1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/module.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 #include <linux/frame.h> 53 54 #include <asm/text-patching.h> 55 #include <asm/cacheflush.h> 56 #include <asm/desc.h> 57 #include <asm/pgtable.h> 58 #include <asm/uaccess.h> 59 #include <asm/alternative.h> 60 #include <asm/insn.h> 61 #include <asm/debugreg.h> 62 63 #include "common.h" 64 65 void jprobe_return_end(void); 66 67 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 68 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 69 70 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 71 72 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 73 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 74 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 75 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 76 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 77 << (row % 32)) 78 /* 79 * Undefined/reserved opcodes, conditional jump, Opcode Extension 80 * Groups, and some special opcodes can not boost. 81 * This is non-const and volatile to keep gcc from statically 82 * optimizing it out, as variable_test_bit makes gcc think only 83 * *(unsigned long*) is used. 84 */ 85 static volatile u32 twobyte_is_boostable[256 / 32] = { 86 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 87 /* ---------------------------------------------- */ 88 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 89 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 90 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 91 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 92 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 93 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 94 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 95 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 96 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 97 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 98 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 99 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 100 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 101 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 102 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 103 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 104 /* ----------------------------------------------- */ 105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 106 }; 107 #undef W 108 109 struct kretprobe_blackpoint kretprobe_blacklist[] = { 110 {"__switch_to", }, /* This function switches only current task, but 111 doesn't switch kernel stack.*/ 112 {NULL, NULL} /* Terminator */ 113 }; 114 115 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 116 117 static nokprobe_inline void 118 __synthesize_relative_insn(void *from, void *to, u8 op) 119 { 120 struct __arch_relative_insn { 121 u8 op; 122 s32 raddr; 123 } __packed *insn; 124 125 insn = (struct __arch_relative_insn *)from; 126 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 127 insn->op = op; 128 } 129 130 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 131 void synthesize_reljump(void *from, void *to) 132 { 133 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 134 } 135 NOKPROBE_SYMBOL(synthesize_reljump); 136 137 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 138 void synthesize_relcall(void *from, void *to) 139 { 140 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 141 } 142 NOKPROBE_SYMBOL(synthesize_relcall); 143 144 /* 145 * Skip the prefixes of the instruction. 146 */ 147 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 148 { 149 insn_attr_t attr; 150 151 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 152 while (inat_is_legacy_prefix(attr)) { 153 insn++; 154 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 155 } 156 #ifdef CONFIG_X86_64 157 if (inat_is_rex_prefix(attr)) 158 insn++; 159 #endif 160 return insn; 161 } 162 NOKPROBE_SYMBOL(skip_prefixes); 163 164 /* 165 * Returns non-zero if opcode is boostable. 