xref: /linux/arch/x86/kernel/kgdb.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/nmi.h>
45 #include <linux/hw_breakpoint.h>
46 
47 #include <asm/debugreg.h>
48 #include <asm/apicdef.h>
49 #include <asm/apic.h>
50 #include <asm/nmi.h>
51 
52 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
53 {
54 #ifdef CONFIG_X86_32
55 	{ "ax", 4, offsetof(struct pt_regs, ax) },
56 	{ "cx", 4, offsetof(struct pt_regs, cx) },
57 	{ "dx", 4, offsetof(struct pt_regs, dx) },
58 	{ "bx", 4, offsetof(struct pt_regs, bx) },
59 	{ "sp", 4, offsetof(struct pt_regs, sp) },
60 	{ "bp", 4, offsetof(struct pt_regs, bp) },
61 	{ "si", 4, offsetof(struct pt_regs, si) },
62 	{ "di", 4, offsetof(struct pt_regs, di) },
63 	{ "ip", 4, offsetof(struct pt_regs, ip) },
64 	{ "flags", 4, offsetof(struct pt_regs, flags) },
65 	{ "cs", 4, offsetof(struct pt_regs, cs) },
66 	{ "ss", 4, offsetof(struct pt_regs, ss) },
67 	{ "ds", 4, offsetof(struct pt_regs, ds) },
68 	{ "es", 4, offsetof(struct pt_regs, es) },
69 	{ "fs", 4, -1 },
70 	{ "gs", 4, -1 },
71 #else
72 	{ "ax", 8, offsetof(struct pt_regs, ax) },
73 	{ "bx", 8, offsetof(struct pt_regs, bx) },
74 	{ "cx", 8, offsetof(struct pt_regs, cx) },
75 	{ "dx", 8, offsetof(struct pt_regs, dx) },
76 	{ "si", 8, offsetof(struct pt_regs, dx) },
77 	{ "di", 8, offsetof(struct pt_regs, di) },
78 	{ "bp", 8, offsetof(struct pt_regs, bp) },
79 	{ "sp", 8, offsetof(struct pt_regs, sp) },
80 	{ "r8", 8, offsetof(struct pt_regs, r8) },
81 	{ "r9", 8, offsetof(struct pt_regs, r9) },
82 	{ "r10", 8, offsetof(struct pt_regs, r10) },
83 	{ "r11", 8, offsetof(struct pt_regs, r11) },
84 	{ "r12", 8, offsetof(struct pt_regs, r12) },
85 	{ "r13", 8, offsetof(struct pt_regs, r13) },
86 	{ "r14", 8, offsetof(struct pt_regs, r14) },
87 	{ "r15", 8, offsetof(struct pt_regs, r15) },
88 	{ "ip", 8, offsetof(struct pt_regs, ip) },
89 	{ "flags", 4, offsetof(struct pt_regs, flags) },
90 	{ "cs", 4, offsetof(struct pt_regs, cs) },
91 	{ "ss", 4, offsetof(struct pt_regs, ss) },
92 #endif
93 };
94 
95 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
96 {
97 	if (
98 #ifdef CONFIG_X86_32
99 	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
100 #endif
101 	    regno == GDB_SP || regno == GDB_ORIG_AX)
102 		return 0;
103 
104 	if (dbg_reg_def[regno].offset != -1)
105 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
106 		       dbg_reg_def[regno].size);
107 	return 0;
108 }
109 
110 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
111 {
112 	if (regno == GDB_ORIG_AX) {
113 		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
114 		return "orig_ax";
115 	}
116 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
117 		return NULL;
118 
119 	if (dbg_reg_def[regno].offset != -1)
120 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
121 		       dbg_reg_def[regno].size);
122 
123 #ifdef CONFIG_X86_32
124 	switch (regno) {
125 	case GDB_SS:
126 		if (!user_mode_vm(regs))
127 			*(unsigned long *)mem = __KERNEL_DS;
128 		break;
129 	case GDB_SP:
130 		if (!user_mode_vm(regs))
131 			*(unsigned long *)mem = kernel_stack_pointer(regs);
132 		break;
133 	case GDB_GS:
134 	case GDB_FS:
135 		*(unsigned long *)mem = 0xFFFF;
136 		break;
137 	}
138 #endif
139 	return dbg_reg_def[regno].name;
140 }
141 
142 /**
143  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
144  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
145  *	@p: The &struct task_struct of the desired process.
