1 /* 2 * Common interrupt code for 32 and 64 bit 3 */ 4 #include <linux/cpu.h> 5 #include <linux/interrupt.h> 6 #include <linux/kernel_stat.h> 7 #include <linux/of.h> 8 #include <linux/seq_file.h> 9 #include <linux/smp.h> 10 #include <linux/ftrace.h> 11 #include <linux/delay.h> 12 #include <linux/export.h> 13 14 #include <asm/apic.h> 15 #include <asm/io_apic.h> 16 #include <asm/irq.h> 17 #include <asm/idle.h> 18 #include <asm/mce.h> 19 #include <asm/hw_irq.h> 20 #include <asm/desc.h> 21 22 #define CREATE_TRACE_POINTS 23 #include <asm/trace/irq_vectors.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 26 EXPORT_PER_CPU_SYMBOL(irq_stat); 27 28 DEFINE_PER_CPU(struct pt_regs *, irq_regs); 29 EXPORT_PER_CPU_SYMBOL(irq_regs); 30 31 atomic_t irq_err_count; 32 33 /* Function pointer for generic interrupt vector handling */ 34 void (*x86_platform_ipi_callback)(void) = NULL; 35 36 /* 37 * 'what should we do if we get a hw irq event on an illegal vector'. 38 * each architecture has to answer this themselves. 39 */ 40 void ack_bad_irq(unsigned int irq) 41 { 42 if (printk_ratelimit()) 43 pr_err("unexpected IRQ trap at vector %02x\n", irq); 44 45 /* 46 * Currently unexpected vectors happen only on SMP and APIC. 47 * We _must_ ack these because every local APIC has only N 48 * irq slots per priority level, and a 'hanging, unacked' IRQ 49 * holds up an irq slot - in excessive cases (when multiple 50 * unexpected vectors occur) that might lock up the APIC 51 * completely. 52 * But only ack when the APIC is enabled -AK 53 */ 54 ack_APIC_irq(); 55 } 56 57 #define irq_stats(x) (&per_cpu(irq_stat, x)) 58 /* 59 * /proc/interrupts printing for arch specific interrupts 60 */ 61 int arch_show_interrupts(struct seq_file *p, int prec) 62 { 63 int j; 64 65 seq_printf(p, "%*s: ", prec, "NMI"); 66 for_each_online_cpu(j) 67 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 68 seq_puts(p, " Non-maskable interrupts\n"); 69 #ifdef CONFIG_X86_LOCAL_APIC 70 seq_printf(p, "%*s: ", prec, "LOC"); 71 for_each_online_cpu(j) 72 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 73 seq_puts(p, " Local timer interrupts\n"); 74 75 seq_printf(p, "%*s: ", prec, "SPU"); 76 for_each_online_cpu(j) 77 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 78 seq_puts(p, " Spurious interrupts\n"); 79 seq_printf(p, "%*s: ", prec, "PMI"); 80 for_each_online_cpu(j) 81 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 82 seq_puts(p, " Performance monitoring interrupts\n"); 83 seq_printf(p, "%*s: ", prec, "IWI"); 84 for_each_online_cpu(j) 85 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 86 seq_puts(p, " IRQ work interrupts\n"); 87 seq_printf(p, "%*s: ", prec, "RTR"); 88 for_each_online_cpu(j) 89 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 90 seq_puts(p, " APIC ICR read retries\n"); 91 #endif 92 if (x86_platform_ipi_callback) { 93 seq_printf(p, "%*s: ", prec, "PLT"); 94 for_each_online_cpu(j) 95 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 96 seq_puts(p, " Platform interrupts\n"); 97 } 98 #ifdef CONFIG_SMP 99 seq_printf(p, "%*s: ", prec, "RES"); 100 for_each_online_cpu(j) 101 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 102 seq_puts(p, " Rescheduling interrupts\n"); 103 seq_printf(p, "%*s: ", prec, "CAL"); 104 for_each_online_cpu(j) 105 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count - 106 irq_stats(j)->irq_tlb_count); 107 seq_puts(p, " Function call interrupts\n"); 108 seq_printf(p, "%*s: ", prec, "TLB"); 109 for_each_online_cpu(j) 110 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 111 seq_puts(p, " TLB shootdowns\n"); 112 #endif 113 #ifdef CONFIG_X86_THERMAL_VECTOR 114 seq_printf(p, "%*s: ", prec, "TRM"); 115 for_each_online_cpu(j) 116 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 117 seq_puts(p, " Thermal event