166 * RIP relative instructions are adjusted at copying time in 64 bits mode 167 */ 168 int can_boost(kprobe_opcode_t *opcodes) 169 { 170 kprobe_opcode_t opcode; 171 kprobe_opcode_t *orig_opcodes = opcodes; 172 173 if (search_exception_tables((unsigned long)opcodes)) 174 return 0; /* Page fault may occur on this address. */ 175 176 retry: 177 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 178 return 0; 179 opcode = *(opcodes++); 180 181 /* 2nd-byte opcode */ 182 if (opcode == 0x0f) { 183 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 184 return 0; 185 return test_bit(*opcodes, 186 (unsigned long *)twobyte_is_boostable); 187 } 188 189 switch (opcode & 0xf0) { 190 #ifdef CONFIG_X86_64 191 case 0x40: 192 goto retry; /* REX prefix is boostable */ 193 #endif 194 case 0x60: 195 if (0x63 < opcode && opcode < 0x67) 196 goto retry; /* prefixes */ 197 /* can't boost Address-size override and bound */ 198 return (opcode != 0x62 && opcode != 0x67); 199 case 0x70: 200 return 0; /* can't boost conditional jump */ 201 case 0xc0: 202 /* can't boost software-interruptions */ 203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 204 case 0xd0: 205 /* can boost AA* and XLAT */ 206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 207 case 0xe0: 208 /* can boost in/out and absolute jmps */ 209 return ((opcode & 0x04) || opcode == 0xea); 210 case 0xf0: 211 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 212 goto retry; /* lock/rep(ne) prefix */ 213 /* clear and set flags are boostable */ 214 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 215 default: 216 /* segment override prefixes are boostable */ 217 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 218 goto retry; /* prefixes */ 219 /* CS override prefix and call are not boostable */ 220 return (opcode != 0x2e && opcode != 0x9a); 221 } 222 } 223 224 static unsigned long 225 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 226 { 227 struct kprobe *kp; 228 unsigned long faddr; 229 230 kp = get_kprobe((void *)addr); 231 faddr = ftrace_location(addr); 232 /* 233 * Addresses inside the ftrace location are refused by 234 * arch_check_ftrace_location(). Something went terribly wrong 235 * if such an address is checked here. 236 */ 237 if (WARN_ON(faddr && faddr != addr)) 238 return 0UL; 239 /* 240 * Use the current code if it is not modified by Kprobe 241 * and it cannot be modified by ftrace. 242 */ 243 if (!kp && !faddr) 244 return addr; 245 246 /* 247 * Basically, kp->ainsn.insn has an original instruction. 248 * However, RIP-relative instruction can not do single-stepping 249 * at different place, __copy_instruction() tweaks the displacement of 250 * that instruction. In that case, we can't recover the instruction 251 * from the kp->ainsn.insn. 252 * 253 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 254 * of the first byte of the probed instruction, which is overwritten 255 * by int3. And the instruction at kp->addr is not modified by kprobes 256 * except for the first byte, we can recover the original instruction 257 * from it and kp->opcode. 258 * 259 * In case of Kprobes using ftrace, we do not have a copy of 260 * the original instruction. In fact, the ftrace location might 261 * be modified at anytime and even could be in an inconsistent state. 262 * Fortunately, we know that the original code is the ideal 5-byte 263 * long NOP. 264 */ 265 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 266 if (faddr) 267 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 268 else 269 buf[0] = kp->opcode; 270 return (unsigned long)buf; 271 } 272 273 /* 274 * Recover the probed instruction at addr for further analysis. 275 * Caller must lock kprobes by kprobe_mutex, or disable preemption 276 * for preventing to release referencing kprobes. 277 * Returns zero if the instruction can not get recovered. 278 */ 279 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 280 { 281 unsigned long __addr; 282 283 __addr = __recover_optprobed_insn(buf, addr); 284 if (__addr != addr) 285 return __addr; 286 287 return __recover_probed_insn(buf, addr); 288 } 289 290 /* Check if paddr is at an instruction boundary */ 291 static int can_probe(unsigned long paddr) 292 { 293 unsigned long addr, __addr, offset = 0; 294 struct insn insn; 295 kprobe_opcode_t buf[MAX_INSN_SIZE]; 296 297 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 298 return 0; 299 300 /* Decode instructions */ 301 addr = paddr - offset; 302 while (addr < paddr) { 303 /* 304 * Check if the instruction has been modified by another 305 * kprobe, in which case we replace the breakpoint by the 306 * original instruction in our buffer. 