xref: /linux/arch/x86/kernel/irq.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common interrupt code for 32 and 64 bit
4  */
5 #include <linux/cpu.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/of.h>
9 #include <linux/seq_file.h>
10 #include <linux/smp.h>
11 #include <linux/ftrace.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/irq.h>
15 
16 #include <asm/irq_stack.h>
17 #include <asm/apic.h>
18 #include <asm/io_apic.h>
19 #include <asm/irq.h>
20 #include <asm/mce.h>
21 #include <asm/hw_irq.h>
22 #include <asm/desc.h>
23 #include <asm/traps.h>
24 #include <asm/thermal.h>
25 #include <asm/posted_intr.h>
26 #include <asm/irq_remapping.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/irq_vectors.h>
30 
31 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
32 EXPORT_PER_CPU_SYMBOL(irq_stat);
33 
34 atomic_t irq_err_count;
35 
36 /*
37  * 'what should we do if we get a hw irq event on an illegal vector'.
38  * each architecture has to answer this themselves.
39  */
40 void ack_bad_irq(unsigned int irq)
41 {
42 	if (printk_ratelimit())
43 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
44 
45 	/*
46 	 * Currently unexpected vectors happen only on SMP and APIC.
47 	 * We _must_ ack these because every local APIC has only N
48 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
49 	 * holds up an irq slot - in excessive cases (when multiple
50 	 * unexpected vectors occur) that might lock up the APIC
51 	 * completely.
52 	 * But only ack when the APIC is enabled -AK
53 	 */
54 	apic_eoi();
55 }
56 
57 #define irq_stats(x)		(&per_cpu(irq_stat, x))
58 /*
59  * /proc/interrupts printing for arch specific interrupts
60  */
61 int arch_show_interrupts(struct seq_file *p, int prec)
62 {
63 	int j;
64 
65 	seq_printf(p, "%*s: ", prec, "NMI");
66 	for_each_online_cpu(j)
67 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68 	seq_puts(p, "  Non-maskable interrupts\n");
69 #ifdef CONFIG_X86_LOCAL_APIC
70 	seq_printf(p, "%*s: ", prec, "LOC");
71 	for_each_online_cpu(j)
72 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73 	seq_puts(p, "  Local timer interrupts\n");
74 
75 	seq_printf(p, "%*s: ", prec, "SPU");
76 	for_each_online_cpu(j)
77 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78 	seq_puts(p, "  Spurious interrupts\n");
79 	seq_printf(p, "%*s: ", prec, "PMI");
80 	for_each_online_cpu(j)
81 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82 	seq_puts(p, "  Performance monitoring interrupts\n");
83 	seq_printf(p, "%*s: ", prec, "IWI");
84 	for_each_online_cpu(j)
85 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86 	seq_puts(p, "  IRQ work interrupts\n");
87 	seq_printf(p, "%*s: ", prec, "RTR");
88 	for_each_online_cpu(j)
89 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90 	seq_puts(p, "  APIC ICR read retries\n");
91 	if (x86_platform_ipi_callback) {
92 		seq_printf(p, "%*s: ", prec, "PLT");
93 		for_each_online_cpu(j)
94 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
95 		seq_puts(p, "  Platform interrupts\n");
96 	}
97 #endif
98 #ifdef CONFIG_SMP
99 	seq_printf(p, "%*s: ", prec, "RES");
100 	for_each_online_cpu(j)
101 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102 	seq_puts(p, "  Rescheduling interrupts\n");
103 	seq_printf(p, "%*s: ", prec, "CAL");
104 	for_each_online_cpu(j)
105 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
106 	seq_puts(p, "  Function call interrupts\n");
107 	seq_printf(p, "%*s: ", prec, "TLB");
108 	for_each_online_cpu(j)
109 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
110 	seq_puts(p, "  TLB shootdowns\n");
111 #endif
112 #ifdef CONFIG_X86_THERMAL_VECTOR
113 	seq_printf(p, "%*s: ", prec, "TRM");
114 	for_each_online_cpu(j)
115 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
116 	seq_puts(p, "  Thermal event interrupts\n");
117 #endif
118 #ifdef CONFIG_X86_MCE_THRESHOLD
119 	seq_printf(p, "%*s: ", prec, "THR");
120 	for_each_online_cpu(j)
121 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
122 	seq_puts(p, "  Threshold APIC interrupts\n");
123 #endif
124 #ifdef CONFIG_X86_MCE_AMD
125 	seq_printf(p, "%*s: ", prec, "DFR");
126 	for_each_online_cpu(j)
127 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
128 	seq_puts(p, "  Deferred Error APIC interrupts\n");
129 #endif
130 #ifdef CONFIG_X86_MCE
131 	seq_printf(p, "%*s: ", prec, "MCE");
132 	for_each_online_cpu(j)
133 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
134 	seq_puts(p, "  Machine check exceptions\n");
135 	seq_printf(p, "%*s: ", prec, "MCP");