146  *
147  *	Convert the register values of the sleeping process in @p to
148  *	the format that GDB expects.
149  *	This function is called when kgdb does not have access to the
150  *	&struct pt_regs and therefore it should fill the gdb registers
151  *	@gdb_regs with what has	been saved in &struct thread_struct
152  *	thread field during switch_to.
153  */
154 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
155 {
156 #ifndef CONFIG_X86_32
157 	u32 *gdb_regs32 = (u32 *)gdb_regs;
158 #endif
159 	gdb_regs[GDB_AX]	= 0;
160 	gdb_regs[GDB_BX]	= 0;
161 	gdb_regs[GDB_CX]	= 0;
162 	gdb_regs[GDB_DX]	= 0;
163 	gdb_regs[GDB_SI]	= 0;
164 	gdb_regs[GDB_DI]	= 0;
165 	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
166 #ifdef CONFIG_X86_32
167 	gdb_regs[GDB_DS]	= __KERNEL_DS;
168 	gdb_regs[GDB_ES]	= __KERNEL_DS;
169 	gdb_regs[GDB_PS]	= 0;
170 	gdb_regs[GDB_CS]	= __KERNEL_CS;
171 	gdb_regs[GDB_PC]	= p->thread.ip;
172 	gdb_regs[GDB_SS]	= __KERNEL_DS;
173 	gdb_regs[GDB_FS]	= 0xFFFF;
174 	gdb_regs[GDB_GS]	= 0xFFFF;
175 #else
176 	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
177 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
178 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
179 	gdb_regs[GDB_PC]	= 0;
180 	gdb_regs[GDB_R8]	= 0;
181 	gdb_regs[GDB_R9]	= 0;
182 	gdb_regs[GDB_R10]	= 0;
183 	gdb_regs[GDB_R11]	= 0;
184 	gdb_regs[GDB_R12]	= 0;
185 	gdb_regs[GDB_R13]	= 0;
186 	gdb_regs[GDB_R14]	= 0;
187 	gdb_regs[GDB_R15]	= 0;
188 #endif
189 	gdb_regs[GDB_SP]	= p->thread.sp;
190 }
191 
192 static struct hw_breakpoint {
193 	unsigned		enabled;
194 	unsigned long		addr;
195 	int			len;
196 	int			type;
197 	struct perf_event	* __percpu *pev;
198 } breakinfo[HBP_NUM];
199 
200 static unsigned long early_dr7;
201 
202 static void kgdb_correct_hw_break(void)
203 {
204 	int breakno;
205 
206 	for (breakno = 0; breakno < HBP_NUM; breakno++) {
207 		struct perf_event *bp;
208 		struct arch_hw_breakpoint *info;
209 		int val;
210 		int cpu = raw_smp_processor_id();
211 		if (!breakinfo[breakno].enabled)
212 			continue;
213 		if (dbg_is_early) {
214 			set_debugreg(breakinfo[breakno].addr, breakno);
215 			early_dr7 |= encode_dr7(breakno,
216 						breakinfo[breakno].len,
217 						breakinfo[breakno].type);
218 			set_debugreg(early_dr7, 7);
219 			continue;
220 		}
221 		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
222 		info = counter_arch_bp(bp);
223 		if (bp->attr.disabled != 1)
224 			continue;
225 		bp->attr.bp_addr = breakinfo[breakno].addr;
226 		bp->attr.bp_len = breakinfo[breakno].len;
227 		bp->attr.bp_type = breakinfo[breakno].type;
228 		info->address = breakinfo[breakno].addr;
229 		info->len = breakinfo[breakno].len;
230 		info->type = breakinfo[breakno].type;
231 		val = arch_install_hw_breakpoint(bp);
232 		if (!val)
233 			bp->attr.disabled = 0;
234 	}
235 	if (!dbg_is_early)
236 		hw_breakpoint_restore();
237 }
238 
239 static int hw_break_reserve_slot(int breakno)
240 {
241 	int cpu;
242 	int cnt = 0;
243 	struct perf_event **pevent;
244 
245 	if (dbg_is_early)
246 		return 0;
247 
248 	for_each_online_cpu(cpu) {
249 		cnt++;
250 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