307 * Also, jump optimization will change the breakpoint to 308 * relative-jump. Since the relative-jump itself is 309 * normally used, we just go through if there is no kprobe. 310 */ 311 __addr = recover_probed_instruction(buf, addr); 312 if (!__addr) 313 return 0; 314 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 315 insn_get_length(&insn); 316 317 /* 318 * Another debugging subsystem might insert this breakpoint. 319 * In that case, we can't recover it. 320 */ 321 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 322 return 0; 323 addr += insn.length; 324 } 325 326 return (addr == paddr); 327 } 328 329 /* 330 * Returns non-zero if opcode modifies the interrupt flag. 331 */ 332 static int is_IF_modifier(kprobe_opcode_t *insn) 333 { 334 /* Skip prefixes */ 335 insn = skip_prefixes(insn); 336 337 switch (*insn) { 338 case 0xfa: /* cli */ 339 case 0xfb: /* sti */ 340 case 0xcf: /* iret/iretd */ 341 case 0x9d: /* popf/popfd */ 342 return 1; 343 } 344 345 return 0; 346 } 347 348 /* 349 * Copy an instruction and adjust the displacement if the instruction 350 * uses the %rip-relative addressing mode. 351 * If it does, Return the address of the 32-bit displacement word. 352 * If not, return null. 353 * Only applicable to 64-bit x86. 354 */ 355 int __copy_instruction(u8 *dest, u8 *src) 356 { 357 struct insn insn; 358 kprobe_opcode_t buf[MAX_INSN_SIZE]; 359 int length; 360 unsigned long recovered_insn = 361 recover_probed_instruction(buf, (unsigned long)src); 362 363 if (!recovered_insn) 364 return 0; 365 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE); 366 insn_get_length(&insn); 367 length = insn.length; 368 369 /* Another subsystem puts a breakpoint, failed to recover */ 370 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 371 return 0; 372 memcpy(dest, insn.kaddr, length); 373 374 #ifdef CONFIG_X86_64 375 if (insn_rip_relative(&insn)) { 376 s64 newdisp; 377 u8 *disp; 378 kernel_insn_init(&insn, dest, length); 379 insn_get_displacement(&insn); 380 /* 381 * The copied instruction uses the %rip-relative addressing 382 * mode. Adjust the displacement for the difference between 383 * the original location of this instruction and the location 384 * of the copy that will actually be run. The tricky bit here 385 * is making sure that the sign extension happens correctly in 386 * this calculation, since we need a signed 32-bit result to 387 * be sign-extended to 64 bits when it's added to the %rip 388 * value and yield the same 64-bit result that the sign- 389 * extension of the original signed 32-bit displacement would 390 * have given. 391 */ 392 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 393 if ((s64) (s32) newdisp != newdisp) { 394 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 395 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 396 return 0; 397 } 398 disp = (u8 *) dest + insn_offset_displacement(&insn); 399 *(s32 *) disp = (s32) newdisp; 400 } 401 #endif 402 return length; 403 } 404 405 static int arch_copy_kprobe(struct kprobe *p) 406 { 407 int ret; 408 409 /* Copy an instruction with recovering if other optprobe modifies it.*/ 410 ret = __copy_instruction(p->ainsn.insn, p->addr); 411 if (!ret) 412 return -EINVAL; 413 414 /* 415 * __copy_instruction can modify the displacement of the instruction, 416 * but it doesn't affect boostable check. 