136 	for_each_online_cpu(j)
137 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
138 	seq_puts(p, "  Machine check polls\n");
139 #endif
140 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
141 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
142 		seq_printf(p, "%*s: ", prec, "HYP");
143 		for_each_online_cpu(j)
144 			seq_printf(p, "%10u ",
145 				   irq_stats(j)->irq_hv_callback_count);
146 		seq_puts(p, "  Hypervisor callback interrupts\n");
147 	}
148 #endif
149 #if IS_ENABLED(CONFIG_HYPERV)
150 	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
151 		seq_printf(p, "%*s: ", prec, "HRE");
152 		for_each_online_cpu(j)
153 			seq_printf(p, "%10u ",
154 				   irq_stats(j)->irq_hv_reenlightenment_count);
155 		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
156 	}
157 	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
158 		seq_printf(p, "%*s: ", prec, "HVS");
159 		for_each_online_cpu(j)
160 			seq_printf(p, "%10u ",
161 				   irq_stats(j)->hyperv_stimer0_count);
162 		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
163 	}
164 #endif
165 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
166 #if defined(CONFIG_X86_IO_APIC)
167 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
168 #endif
169 #if IS_ENABLED(CONFIG_KVM)
170 	seq_printf(p, "%*s: ", prec, "PIN");
171 	for_each_online_cpu(j)
172 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
173 	seq_puts(p, "  Posted-interrupt notification event\n");
174 
175 	seq_printf(p, "%*s: ", prec, "NPI");
176 	for_each_online_cpu(j)
177 		seq_printf(p, "%10u ",
178 			   irq_stats(j)->kvm_posted_intr_nested_ipis);
179 	seq_puts(p, "  Nested posted-interrupt event\n");
180 
181 	seq_printf(p, "%*s: ", prec, "PIW");
182 	for_each_online_cpu(j)
183 		seq_printf(p, "%10u ",
184 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
185 	seq_puts(p, "  Posted-interrupt wakeup event\n");
186 #endif
187 #ifdef CONFIG_X86_POSTED_MSI
188 	seq_printf(p, "%*s: ", prec, "PMN");
189 	for_each_online_cpu(j)
190 		seq_printf(p, "%10u ",
191 			   irq_stats(j)->posted_msi_notification_count);
192 	seq_puts(p, "  Posted MSI notification event\n");
193 #endif
194 	return 0;
195 }
196 
197 /*
198  * /proc/stat helpers
199  */
200 u64 arch_irq_stat_cpu(unsigned int cpu)
201 {
202 	u64 sum = irq_stats(cpu)->__nmi_count;
203 
204 #ifdef CONFIG_X86_LOCAL_APIC
205 	sum += irq_stats(cpu)->apic_timer_irqs;
206 	sum += irq_stats(cpu)->irq_spurious_count;
207 	sum += irq_stats(cpu)->apic_perf_irqs;
208 	sum += irq_stats(cpu)->apic_irq_work_irqs;
209 	sum += irq_stats(cpu)->icr_read_retry_count;
210 	if (x86_platform_ipi_callback)
211 		sum += irq_stats(cpu)->x86_platform_ipis;
212 #endif
213 #ifdef CONFIG_SMP
214 	sum += irq_stats(cpu)->irq_resched_count;
215 	sum += irq_stats(cpu)->irq_call_count;
216 #endif
217 #ifdef CONFIG_X86_THERMAL_VECTOR
218 	sum += irq_stats(cpu)->irq_thermal_count;
219 #endif
220 #ifdef CONFIG_X86_MCE_THRESHOLD
221 	sum += irq_stats(cpu)->irq_threshold_count;
222 #endif
223 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
224 	sum += irq_stats(cpu)->irq_hv_callback_count;
225 #endif
226 #if IS_ENABLED(CONFIG_HYPERV)
227 	sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
228 	sum += irq_stats(cpu)->hyperv_stimer0_count;
229 #endif
230 #ifdef CONFIG_X86_MCE
231 	sum += per_cpu(mce_exception_count, cpu);
232 	sum += per_cpu(mce_poll_count, cpu);
233 #endif
234 	return sum;
235 }
236 
237 u64 arch_irq_stat(void)
238 {
239 	u64 sum = atomic_read(&irq_err_count);
240 	return sum;
241 }
242 
243 static __always_inline void handle_irq(struct irq_desc *desc,
244 				       struct pt_regs *regs)
245 {
246 	if (IS_ENABLED(CONFIG_X86_64))
247 		generic_handle_irq_desc(desc);
248 	else
249 		__handle_irq(desc, regs);
250 }
251 
252 static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
253 {
254 	struct irq_desc *desc;
255 	int ret = 0;
256 
257 	desc = __this_cpu_read(vector_irq[vector]);
258 	if (likely(!IS_ERR_OR_NULL(desc))) {
259 		handle_irq(desc, regs);
260 	} else {
261 		ret = -EINVAL;
262 		if (desc == VECTOR_UNUSED) {
263 			pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
264 					     __func__, smp_processor_id(),
265 					     vector);
266 		} else {
267 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
268 		}
269 	}
270 
271 	return ret;
272 }
273 
274 /*
275  * common_interrupt() handles all normal device IRQ's (the special SMP
276  * cross-CPU interrupts have their own entry points).
