xref: /linux/arch/x86/kernel/irq_32.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
3  *
4  * This file contains the lowest level x86-specific interrupt
5  * entry, irq-stacks and irq statistics code. All the remaining
6  * irq logic is done by the generic kernel/irq/ code and
7  * by the x86-specific irq controller code. (e.g. i8259.c and
8  * io_apic.c.)
9  */
10 
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
18 
19 #include <asm/apic.h>
20 #include <asm/uaccess.h>
21 
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
24 
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
27 
28 #ifdef CONFIG_DEBUG_STACKOVERFLOW
29 /* Debugging check for stack overflow: is there less than 1KB free? */
30 static int check_stack_overflow(void)
31 {
32 	long sp;
33 
34 	__asm__ __volatile__("andl %%esp,%0" :
35 			     "=r" (sp) : "0" (THREAD_SIZE - 1));
36 
37 	return sp < (sizeof(struct thread_info) + STACK_WARN);
38 }
39 
40 static void print_stack_overflow(void)
41 {
42 	printk(KERN_WARNING "low stack detected by irq handler\n");
43 	dump_stack();
44 }
45 
46 #else
47 static inline int check_stack_overflow(void) { return 0; }
48 static inline void print_stack_overflow(void) { }
49 #endif
50 
51 #ifdef CONFIG_4KSTACKS
52 /*
53  * per-CPU IRQ handling contexts (thread information and stack)
54  */
55 union irq_ctx {
56 	struct thread_info      tinfo;
57 	u32                     stack[THREAD_SIZE/sizeof(u32)];
58 };
59 
60 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
61 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
62 
63 static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
64 static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
65 
66 static void call_on_stack(void *func, void *stack)
67 {
68 	asm volatile("xchgl	%%ebx,%%esp	\n"
69 		     "call	*%%edi		\n"
70 		     "movl	%%ebx,%%esp	\n"
71 		     : "=b" (stack)
72 		     : "0" (stack),
73 		       "D"(func)
74 		     : "memory", "cc", "edx", "ecx", "eax");
75 }
76 
77 static inline int
78 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
79 {
80 	union irq_ctx *curctx, *irqctx;
81 	u32 *isp, arg1, arg2;
82 
83 	curctx = (union irq_ctx *) current_thread_info();
84 	irqctx = hardirq_ctx[smp_processor_id()];
85 
86 	/*
87 	 * this is where we switch to the IRQ stack. However, if we are
88 	 * already using the IRQ stack (because we interrupted a hardirq
89 	 * handler) we can't do that and just have to keep using the
90 	 * current stack (which is the irq stack already after all)
91 	 */
92 	if (unlikely(curctx == irqctx))
93 		return 0;
94 
95 	/* build the stack frame on the IRQ stack */
96 	isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
97 	irqctx->tinfo.task = curctx->tinfo.task;
98 	irqctx->tinfo.previous_esp = current_stack_pointer;
99 
100 	/*
101 	 * Copy the softirq bits in preempt_count so that the
102 	 * softirq checks work in the hardirq context.
103 	 */
104 	irqctx->tinfo.preempt_count =
105 		(irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
106 		(curctx->tinfo.preempt_count & SOFTIRQ_MASK);
107 
108 	if (unlikely(overflow))
109 		call_on_stack(print_stack_overflow, isp);
110 
111 	asm volatile("xchgl	%%ebx,%%esp	\n"
112 		     "call	*%%edi		\n"
113 		     "movl	%%ebx,%%esp	\n"
114 		     : "=a" (arg1), "=d" (arg2), "=b" (isp)
115 		     :  "0" (irq),   "1" (desc),  "2" (isp),
116 			"D" (desc->handle_irq)
117 		     : "memory", "cc", "ecx");
118 	return 1;
119 }
120 
121 /*
122  * allocate per-cpu stacks for hardirq and for softirq processing
123  */
124 void __cpuinit irq_ctx_init(int cpu)
125 {
126 	union irq_ctx *irqctx;
127 
128 	if (hardirq_ctx[cpu])
129 		return;
130 
131 	irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
132 	irqctx->tinfo.task		= NULL;