417 */ 418 if (can_boost(p->ainsn.insn)) 419 p->ainsn.boostable = 0; 420 else 421 p->ainsn.boostable = -1; 422 423 /* Check whether the instruction modifies Interrupt Flag or not */ 424 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 425 426 /* Also, displacement change doesn't affect the first byte */ 427 p->opcode = p->ainsn.insn[0]; 428 429 return 0; 430 } 431 432 int arch_prepare_kprobe(struct kprobe *p) 433 { 434 if (alternatives_text_reserved(p->addr, p->addr)) 435 return -EINVAL; 436 437 if (!can_probe((unsigned long)p->addr)) 438 return -EILSEQ; 439 /* insn: must be on special executable page on x86. */ 440 p->ainsn.insn = get_insn_slot(); 441 if (!p->ainsn.insn) 442 return -ENOMEM; 443 444 return arch_copy_kprobe(p); 445 } 446 447 void arch_arm_kprobe(struct kprobe *p) 448 { 449 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 450 } 451 452 void arch_disarm_kprobe(struct kprobe *p) 453 { 454 text_poke(p->addr, &p->opcode, 1); 455 } 456 457 void arch_remove_kprobe(struct kprobe *p) 458 { 459 if (p->ainsn.insn) { 460 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 461 p->ainsn.insn = NULL; 462 } 463 } 464 465 static nokprobe_inline void 466 save_previous_kprobe(struct kprobe_ctlblk *kcb) 467 { 468 kcb->prev_kprobe.kp = kprobe_running(); 469 kcb->prev_kprobe.status = kcb->kprobe_status; 470 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 471 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 472 } 473 474 static nokprobe_inline void 475 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 476 { 477 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 478 kcb->kprobe_status = kcb->prev_kprobe.status; 479 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 480 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 481 } 482 483 static nokprobe_inline void 484 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 485 struct kprobe_ctlblk *kcb) 486 { 487 __this_cpu_write(current_kprobe, p); 488 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 489 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 490 if (p->ainsn.if_modifier) 491 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 492 } 493 494 static nokprobe_inline void clear_btf(void) 495 { 496 if (test_thread_flag(TIF_BLOCKSTEP)) { 497 unsigned long debugctl = get_debugctlmsr(); 498 499 debugctl &= ~DEBUGCTLMSR_BTF; 500 update_debugctlmsr(debugctl); 501 } 502 } 503 504 static nokprobe_inline void restore_btf(void) 505 { 506 if (test_thread_flag(TIF_BLOCKSTEP)) { 507 unsigned long debugctl = get_debugctlmsr(); 508 509 debugctl |= DEBUGCTLMSR_BTF; 510 update_debugctlmsr(debugctl); 511 } 512 } 513 514 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 515 { 516 unsigned long *sara = stack_addr(regs); 517 518 ri->ret_addr = (kprobe_opcode_t *) *sara; 519 520 /* Replace the return addr with trampoline addr */ 521 *sara = (unsigned long) &kretprobe_trampoline; 522 } 523 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 524 525 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 526 struct kprobe_ctlblk *kcb, int reenter) 527 { 528 if (setup_detour_execution(p, regs, reenter)) 529 return; 530 531 #if !defined(CONFIG_PREEMPT) 532 if (p->ainsn.boostable == 1 && !p->post_handler) { 533 /* Boost up -- we can execute copied instructions directly */ 534 if (!reenter) 535 reset_current_kprobe(); 536 /* 537 * Reentering boosted probe doesn't reset current_kprobe, 538 * nor set current_kprobe, because it doesn't use single 539 * stepping. 540 */ 541 regs->ip = (unsigned long)p->ainsn.insn; 542 preempt_enable_no_resched(); 543 return; 544 } 545 #endif 546 if (reenter) { 547 save_previous_kprobe(kcb); 548 set_current_kprobe(p, regs, kcb); 549 kcb->kprobe_status = KPROBE_REENTER; 550 } else 551 kcb->kprobe_status = KPROBE_HIT_SS; 552 /* Prepare real single stepping */ 553 clear_btf(); 554 regs->flags |= X86_EFLAGS_TF; 555 regs->flags &= ~X86_EFLAGS_IF; 556 /* single step inline if the instruction is an int3 */ 557 if (p->opcode == BREAKPOINT_INSTRUCTION) 558 regs->ip = (unsigned long)p->addr; 559 else 560 regs->ip = (unsigned long)p->ainsn.insn; 561 } 562 NOKPROBE_SYMBOL(setup_singlestep); 563 564 /* 565 * We have reentered the kprobe_handler(), since another probe was hit while 566 * within the handler. We save the original kprobes variables and just single 567 * step on the instruction of the new probe without calling any user handlers. 568 */ 569 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 570 struct kprobe_ctlblk *kcb) 571 { 572 switch (kcb->kprobe_status) { 573 case KPROBE_HIT_SSDONE: 574 case KPROBE_HIT_ACTIVE: 575 case KPROBE_HIT_SS: 576 kprobes_inc_nmissed_count(p); 577 setup_singlestep(p, regs, kcb, 1); 578 break; 579 case KPROBE_REENTER: 580 /* A probe has been hit in the codepath leading up to, or just 581 * after, single-stepping of a probed instruction. This entire 582 * codepath should strictly reside in .kprobes.text section. 