277  */
278 DEFINE_IDTENTRY_IRQ(common_interrupt)
279 {
280 	struct pt_regs *old_regs = set_irq_regs(regs);
281 
282 	/* entry code tells RCU that we're not quiescent.  Check it. */
283 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
284 
285 	if (unlikely(call_irq_handler(vector, regs)))
286 		apic_eoi();
287 
288 	set_irq_regs(old_regs);
289 }
290 
291 #ifdef CONFIG_X86_LOCAL_APIC
292 /* Function pointer for generic interrupt vector handling */
293 void (*x86_platform_ipi_callback)(void) = NULL;
294 /*
295  * Handler for X86_PLATFORM_IPI_VECTOR.
296  */
297 DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
298 {
299 	struct pt_regs *old_regs = set_irq_regs(regs);
300 
301 	apic_eoi();
302 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
303 	inc_irq_stat(x86_platform_ipis);
304 	if (x86_platform_ipi_callback)
305 		x86_platform_ipi_callback();
306 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
307 	set_irq_regs(old_regs);
308 }
309 #endif
310 
311 #if IS_ENABLED(CONFIG_KVM)
312 static void dummy_handler(void) {}
313 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
314 
315 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
316 {
317 	if (handler)
318 		kvm_posted_intr_wakeup_handler = handler;
319 	else {
320 		kvm_posted_intr_wakeup_handler = dummy_handler;
321 		synchronize_rcu();
322 	}
323 }
324 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
325 
326 /*
327  * Handler for POSTED_INTERRUPT_VECTOR.
328  */
329 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
330 {
331 	apic_eoi();
332 	inc_irq_stat(kvm_posted_intr_ipis);
333 }
334 
335 /*
336  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
337  */
338 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
339 {
340 	apic_eoi();
341 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
342 	kvm_posted_intr_wakeup_handler();
343 }
344 
345 /*
346  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
347  */
348 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
349 {
350 	apic_eoi();
351 	inc_irq_stat(kvm_posted_intr_nested_ipis);
352 }
353 #endif
354 
355 #ifdef CONFIG_X86_POSTED_MSI
356 
357 /* Posted Interrupt Descriptors for coalesced MSIs to be posted */
358 DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
359 
360 void intel_posted_msi_init(void)
361 {
362 	u32 destination;
363 	u32 apic_id;
364 
365 	this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
366 
367 	/*
368 	 * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
369 	 * VT-d spec. CH 9.11
370 	 */
371 	apic_id = this_cpu_read(x86_cpu_to_apicid);
372 	destination = x2apic_enabled() ? apic_id : apic_id << 8;
373 	this_cpu_write(posted_msi_pi_desc.ndst, destination);
374 }
375 
376 /*
377  * De-multiplexing posted interrupts is on the performance path, the code
378  * below is written to optimize the cache performance based on the following
379  * considerations:
380  * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
381  *   accessed by both CPU and IOMMU.
382  * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
383  *   for checking and clearing posted interrupt request (PIR), a 256 bit field
384  *   within the PID.
385  * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
386  *   line when posting interrupts and setting control bits.
387  * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
388  * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
389  *   cache line. The cache line states after each operation are as follows:
390  *   CPU		IOMMU			PID Cache line state
391  *   ---------------------------------------------------------------
392  *...read64					exclusive
393  *...lock xchg64				modified
394  *...			post/atomic swap	invalid
395  *...-------------------------------------------------------------
396  *
397  * To reduce L1 data cache miss, it is important to avoid contention with
398  * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
399  * to dispatch interrupt handlers.