251 		if (dbg_reserve_bp_slot(*pevent))
252 			goto fail;
253 	}
254 
255 	return 0;
256 
257 fail:
258 	for_each_online_cpu(cpu) {
259 		cnt--;
260 		if (!cnt)
261 			break;
262 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
263 		dbg_release_bp_slot(*pevent);
264 	}
265 	return -1;
266 }
267 
268 static int hw_break_release_slot(int breakno)
269 {
270 	struct perf_event **pevent;
271 	int cpu;
272 
273 	if (dbg_is_early)
274 		return 0;
275 
276 	for_each_online_cpu(cpu) {
277 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
278 		if (dbg_release_bp_slot(*pevent))
279 			/*
280 			 * The debugger is responsible for handing the retry on
281 			 * remove failure.
282 			 */
283 			return -1;
284 	}
285 	return 0;
286 }
287 
288 static int
289 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
290 {
291 	int i;
292 
293 	for (i = 0; i < HBP_NUM; i++)
294 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
295 			break;
296 	if (i == HBP_NUM)
297 		return -1;
298 
299 	if (hw_break_release_slot(i)) {
300 		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
301 		return -1;
302 	}
303 	breakinfo[i].enabled = 0;
304 
305 	return 0;
306 }
307 
308 static void kgdb_remove_all_hw_break(void)
309 {
310 	int i;
311 	int cpu = raw_smp_processor_id();
312 	struct perf_event *bp;
313 
314 	for (i = 0; i < HBP_NUM; i++) {
315 		if (!breakinfo[i].enabled)
316 			continue;
317 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
318 		if (!bp->attr.disabled) {
319 			arch_uninstall_hw_breakpoint(bp);
320 			bp->attr.disabled = 1;
321 			continue;
322 		}
323 		if (dbg_is_early)
324 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
325 						 breakinfo[i].type);
326 		else if (hw_break_release_slot(i))
327 			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
328 			       breakinfo[i].addr);
329 		breakinfo[i].enabled = 0;
330 	}
331 }
332 
333 static int
334 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
335 {
336 	int i;
337 
338 	for (i = 0; i < HBP_NUM; i++)
339 		if (!breakinfo[i].enabled)
340 			break;
341 	if (i == HBP_NUM)
342 		return -1;
343 
344 	switch (bptype) {
345 	case BP_HARDWARE_BREAKPOINT:
346 		len = 1;
347 		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
348 		break;
349 	case BP_WRITE_WATCHPOINT:
350 		breakinfo[i].type = X86_BREAKPOINT_WRITE;
351 		break;
352 	case BP_ACCESS_WATCHPOINT:
353 		breakinfo[i].type = X86_BREAKPOINT_RW;
354 		break;
355 	default:
356 		return -1;
357 	}
358 	switch (len) {
359 	case 1:
360 		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
361 		break;
362 	case 2:
363 		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
364 		break;
365 	case 4:
366 		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
367 		break;
368 #ifdef CONFIG_X86_64
369 	case 8:
370 		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
371 		break;
372 #endif
373 	default:
374 		return -1;
375 	}
376 	breakinfo[i].addr = addr;
377 	if (hw_break_reserve_slot(i)) {
378 		breakinfo[i].addr = 0;
379 		return -1;
380 	}
381 	breakinfo[i].enabled = 1;
382 
383 	return 0;
384 }
385 
386 /**
387  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
388  *	@regs: Current &struct pt_regs.