interrupts\n"); 118 #endif 119 #ifdef CONFIG_X86_MCE_THRESHOLD 120 seq_printf(p, "%*s: ", prec, "THR"); 121 for_each_online_cpu(j) 122 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 123 seq_puts(p, " Threshold APIC interrupts\n"); 124 #endif 125 #ifdef CONFIG_X86_MCE_AMD 126 seq_printf(p, "%*s: ", prec, "DFR"); 127 for_each_online_cpu(j) 128 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); 129 seq_puts(p, " Deferred Error APIC interrupts\n"); 130 #endif 131 #ifdef CONFIG_X86_MCE 132 seq_printf(p, "%*s: ", prec, "MCE"); 133 for_each_online_cpu(j) 134 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 135 seq_puts(p, " Machine check exceptions\n"); 136 seq_printf(p, "%*s: ", prec, "MCP"); 137 for_each_online_cpu(j) 138 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 139 seq_puts(p, " Machine check polls\n"); 140 #endif 141 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) 142 seq_printf(p, "%*s: ", prec, "HYP"); 143 for_each_online_cpu(j) 144 seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count); 145 seq_puts(p, " Hypervisor callback interrupts\n"); 146 #endif 147 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 148 #if defined(CONFIG_X86_IO_APIC) 149 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 150 #endif 151 #ifdef CONFIG_HAVE_KVM 152 seq_printf(p, "%*s: ", prec, "PIN"); 153 for_each_online_cpu(j) 154 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); 155 seq_puts(p, " Posted-interrupt notification event\n"); 156 157 seq_printf(p, "%*s: ", prec, "PIW"); 158 for_each_online_cpu(j) 159 seq_printf(p, "%10u ", 160 irq_stats(j)->kvm_posted_intr_wakeup_ipis); 161 seq_puts(p, " Posted-interrupt wakeup event\n"); 162 #endif 163 return 0; 164 } 165 166 /* 167 * /proc/stat helpers 168 */ 169 u64 arch_irq_stat_cpu(unsigned int cpu) 170 { 171 u64 sum = irq_stats(cpu)->__nmi_count; 172 173 #ifdef CONFIG_X86_LOCAL_APIC 174 sum += irq_stats(cpu)->apic_timer_irqs; 175 sum += irq_stats(cpu)->irq_spurious_count; 176 sum += irq_stats(cpu)->apic_perf_irqs; 177 sum += irq_stats(cpu)->apic_irq_work_irqs; 178 sum += irq_stats(cpu)->icr_read_retry_count; 179 #endif 180 if (x86_platform_ipi_callback) 181 sum += irq_stats(cpu)->x86_platform_ipis; 182 #ifdef CONFIG_SMP 183 sum += irq_stats(cpu)->irq_resched_count; 184 sum += irq_stats(cpu)->irq_call_count; 185 #endif 186 #ifdef CONFIG_X86_THERMAL_VECTOR 187 sum += irq_stats(cpu)->irq_thermal_count; 188 #endif 189 #ifdef CONFIG_X86_MCE_THRESHOLD 190 sum += irq_stats(cpu)->irq_threshold_count; 191 #endif 192 #ifdef CONFIG_X86_MCE 193 sum += per_cpu(mce_exception_count, cpu); 194 sum += per_cpu(mce_poll_count, cpu); 195 #endif 196 return sum; 197 } 198 199 u64 arch_irq_stat(void) 200 { 201 u64 sum = atomic_read(&irq_err_count); 202 return sum; 203 } 204 205 206 /* 207 * do_IRQ handles all normal device IRQ's (the special 208 * SMP cross-CPU interrupts have their own specific 209 * handlers). 210 */ 211 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 212 { 213 struct pt_regs *old_regs = set_irq_regs(regs); 214 215 /* high bit used in ret_from_ code */ 216 unsigned vector = ~regs->orig_ax; 217 unsigned irq; 218 219 entering_irq(); 220 221 irq = __this_cpu_read(vector_irq[vector]); 222 223 if (!handle_irq(irq, regs)) { 224 ack_APIC_irq(); 225 226 if (irq != VECTOR_RETRIGGERED) { 227 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n", 228 __func__, smp_processor_id(), 229 vector, irq); 230 } else { 231 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); 232 } 233 } 234 235 exiting_irq(); 236 237 set_irq_regs(old_regs); 238 return 1; 239 } 240 241 /* 242 * Handler for X86_PLATFORM_IPI_VECTOR. 