583 * Raise a BUG or we'll continue in an endless reentering loop 584 * and eventually a stack overflow. 585 */ 586 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 587 p->addr); 588 dump_kprobe(p); 589 BUG(); 590 default: 591 /* impossible cases */ 592 WARN_ON(1); 593 return 0; 594 } 595 596 return 1; 597 } 598 NOKPROBE_SYMBOL(reenter_kprobe); 599 600 /* 601 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 602 * remain disabled throughout this function. 603 */ 604 int kprobe_int3_handler(struct pt_regs *regs) 605 { 606 kprobe_opcode_t *addr; 607 struct kprobe *p; 608 struct kprobe_ctlblk *kcb; 609 610 if (user_mode(regs)) 611 return 0; 612 613 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 614 /* 615 * We don't want to be preempted for the entire 616 * duration of kprobe processing. We conditionally 617 * re-enable preemption at the end of this function, 618 * and also in reenter_kprobe() and setup_singlestep(). 619 */ 620 preempt_disable(); 621 622 kcb = get_kprobe_ctlblk(); 623 p = get_kprobe(addr); 624 625 if (p) { 626 if (kprobe_running()) { 627 if (reenter_kprobe(p, regs, kcb)) 628 return 1; 629 } else { 630 set_current_kprobe(p, regs, kcb); 631 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 632 633 /* 634 * If we have no pre-handler or it returned 0, we 635 * continue with normal processing. If we have a 636 * pre-handler and it returned non-zero, it prepped 637 * for calling the break_handler below on re-entry 638 * for jprobe processing, so get out doing nothing 639 * more here. 640 */ 641 if (!p->pre_handler || !p->pre_handler(p, regs)) 642 setup_singlestep(p, regs, kcb, 0); 643 return 1; 644 } 645 } else if (*addr != BREAKPOINT_INSTRUCTION) { 646 /* 647 * The breakpoint instruction was removed right 648 * after we hit it. Another cpu has removed 649 * either a probepoint or a debugger breakpoint 650 * at this address. In either case, no further 651 * handling of this interrupt is appropriate. 652 * Back up over the (now missing) int3 and run 653 * the original instruction. 654 */ 655 regs->ip = (unsigned long)addr; 656 preempt_enable_no_resched(); 657 return 1; 658 } else if (kprobe_running()) { 659 p = __this_cpu_read(current_kprobe); 660 if (p->break_handler && p->break_handler(p, regs)) { 661 if (!skip_singlestep(p, regs, kcb)) 662 setup_singlestep(p, regs, kcb, 0); 663 return 1; 664 } 665 } /* else: not a kprobe fault; let the kernel handle it */ 666 667 preempt_enable_no_resched(); 668 return 0; 669 } 670 NOKPROBE_SYMBOL(kprobe_int3_handler); 671 672 /* 673 * When a retprobed function returns, this code saves registers and 674 * calls trampoline_handler() runs, which calls the kretprobe's handler. 675 */ 676 asm( 677 ".global kretprobe_trampoline\n" 678 ".type kretprobe_trampoline, @function\n" 679 "kretprobe_trampoline:\n" 680 #ifdef CONFIG_X86_64 681 /* We don't bother saving the ss register */ 682 " pushq %rsp\n" 683 " pushfq\n" 684 SAVE_REGS_STRING 685 " movq %rsp, %rdi\n" 686 " call trampoline_handler\n" 687 /* Replace saved sp with true return address. */ 688 " movq %rax, 152(%rsp)\n" 689 RESTORE_REGS_STRING 690 " popfq\n" 691 #else 692 " pushf\n" 693 SAVE_REGS_STRING 694 " movl %esp, %eax\n" 695 " call trampoline_handler\n" 696 /* Move flags to cs */ 697 " movl 56(%esp), %edx\n" 698 " movl %edx, 52(%esp)\n" 699 /* Replace saved flags with true return address. */ 700 " movl %eax, 56(%esp)\n" 701 RESTORE_REGS_STRING 702 " popf\n" 703 #endif 704 " ret\n" 705 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 706 ); 707 NOKPROBE_SYMBOL(kretprobe_trampoline); 708 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 709 710 /* 711 * Called from kretprobe_trampoline 712 */ 713 __visible __used void *trampoline_handler(struct pt_regs *regs) 714 { 715 struct kretprobe_instance *ri = NULL; 716 struct hlist_head *head, empty_rp; 717 struct hlist_node *tmp; 718 unsigned long flags, orig_ret_address = 0; 719 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 720 kprobe_opcode_t *correct_ret_addr = NULL; 721 722 INIT_HLIST_HEAD(&empty_rp); 723 kretprobe_hash_lock(current, &head, &flags); 724 /* fixup registers */ 725 #ifdef CONFIG_X86_64 726 regs->cs = __KERNEL_CS; 727 #else 728 regs->cs = __KERNEL_CS | get_kernel_rpl(); 729 regs->gs = 0; 730 #endif 731 regs->ip = trampoline_address; 732 regs->orig_ax = ~0UL; 733 734 /* 735 * It is possible to have multiple instances associated with a given 736 * task either because multiple functions in the call path have 737 * return probes installed on them, and/or more than one 738 * return probe was registered for a target function. 