389  *
390  *	This function will be called if the particular architecture must
391  *	disable hardware debugging while it is processing gdb packets or
392  *	handling exception.
393  */
394 static void kgdb_disable_hw_debug(struct pt_regs *regs)
395 {
396 	int i;
397 	int cpu = raw_smp_processor_id();
398 	struct perf_event *bp;
399 
400 	/* Disable hardware debugging while we are in kgdb: */
401 	set_debugreg(0UL, 7);
402 	for (i = 0; i < HBP_NUM; i++) {
403 		if (!breakinfo[i].enabled)
404 			continue;
405 		if (dbg_is_early) {
406 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
407 						 breakinfo[i].type);
408 			continue;
409 		}
410 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
411 		if (bp->attr.disabled == 1)
412 			continue;
413 		arch_uninstall_hw_breakpoint(bp);
414 		bp->attr.disabled = 1;
415 	}
416 }
417 
418 #ifdef CONFIG_SMP
419 /**
420  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
421  *	@flags: Current IRQ state
422  *
423  *	On SMP systems, we need to get the attention of the other CPUs
424  *	and get them be in a known state.  This should do what is needed
425  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
426  *	the NMI approach is not used for rounding up all the CPUs. For example,
427  *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
428  *	this case, we have to make sure that interrupts are enabled before
429  *	calling smp_call_function(). The argument to this function is
430  *	the flags that will be used when restoring the interrupts. There is
431  *	local_irq_save() call before kgdb_roundup_cpus().
432  *
433  *	On non-SMP systems, this is not called.
434  */
435 void kgdb_roundup_cpus(unsigned long flags)
436 {
437 	apic->send_IPI_allbutself(APIC_DM_NMI);
438 }
439 #endif
440 
441 /**
442  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
443  *	@vector: The error vector of the exception that happened.
444  *	@signo: The signal number of the exception that happened.
445  *	@err_code: The error code of the exception that happened.
446  *	@remcom_in_buffer: The buffer of the packet we have read.
447  *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
448  *	@regs: The &struct pt_regs of the current process.
449  *
450  *	This function MUST handle the 'c' and 's' command packets,
451  *	as well packets to set / remove a hardware breakpoint, if used.
452  *	If there are additional packets which the hardware needs to handle,
453  *	they are handled here.  The code should return -1 if it wants to
454  *	process more packets, and a %0 or %1 if it wants to exit from the
455  *	kgdb callback.