243 */ 244 void __smp_x86_platform_ipi(void) 245 { 246 inc_irq_stat(x86_platform_ipis); 247 248 if (x86_platform_ipi_callback) 249 x86_platform_ipi_callback(); 250 } 251 252 __visible void smp_x86_platform_ipi(struct pt_regs *regs) 253 { 254 struct pt_regs *old_regs = set_irq_regs(regs); 255 256 entering_ack_irq(); 257 __smp_x86_platform_ipi(); 258 exiting_irq(); 259 set_irq_regs(old_regs); 260 } 261 262 #ifdef CONFIG_HAVE_KVM 263 static void dummy_handler(void) {} 264 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; 265 266 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) 267 { 268 if (handler) 269 kvm_posted_intr_wakeup_handler = handler; 270 else 271 kvm_posted_intr_wakeup_handler = dummy_handler; 272 } 273 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); 274 275 /* 276 * Handler for POSTED_INTERRUPT_VECTOR. 277 */ 278 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) 279 { 280 struct pt_regs *old_regs = set_irq_regs(regs); 281 282 entering_ack_irq(); 283 inc_irq_stat(kvm_posted_intr_ipis); 284 exiting_irq(); 285 set_irq_regs(old_regs); 286 } 287 288 /* 289 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 290 */ 291 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs) 292 { 293 struct pt_regs *old_regs = set_irq_regs(regs); 294 295 entering_ack_irq(); 296 inc_irq_stat(kvm_posted_intr_wakeup_ipis); 297 kvm_posted_intr_wakeup_handler(); 298 exiting_irq(); 299 set_irq_regs(old_regs); 300 } 301 #endif 302 303 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs) 304 { 305 struct pt_regs *old_regs = set_irq_regs(regs); 306 307 entering_ack_irq(); 308 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); 309 __smp_x86_platform_ipi(); 310 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); 311 exiting_irq(); 312 set_irq_regs(old_regs); 313 } 314 315 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 316 317 #ifdef CONFIG_HOTPLUG_CPU 318 319 /* These two declarations are only used in check_irq_vectors_for_cpu_disable() 320 * below, which is protected by stop_machine(). Putting them on the stack 321 * results in a stack frame overflow. Dynamically allocating could result in a 322 * failure so declare these two cpumasks as global. 323 */ 324 static struct cpumask affinity_new, online_new; 325 326 /* 327 * This cpu is going to be removed and its vectors migrated to the remaining 328 * online cpus. Check to see if there are enough vectors in the remaining cpus. 329 * This function is protected by stop_machine(). 330 */ 331 int check_irq_vectors_for_cpu_disable(void) 332 { 333 int irq, cpu; 334 unsigned int this_cpu, vector, this_count, count; 335 struct irq_desc *desc; 336 struct irq_data *data; 337 338 this_cpu = smp_processor_id(); 339 cpumask_copy(&online_new, cpu_online_mask); 340 cpumask_clear_cpu(this_cpu, &online_new); 341 342 this_count = 0; 343 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 344 irq = __this_cpu_read(vector_irq[vector]); 345 if (irq >= 0) { 346 desc = irq_to_desc(irq); 347 if (!desc) 348 continue; 349 350 data = irq_desc_get_irq_data(desc); 351 cpumask_copy(&affinity_new, data->affinity); 352 cpumask_clear_cpu(this_cpu, &affinity_new); 353 354 /* Do not count inactive or per-cpu irqs. */ 355 if (!irq_has_action(irq) || irqd_is_per_cpu(data)) 356 continue; 357 358 /* 359 * A single irq may be mapped to multiple 360 * cpu's vector_irq[] (for example IOAPIC cluster 361 * mode). In this case we have two 362 * possibilities: 363 * 364 * 1) the resulting affinity mask is empty; that is 365 * this the down'd cpu is the last cpu in the irq's 366 * affinity mask, or 367 * 368 * 2) the resulting affinity mask is no longer 369 * a subset of the online cpus but the affinity 370 * mask is not zero; that is the down'd cpu is the 371 * last online cpu in a user set affinity mask. 372 */ 373 if (cpumask_empty(&affinity_new) || 374 !cpumask_subset(&affinity_new, &online_new)) 375 this_count++; 376 } 377 } 378 379 count = 0; 380 for_each_online_cpu(cpu) { 381 if (cpu == this_cpu) 382 continue; 383 /* 384 * We scan from FIRST_EXTERNAL_VECTOR to first system 385 * vector. If the vector is marked in the used vectors 386 * bitmap or an irq is assigned to it, we don't count 387 * it as available. 