sp); 1099 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1100 show_regs(saved_regs); 1101 printk(KERN_ERR "Current registers\n"); 1102 show_regs(regs); 1103 BUG(); 1104 } 1105 /* It's OK to start function graph tracing again */ 1106 unpause_graph_tracing(); 1107 *regs = kcb->jprobe_saved_regs; 1108 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1109 preempt_enable_no_resched(); 1110 return 1; 1111 } 1112 return 0; 1113 } 1114 NOKPROBE_SYMBOL(longjmp_break_handler); 1115 1116 bool arch_within_kprobe_blacklist(unsigned long addr) 1117 { 1118 return (addr >= (unsigned long)__kprobes_text_start && 1119 addr < (unsigned long)__kprobes_text_end) || 1120 (addr >= (unsigned long)__entry_text_start && 1121 addr < (unsigned long)__entry_text_end); 1122 } 1123 1124 int __init arch_init_kprobes(void) 1125 { 1126 return 0; 1127 } 1128 1129 int arch_trampoline_kprobe(struct kprobe *p) 1130 { 1131 return 0; 1132 } 1133