456  */
457 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
458 			       char *remcomInBuffer, char *remcomOutBuffer,
459 			       struct pt_regs *linux_regs)
460 {
461 	unsigned long addr;
462 	char *ptr;
463 
464 	switch (remcomInBuffer[0]) {
465 	case 'c':
466 	case 's':
467 		/* try to read optional parameter, pc unchanged if no parm */
468 		ptr = &remcomInBuffer[1];
469 		if (kgdb_hex2long(&ptr, &addr))
470 			linux_regs->ip = addr;
471 	case 'D':
472 	case 'k':
473 		/* clear the trace bit */
474 		linux_regs->flags &= ~X86_EFLAGS_TF;
475 		atomic_set(&kgdb_cpu_doing_single_step, -1);
476 
477 		/* set the trace bit if we're stepping */
478 		if (remcomInBuffer[0] == 's') {
479 			linux_regs->flags |= X86_EFLAGS_TF;
480 			atomic_set(&kgdb_cpu_doing_single_step,
481 				   raw_smp_processor_id());
482 		}
483 
484 		return 0;
485 	}
486 
487 	/* this means that we do not want to exit from the handler: */
488 	return -1;
489 }
490 
491 static inline int
492 single_step_cont(struct pt_regs *regs, struct die_args *args)
493 {
494 	/*
495 	 * Single step exception from kernel space to user space so
496 	 * eat the exception and continue the process:
497 	 */
498 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
499 			"resuming...\n");
500 	kgdb_arch_handle_exception(args->trapnr, args->signr,
501 				   args->err, "c", "", regs);
502 	/*
503 	 * Reset the BS bit in dr6 (pointed by args->err) to
504 	 * denote completion of processing
505 	 */
506 	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
507 
508 	return NOTIFY_STOP;
509 }
510 
511 static int was_in_debug_nmi[NR_CPUS];
512 
513 static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
514 {
515 	switch (cmd) {
516 	case NMI_LOCAL:
517 		if (atomic_read(&kgdb_active) != -1) {
518 			/* KGDB CPU roundup */
519 			kgdb_nmicallback(raw_smp_processor_id(), regs);
520 			was_in_debug_nmi[raw_smp_processor_id()] = 1;
521 			touch_nmi_watchdog();
522 			return NMI_HANDLED;
523 		}
524 		break;
525 
526 	case NMI_UNKNOWN:
527 		if (was_in_debug_nmi[raw_smp_processor_id()]) {
528 			was_in_debug_nmi[raw_smp_processor_id()] = 0;
529 			return NMI_HANDLED;
530 		}
531 		break;
532 	default:
533 		/* do nothing */
534 		break;
535 	}
536 	return NMI_DONE;
537 }
538 
539 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
540 {
541 	struct pt_regs *regs = args->regs;
542 
543 	switch (cmd) {
544 	case DIE_DEBUG:
545 		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
546 			if (user_mode(regs))
547 				return single_step_cont(regs, args);
548 			break;
549 		} else if (test_thread_flag(TIF_SINGLESTEP))
550 			/* This means a user thread is single stepping
551 			 * a system call which should be ignored
552 			 */
553 			return NOTIFY_DONE;
554 		/* fall through */
555 	default:
556 		if (user_mode(regs))
557 			return NOTIFY_DONE;
558 	}
559 
560 	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
561 		return NOTIFY_DONE;
562 
563 	/* Must touch watchdog before return to normal operation */
564 	touch_nmi_watchdog();
565 	return NOTIFY_STOP;
566 }
567 
568 int kgdb_ll_trap(int cmd, const char *str,
569 		 struct pt_regs *regs, long err, int trap, int sig)
570 {
571 	struct die_args args = {
572 		.regs	= regs,
573 		.str	= str,
574 		.err	= err,
575 		.trapnr	= trap,
576 		.signr	= sig,
577 
578 	};
579 
580 	if (!kgdb_io_module_registered)
581 		return NOTIFY_DONE;
582 
583 	return __kgdb_notify(&args, cmd);
584 }
585 
586 static int
587 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
588 {
589 	unsigned long flags;
590 	int ret;
591 
592 	local_irq_save(flags);
593 	ret = __kgdb_notify(ptr, cmd);
594 	local_irq_restore(flags);
595 
596 	return ret;
597 }
598 
599 static struct notifier_block kgdb_notifier = {
600 	.notifier_call	= kgdb_notify,
601 };
602 
603 /**
604  *	kgdb_arch_init - Perform any architecture specific initalization.
605  *
606  *	This function will handle the initalization of any architecture
607  *	specific callbacks.