739 * 740 * We can handle this because: 741 * - instances are always pushed into the head of the list 742 * - when multiple return probes are registered for the same 743 * function, the (chronologically) first instance's ret_addr 744 * will be the real return address, and all the rest will 745 * point to kretprobe_trampoline. 746 */ 747 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 748 if (ri->task != current) 749 /* another task is sharing our hash bucket */ 750 continue; 751 752 orig_ret_address = (unsigned long)ri->ret_addr; 753 754 if (orig_ret_address != trampoline_address) 755 /* 756 * This is the real return address. Any other 757 * instances associated with this task are for 758 * other calls deeper on the call stack 759 */ 760 break; 761 } 762 763 kretprobe_assert(ri, orig_ret_address, trampoline_address); 764 765 correct_ret_addr = ri->ret_addr; 766 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 767 if (ri->task != current) 768 /* another task is sharing our hash bucket */ 769 continue; 770 771 orig_ret_address = (unsigned long)ri->ret_addr; 772 if (ri->rp && ri->rp->handler) { 773 __this_cpu_write(current_kprobe, &ri->rp->kp); 774 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 775 ri->ret_addr = correct_ret_addr; 776 ri->rp->handler(ri, regs); 777 __this_cpu_write(current_kprobe, NULL); 778 } 779 780 recycle_rp_inst(ri, &empty_rp); 781 782 if (orig_ret_address != trampoline_address) 783 /* 784 * This is the real return address. Any other 785 * instances associated with this task are for 786 * other calls deeper on the call stack 787 */ 788 break; 789 } 790 791 kretprobe_hash_unlock(current, &flags); 792 793 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 794 hlist_del(&ri->hlist); 795 kfree(ri); 796 } 797 return (void *)orig_ret_address; 798 } 799 NOKPROBE_SYMBOL(trampoline_handler); 800 801 /* 802 * Called after single-stepping. p->addr is the address of the 803 * instruction whose first byte has been replaced by the "int 3" 804 * instruction. To avoid the SMP problems that can occur when we 805 * temporarily put back the original opcode to single-step, we 806 * single-stepped a copy of the instruction. The address of this 807 * copy is p->ainsn.insn. 808 * 809 * This function prepares to return from the post-single-step 810 * interrupt. We have to fix up the stack as follows: 811 * 812 * 0) Except in the case of absolute or indirect jump or call instructions, 813 * the new ip is relative to the copied instruction. We need to make 814 * it relative to the original instruction. 815 * 816 * 1) If the single-stepped instruction was pushfl, then the TF and IF 817 * flags are set in the just-pushed flags, and may need to be cleared. 818 * 819 * 2) If the single-stepped instruction was a call, the return address 820 * that is atop the stack is the address following the copied instruction. 821 * We need to make it the address following the original instruction. 822 * 823 * If this is the first time we've single-stepped the instruction at 824 * this probepoint, and the instruction is boostable, boost it: add a 825 * jump instruction after the copied instruction, that jumps to the next 826 * instruction after the probepoint. 