400  *
401  * In addition, the code is trying to keep the cache line state consistent
402  * as much as possible. e.g. when making a copy and clearing the PIR
403  * (assuming non-zero PIR bits are present in the entire PIR), it does:
404  *		read, read, read, read, xchg, xchg, xchg, xchg
405  * instead of:
406  *		read, xchg, read, xchg, read, xchg, read, xchg
407  */
408 static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
409 {
410 	int i, vec = FIRST_EXTERNAL_VECTOR;
411 	unsigned long pir_copy[4];
412 	bool handled = false;
413 
414 	for (i = 0; i < 4; i++)
415 		pir_copy[i] = pir[i];
416 
417 	for (i = 0; i < 4; i++) {
418 		if (!pir_copy[i])
419 			continue;
420 
421 		pir_copy[i] = arch_xchg(&pir[i], 0);
422 		handled = true;
423 	}
424 
425 	if (handled) {
426 		for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
427 			call_irq_handler(vec, regs);
428 	}
429 
430 	return handled;
431 }
432 
433 /*
434  * Performance data shows that 3 is good enough to harvest 90+% of the benefit
435  * on high IRQ rate workload.
436  */
437 #define MAX_POSTED_MSI_COALESCING_LOOP 3
438 
439 /*
440  * For MSIs that are delivered as posted interrupts, the CPU notifications
441  * can be coalesced if the MSIs arrive in high frequency bursts.
442  */
443 DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
444 {
445 	struct pt_regs *old_regs = set_irq_regs(regs);
446 	struct pi_desc *pid;
447 	int i = 0;
448 
449 	pid = this_cpu_ptr(&posted_msi_pi_desc);
450 
451 	inc_irq_stat(posted_msi_notification_count);
452 	irq_enter();
453 
454 	/*
455 	 * Max coalescing count includes the extra round of handle_pending_pir
456 	 * after clearing the outstanding notification bit. Hence, at most
457 	 * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
458 	 */
459 	while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
460 		if (!handle_pending_pir(pid->pir64, regs))
461 			break;
462 	}
463 
464 	/*
465 	 * Clear outstanding notification bit to allow new IRQ notifications,
466 	 * do this last to maximize the window of interrupt coalescing.
467 	 */
468 	pi_clear_on(pid);
469 
470 	/*
471 	 * There could be a race of PI notification and the clearing of ON bit,
472 	 * process PIR bits one last time such that handling the new interrupts
473 	 * are not delayed until the next IRQ.
474 	 */
475 	handle_pending_pir(pid->pir64, regs);
476 
477 	apic_eoi();
478 	irq_exit();
479 	set_irq_regs(old_regs);
480 }
481 #endif /* X86_POSTED_MSI */
482 
483 #ifdef CONFIG_HOTPLUG_CPU
484 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
485 void fixup_irqs(void)
486 {
487 	unsigned int vector;
488 	struct irq_desc *desc;
489 	struct irq_data *data;
490 	struct irq_chip *chip;
491 
492 	irq_migrate_all_off_this_cpu();
493 
494 	/*
495 	 * We can remove mdelay() and then send spurious interrupts to
496 	 * new cpu targets for all the irqs that were handled previously by
497 	 * this cpu. While it works, I have seen spurious interrupt messages
498 	 * (nothing wrong but still...).
499 	 *
500 	 * So for now, retain mdelay(1) and check the IRR and then send those
501 	 * interrupts to new targets as this cpu is already offlined...
502 	 */
503 	mdelay(1);
504 
505 	/*
506 	 * We can walk the vector array of this cpu without holding
507 	 * vector_lock because the cpu is already marked !online, so
508 	 * nothing else will touch it.
509 	 */
510 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
511 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
512 			continue;
513 
514 		if (is_vector_pending(vector)) {
515 			desc = __this_cpu_read(vector_irq[vector]);
516 
517 			raw_spin_lock(&desc->lock);
518 			data = irq_desc_get_irq_data(desc);
519 			chip = irq_data_get_irq_chip(data);
520 			if (chip->irq_retrigger) {
521 				chip->irq_retrigger(data);
522 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
523 			}
524 			raw_spin_unlock(&desc->lock);
525 		}
526 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
527 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
528 	}
529 }
530 #endif
531 
532 #ifdef CONFIG_X86_THERMAL_VECTOR
533 static void smp_thermal_vector(void)
534 {
535 	if (x86_thermal_enabled())
536 		intel_thermal_interrupt();
537 	else
538 		pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
539 		       smp_processor_id());
540 }
541 
542 DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
543 {
544 	trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
545 	inc_irq_stat(irq_thermal_count);
546 	smp_thermal_vector();
547 	trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
548 	apic_eoi();
549 }
550 #endif
551