608  */
609 int kgdb_arch_init(void)
610 {
611 	int retval;
612 
613 	retval = register_die_notifier(&kgdb_notifier);
614 	if (retval)
615 		goto out;
616 
617 	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
618 					0, "kgdb");
619 	if (retval)
620 		goto out1;
621 
622 	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
623 					0, "kgdb");
624 
625 	if (retval)
626 		goto out2;
627 
628 	return retval;
629 
630 out2:
631 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
632 out1:
633 	unregister_die_notifier(&kgdb_notifier);
634 out:
635 	return retval;
636 }
637 
638 static void kgdb_hw_overflow_handler(struct perf_event *event,
639 		struct perf_sample_data *data, struct pt_regs *regs)
640 {
641 	struct task_struct *tsk = current;
642 	int i;
643 
644 	for (i = 0; i < 4; i++)
645 		if (breakinfo[i].enabled)
646 			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
647 }
648 
649 void kgdb_arch_late(void)
650 {
651 	int i, cpu;
652 	struct perf_event_attr attr;
653 	struct perf_event **pevent;
654 
655 	/*
656 	 * Pre-allocate the hw breakpoint structions in the non-atomic
657 	 * portion of kgdb because this operation requires mutexs to
658 	 * complete.
659 	 */
660 	hw_breakpoint_init(&attr);
661 	attr.bp_addr = (unsigned long)kgdb_arch_init;
662 	attr.bp_len = HW_BREAKPOINT_LEN_1;
663 	attr.bp_type = HW_BREAKPOINT_W;
664 	attr.disabled = 1;
665 	for (i = 0; i < HBP_NUM; i++) {
666 		if (breakinfo[i].pev)
667 			continue;
668 		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
669 		if (IS_ERR((void * __force)breakinfo[i].pev)) {
670 			printk(KERN_ERR "kgdb: Could not allocate hw"
671 			       "breakpoints\nDisabling the kernel debugger\n");
672 			breakinfo[i].pev = NULL;
673 			kgdb_arch_exit();
674 			return;
675 		}
676 		for_each_online_cpu(cpu) {
677 			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
678 			pevent[0]->hw.sample_period = 1;
679 			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
680 			if (pevent[0]->destroy != NULL) {
681 				pevent[0]->destroy = NULL;
682 				release_bp_slot(*pevent);
683 			}
684 		}
685 	}
686 }
687 
688 /**
689  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
690  *
691  *	This function will handle the uninitalization of any architecture
692  *	specific callbacks, for dynamic registration and unregistration.
693  */
694 void kgdb_arch_exit(void)
695 {
696 	int i;
697 	for (i = 0; i < 4; i++) {
698 		if (breakinfo[i].pev) {
699 			unregister_wide_hw_breakpoint(breakinfo[i].pev);
700 			breakinfo[i].pev = NULL;
701 		}
702 	}
703 	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
704 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
705 	unregister_die_notifier(&kgdb_notifier);
706 }
707 
708 /**
709  *
710  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
711  *	@exception: Exception vector number
712  *	@regs: Current &struct pt_regs.
713  *
714  *	On some architectures we need to skip a breakpoint exception when
715  *	it occurs after a breakpoint has been removed.
716  *
717  * Skip an int3 exception when it occurs after a breakpoint has been
718  * removed. Backtrack eip by 1 since the int3 would have caused it to
719  * increment by 1.
720  */
721 int kgdb_skipexception(int exception, struct pt_regs *regs)
722 {
723 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
724 		regs->ip -= 1;
725 		return 1;
726 	}
727 	return 0;
728 }
729 
730 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
731 {
732 	if (exception == 3)
733 		return instruction_pointer(regs) - 1;
734 	return instruction_pointer(regs);
735 }
736 
737 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
738 {
739 	regs->ip = ip;
740 }
741 
742 struct kgdb_arch arch_kgdb_ops = {
743 	/* Breakpoint instruction: */
744 	.gdb_bpt_instr		= { 0xcc },
745 	.flags			= KGDB_HW_BREAKPOINT,
746 	.set_hw_breakpoint	= kgdb_set_hw_break,
747 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
748 	.disable_hw_break	= kgdb_disable_hw_debug,
749 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
750 	.correct_hw_break	= kgdb_correct_hw_break,
751 };
752