827 */ 828 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 829 struct kprobe_ctlblk *kcb) 830 { 831 unsigned long *tos = stack_addr(regs); 832 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 833 unsigned long orig_ip = (unsigned long)p->addr; 834 kprobe_opcode_t *insn = p->ainsn.insn; 835 836 /* Skip prefixes */ 837 insn = skip_prefixes(insn); 838 839 regs->flags &= ~X86_EFLAGS_TF; 840 switch (*insn) { 841 case 0x9c: /* pushfl */ 842 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 843 *tos |= kcb->kprobe_old_flags; 844 break; 845 case 0xc2: /* iret/ret/lret */ 846 case 0xc3: 847 case 0xca: 848 case 0xcb: 849 case 0xcf: 850 case 0xea: /* jmp absolute -- ip is correct */ 851 /* ip is already adjusted, no more changes required */ 852 p->ainsn.boostable = 1; 853 goto no_change; 854 case 0xe8: /* call relative - Fix return addr */ 855 *tos = orig_ip + (*tos - copy_ip); 856 break; 857 #ifdef CONFIG_X86_32 858 case 0x9a: /* call absolute -- same as call absolute, indirect */ 859 *tos = orig_ip + (*tos - copy_ip); 860 goto no_change; 861 #endif 862 case 0xff: 863 if ((insn[1] & 0x30) == 0x10) { 864 /* 865 * call absolute, indirect 866 * Fix return addr; ip is correct. 867 * But this is not boostable 868 */ 869 *tos = orig_ip + (*tos - copy_ip); 870 goto no_change; 871 } else if (((insn[1] & 0x31) == 0x20) || 872 ((insn[1] & 0x31) == 0x21)) { 873 /* 874 * jmp near and far, absolute indirect 875 * ip is correct. And this is boostable 876 */ 877 p->ainsn.boostable = 1; 878 goto no_change; 879 } 880 default: 881 break; 882 } 883 884 if (p->ainsn.boostable == 0) { 885 if ((regs->ip > copy_ip) && 886 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 887 /* 888 * These instructions can be executed directly if it 889 * jumps back to correct address. 890 */ 891 synthesize_reljump((void *)regs->ip, 892 (void *)orig_ip + (regs->ip - copy_ip)); 893 p->ainsn.boostable = 1; 894 } else { 895 p->ainsn.boostable = -1; 896 } 897 } 898 899 regs->ip += orig_ip - copy_ip; 900 901 no_change: 902 restore_btf(); 903 } 904 NOKPROBE_SYMBOL(resume_execution); 905 906 /* 907 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 908 * remain disabled throughout this function. 909 */ 910 int kprobe_debug_handler(struct pt_regs *regs) 911 { 912 struct kprobe *cur = kprobe_running(); 913 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 914 915 if (!cur) 916 return 0; 917 918 resume_execution(cur, regs, kcb); 919 regs->flags |= kcb->kprobe_saved_flags; 920 921 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 922 kcb->kprobe_status = KPROBE_HIT_SSDONE; 923 cur->post_handler(cur, regs, 0); 924 } 925 926 /* Restore back the original saved kprobes variables and continue. */ 927 if (kcb->kprobe_status == KPROBE_REENTER) { 928 restore_previous_kprobe(kcb); 929 goto out; 930 } 931 reset_current_kprobe(); 932 out: 933 preempt_enable_no_resched(); 934 935 /* 936 * if somebody else is singlestepping across a probe point, flags 937 * will have TF set, in which case, continue the remaining processing 938 * of do_debug, as if this is not a probe hit. 939 */ 940 if (regs->flags & X86_EFLAGS_TF) 941 return 0; 942 943 return 1; 944 } 945 NOKPROBE_SYMBOL(kprobe_debug_handler); 946 947 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 948 { 949 struct kprobe *cur = kprobe_running(); 950 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 951 952 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 953 /* This must happen on single-stepping */ 954 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 955 kcb->kprobe_status != KPROBE_REENTER); 956 /* 957 * We are here because the instruction being single 958 * stepped caused a page fault. We reset the current 959 * kprobe and the ip points back to the probe address 960 * and allow the page fault handler to continue as a 961 * normal page fault. 962 */ 963 regs->ip = (unsigned long)cur->addr; 964 regs->flags |= kcb->kprobe_old_flags; 965 if (kcb->kprobe_status == KPROBE_REENTER) 966 restore_previous_kprobe(kcb); 967 else 968 reset_current_kprobe(); 969 preempt_enable_no_resched(); 970 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 971 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 972 /* 973 * We increment the nmissed count for accounting, 974 * we can also use npre/npostfault count for accounting 975 * these specific fault cases. 976 */ 977 kprobes_inc_nmissed_count(cur); 978 979 /* 980 * We come here because instructions in the pre/post 981 * handler caused the page_fault, this could happen 982 * if handler tries to access user space by 983 * copy_from_user(), get_user() etc. Let the 984 * user-specified handler try to fix it first. 