133 	irqctx->tinfo.exec_domain	= NULL;
134 	irqctx->tinfo.cpu		= cpu;
135 	irqctx->tinfo.preempt_count	= HARDIRQ_OFFSET;
136 	irqctx->tinfo.addr_limit	= MAKE_MM_SEG(0);
137 
138 	hardirq_ctx[cpu] = irqctx;
139 
140 	irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
141 	irqctx->tinfo.task		= NULL;
142 	irqctx->tinfo.exec_domain	= NULL;
143 	irqctx->tinfo.cpu		= cpu;
144 	irqctx->tinfo.preempt_count	= 0;
145 	irqctx->tinfo.addr_limit	= MAKE_MM_SEG(0);
146 
147 	softirq_ctx[cpu] = irqctx;
148 
149 	printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
150 	       cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
151 }
152 
153 void irq_ctx_exit(int cpu)
154 {
155 	hardirq_ctx[cpu] = NULL;
156 }
157 
158 asmlinkage void do_softirq(void)
159 {
160 	unsigned long flags;
161 	struct thread_info *curctx;
162 	union irq_ctx *irqctx;
163 	u32 *isp;
164 
165 	if (in_interrupt())
166 		return;
167 
168 	local_irq_save(flags);
169 
170 	if (local_softirq_pending()) {
171 		curctx = current_thread_info();
172 		irqctx = softirq_ctx[smp_processor_id()];
173 		irqctx->tinfo.task = curctx->task;
174 		irqctx->tinfo.previous_esp = current_stack_pointer;
175 
176 		/* build the stack frame on the softirq stack */
177 		isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
178 
179 		call_on_stack(__do_softirq, isp);
180 		/*
181 		 * Shouldnt happen, we returned above if in_interrupt():
182 		 */
183 		WARN_ON_ONCE(softirq_count());
184 	}
185 
186 	local_irq_restore(flags);
187 }
188 
189 #else
190 static inline int
191 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
192 #endif
193 
194 /*
195  * do_IRQ handles all normal device IRQ's (the special
196  * SMP cross-CPU interrupts have their own specific
197  * handlers).
198  */
199 unsigned int do_IRQ(struct pt_regs *regs)
200 {
201 	struct pt_regs *old_regs;
202 	/* high bit used in ret_from_ code */
203 	int overflow;
204 	unsigned vector = ~regs->orig_ax;
205 	struct irq_desc *desc;
206 	unsigned irq;
207 
208 
209 	old_regs = set_irq_regs(regs);
210 	irq_enter();
211 	irq = __get_cpu_var(vector_irq)[vector];
212 
213 	overflow = check_stack_overflow();
214 
215 	desc = irq_to_desc(irq);
216 	if (unlikely(!desc)) {
217 		printk(KERN_EMERG "%s: cannot handle IRQ %d vector %#x cpu %d\n",
218 					__func__, irq, vector, smp_processor_id());
219 		BUG();
220 	}
221 
222 	if (!execute_on_irq_stack(overflow, desc, irq)) {
223 		if (unlikely(overflow))
224 			print_stack_overflow();
225 		desc->handle_irq(irq, desc);
226 	}
227 
228 	irq_exit();
229 	set_irq_regs(old_regs);
230 	return 1;
231 }
232 
233 #ifdef CONFIG_HOTPLUG_CPU
234 #include <mach_apic.h>
235 
236 void fixup_irqs(cpumask_t map)
237 {
238 	unsigned int irq;
239 	static int warned;
240 	struct irq_desc *desc;
241 
242 	for_each_irq_desc(irq, desc) {
243 		cpumask_t mask;
244 
245 		if (irq == 2)
246 			continue;
247 
248 		cpus_and(mask, desc->affinity, map);
249 		if (any_online_cpu(mask) == NR_CPUS) {
250 			printk("Breaking affinity for irq %i\n", irq);
251 			mask = map;
252 		}
253 		if (desc->chip->set_affinity)
254 			desc->chip->set_affinity(irq, mask);
255 		else if (desc->action && !(warned++))
256 			printk("Cannot set affinity for irq %i\n", irq);
257 	}
258 
259 #if 0
260 	barrier();
261 	/* Ingo Molnar says: "after the IO-APIC masks have been redirected
262 	   [note the nop - the interrupt-enable boundary on x86 is two
263 	   instructions from sti] - to flush out pending hardirqs and
264 	   IPIs. After this point nothing is supposed to reach this CPU." */
265 	__asm__ __volatile__("sti; nop; cli");
266 	barrier();
267 #else
268 	/* That doesn't seem sufficient.  Give it 1ms. */
269 	local_irq_enable();
270 	mdelay(1);
271 	local_irq_disable();
272 #endif
273 }
274 #endif
275 
276