388 */ 389 for (vector = FIRST_EXTERNAL_VECTOR; 390 vector < first_system_vector; vector++) { 391 if (!test_bit(vector, used_vectors) && 392 per_cpu(vector_irq, cpu)[vector] < 0) 393 count++; 394 } 395 } 396 397 if (count < this_count) { 398 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", 399 this_cpu, this_count, count); 400 return -ERANGE; 401 } 402 return 0; 403 } 404 405 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 406 void fixup_irqs(void) 407 { 408 unsigned int irq, vector; 409 static int warned; 410 struct irq_desc *desc; 411 struct irq_data *data; 412 struct irq_chip *chip; 413 int ret; 414 415 for_each_irq_desc(irq, desc) { 416 int break_affinity = 0; 417 int set_affinity = 1; 418 const struct cpumask *affinity; 419 420 if (!desc) 421 continue; 422 if (irq == 2) 423 continue; 424 425 /* interrupt's are disabled at this point */ 426 raw_spin_lock(&desc->lock); 427 428 data = irq_desc_get_irq_data(desc); 429 affinity = data->affinity; 430 if (!irq_has_action(irq) || irqd_is_per_cpu(data) || 431 cpumask_subset(affinity, cpu_online_mask)) { 432 raw_spin_unlock(&desc->lock); 433 continue; 434 } 435 436 /* 437 * Complete the irq move. This cpu is going down and for 438 * non intr-remapping case, we can't wait till this interrupt 439 * arrives at this cpu before completing the irq move. 440 */ 441 irq_force_complete_move(irq); 442 443 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { 444 break_affinity = 1; 445 affinity = cpu_online_mask; 446 } 447 448 chip = irq_data_get_irq_chip(data); 449 if (!irqd_can_move_in_process_context(data) && chip->irq_mask) 450 chip->irq_mask(data); 451 452 if (chip->irq_set_affinity) { 453 ret = chip->irq_set_affinity(data, affinity, true); 454 if (ret == -ENOSPC) 455 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq); 456 } else { 457 if (!(warned++)) 458 set_affinity = 0; 459 } 460 461 /* 462 * We unmask if the irq was not marked masked by the 463 * core code. That respects the lazy irq disable 464 * behaviour. 465 */ 466 if (!irqd_can_move_in_process_context(data) && 467 !irqd_irq_masked(data) && chip->irq_unmask) 468 chip->irq_unmask(data); 469 470 raw_spin_unlock(&desc->lock); 471 472 if (break_affinity && set_affinity) 473 pr_notice("Broke affinity for irq %i\n", irq); 474 else if (!set_affinity) 475 pr_notice("Cannot set affinity for irq %i\n", irq); 476 } 477 478 /* 479 * We can remove mdelay() and then send spuriuous interrupts to 480 * new cpu targets for all the irqs that were handled previously by 481 * this cpu. While it works, I have seen spurious interrupt messages 482 * (nothing wrong but still...). 483 * 484 * So for now, retain mdelay(1) and check the IRR and then send those 485 * interrupts to new targets as this cpu is already offlined... 486 */ 487 mdelay(1); 488 489 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 490 unsigned int irr; 491 492 if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED) 493 continue; 494 495 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 496 if (irr & (1 << (vector % 32))) { 497 irq = __this_cpu_read(vector_irq[vector]); 498 499 desc = irq_to_desc(irq); 500 data = irq_desc_get_irq_data(desc); 501 chip = irq_data_get_irq_chip(data); 502 raw_spin_lock(&desc->lock); 503 if (chip->irq_retrigger) { 504 chip->irq_retrigger(data); 505 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); 506 } 507 raw_spin_unlock(&desc->lock); 508 } 509 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) 510 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); 511 } 512 } 513 #endif 514