985 */ 986 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 987 return 1; 988 989 /* 990 * In case the user-specified fault handler returned 991 * zero, try to fix up. 992 */ 993 if (fixup_exception(regs, trapnr)) 994 return 1; 995 996 /* 997 * fixup routine could not handle it, 998 * Let do_page_fault() fix it. 999 */ 1000 } 1001 1002 return 0; 1003 } 1004 NOKPROBE_SYMBOL(kprobe_fault_handler); 1005 1006 /* 1007 * Wrapper routine for handling exceptions. 1008 */ 1009 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1010 void *data) 1011 { 1012 struct die_args *args = data; 1013 int ret = NOTIFY_DONE; 1014 1015 if (args->regs && user_mode(args->regs)) 1016 return ret; 1017 1018 if (val == DIE_GPF) { 1019 /* 1020 * To be potentially processing a kprobe fault and to 1021 * trust the result from kprobe_running(), we have 1022 * be non-preemptible. 1023 */ 1024 if (!preemptible() && kprobe_running() && 1025 kprobe_fault_handler(args->regs, args->trapnr)) 1026 ret = NOTIFY_STOP; 1027 } 1028 return ret; 1029 } 1030 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1031 1032 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1033 { 1034 struct jprobe *jp = container_of(p, struct jprobe, kp); 1035 unsigned long addr; 1036 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1037 1038 kcb->jprobe_saved_regs = *regs; 1039 kcb->jprobe_saved_sp = stack_addr(regs); 1040 addr = (unsigned long)(kcb->jprobe_saved_sp); 1041 1042 /* 1043 * As Linus pointed out, gcc assumes that the callee 1044 * owns the argument space and could overwrite it, e.g. 1045 * tailcall optimization. So, to be absolutely safe 1046 * we also save and restore enough stack bytes to cover 1047 * the argument area. 1048 */ 1049 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, 1050 MIN_STACK_SIZE(addr)); 1051 regs->flags &= ~X86_EFLAGS_IF; 1052 trace_hardirqs_off(); 1053 regs->ip = (unsigned long)(jp->entry); 1054 1055 /* 1056 * jprobes use jprobe_return() which skips the normal return 1057 * path of the function, and this messes up the accounting of the 1058 * function graph tracer to get messed up. 1059 * 1060 * Pause function graph tracing while performing the jprobe function. 1061 */ 1062 pause_graph_tracing(); 1063 return 1; 1064 } 1065 NOKPROBE_SYMBOL(setjmp_pre_handler); 1066 1067 void jprobe_return(void) 1068 { 1069 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1070 1071 asm volatile ( 1072 #ifdef CONFIG_X86_64 1073 " xchg %%rbx,%%rsp \n" 1074 #else 1075 " xchgl %%ebx,%%esp \n" 1076 #endif 1077 " int3 \n" 1078 " .globl jprobe_return_end\n" 1079 " jprobe_return_end: \n" 1080 " nop \n"::"b" 1081 (kcb->jprobe_saved_sp):"memory"); 1082 } 1083 NOKPROBE_SYMBOL(jprobe_return); 1084 NOKPROBE_SYMBOL(jprobe_return_end); 1085 1086 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1087 { 1088 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1089 u8 *addr = (u8 *) (regs->ip - 1); 1090 struct jprobe *jp = container_of(p, struct jprobe, kp); 1091 void *saved_sp = kcb->jprobe_saved_sp; 1092 1093 if ((addr > (u8 *) jprobe_return) && 1094 (addr < (u8 *) jprobe_return_end)) { 1095 if (stack_addr(regs) != saved_sp) { 1096 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1097 printk(KERN_ERR 1098 "current sp %p does not match saved sp %p\n", 1099 stack_addr(regs), saved_sp); 1100 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1101 show_regs(saved_regs); 1102 printk(KERN_ERR "Current registers\n"); 1103 show_regs(regs); 1104 BUG(); 1105 } 1106 /* It's OK to start function graph tracing again */ 1107 unpause_graph_tracing(); 1108 *regs = kcb->jprobe_saved_regs; 1109 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1110 preempt_enable_no_resched(); 1111 return 1; 1112 } 1113 return 0; 1114 } 1115 NOKPROBE_SYMBOL(longjmp_break_handler); 1116 1117 bool arch_within_kprobe_blacklist(unsigned long addr) 1118 { 1119 return (addr >= (unsigned long)__kprobes_text_start && 1120 addr < (unsigned long)__kprobes_text_end) || 1121 (addr >= (unsigned long)__entry_text_start && 1122 addr < (unsigned long)__entry_text_end); 1123 } 1124 1125 int __init arch_init_kprobes(void) 1126 { 1127 return 0; 1128 } 1129 1130 int arch_trampoline_kprobe(struct kprobe *p) 1131 { 1132 return 0; 1133 } 1134