1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2007 Alan Stern 17 * Copyright (C) 2009 IBM Corporation 18 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com> 19 * 20 * Authors: Alan Stern <stern@rowland.harvard.edu> 21 * K.Prasad <prasad@linux.vnet.ibm.com> 22 * Frederic Weisbecker <fweisbec@gmail.com> 23 */ 24 25 /* 26 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, 27 * using the CPU's debug registers. 28 */ 29 30 #include <linux/perf_event.h> 31 #include <linux/hw_breakpoint.h> 32 #include <linux/irqflags.h> 33 #include <linux/notifier.h> 34 #include <linux/kallsyms.h> 35 #include <linux/kprobes.h> 36 #include <linux/percpu.h> 37 #include <linux/kdebug.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/sched.h> 41 #include <linux/init.h> 42 #include <linux/smp.h> 43 44 #include <asm/hw_breakpoint.h> 45 #include <asm/processor.h> 46 #include <asm/debugreg.h> 47 48 /* Per cpu debug control register value */ 49 DEFINE_PER_CPU(unsigned long, cpu_dr7); 50 EXPORT_PER_CPU_SYMBOL(cpu_dr7); 51 52 /* Per cpu debug address registers values */ 53 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]); 54 55 /* 56 * Stores the breakpoints currently in use on each breakpoint address 57 * register for each cpus 58 */ 59 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]); 60 61 62 static inline unsigned long 63 __encode_dr7(int drnum, unsigned int len, unsigned int type) 64 { 65 unsigned long bp_info; 66 67 bp_info = (len | type) & 0xf; 68 bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE); 69 bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE)); 70 71 return bp_info; 72 } 73 74 /* 75 * Encode the length, type, Exact, and Enable bits for a particular breakpoint 76 * as stored in debug register 7. 77 */ 78 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type) 79 { 80 return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN; 81 } 82 83 /* 84 * Decode the length and type bits for a particular breakpoint as 85 * stored in debug register 7. Return the "enabled" status. 86 */ 87 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type) 88 { 89 int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE); 90 91 *len = (bp_info & 0xc) | 0x40; 92 *type = (bp_info & 0x3) | 0x80; 93 94 return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3; 95 } 96 97 /* 98 * Install a perf counter breakpoint. 99 * 100 * We seek a free debug address register and use it for this 101 * breakpoint. Eventually we enable it in the debug control register. 102 * 103 * Atomic: we hold the counter->ctx->lock and we only handle variables 104 * and registers local to this cpu. 105 */ 106 int arch_install_hw_breakpoint(struct perf_event *bp) 107 { 108 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 109 unsigned long *dr7; 110 int i; 111 112 for (i = 0; i < HBP_NUM; i++) { 113 struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]); 114 115 if (!*slot) { 116 *slot = bp; 117 break; 118 } 119 } 120 121 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) 122 return -EBUSY; 123 124 set_debugreg(info->address, i); 125 __this_cpu_write(cpu_debugreg[i], info->address); 126 127 dr7 = &__get_cpu_var(cpu_dr7); 128 *dr7 |= encode_dr7(i, info->len, info->type); 129 130 set_debugreg(*dr7, 7); 131 132 return 0; 133 } 134 135 /* 136 * Uninstall the breakpoint contained in the given counter. 137 * 138 * First we search the debug address register it uses and then we disable 139 * it. 140 * 141 * Atomic: we hold the counter->ctx->lock and we only handle variables 142 * and registers local to this cpu. 143 */ 144 void arch_uninstall_hw_breakpoint(struct perf_event *bp) 145 { 146 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 147 unsigned long *dr7; 148 int i; 149 150 for (i = 0; i < HBP_NUM; i++) { 151 struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]); 152 153 if (*slot == bp) { 154 *slot = NULL; 155 break; 156 } 157 } 158 159 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) 160 return; 161 162 dr7 = &__get_cpu_var(cpu_dr7); 163 *dr7 &= ~__encode_dr7(i, info->len, info->type); 164 165 set_debugreg(*dr7, 7); 166 } 167 168 static int get_hbp_len(u8 hbp_len) 169 { 170 unsigned int len_in_bytes = 0; 171 172 switch (hbp_len) { 173 case X86_BREAKPOINT_LEN_1: 174 len_in_bytes = 1; 175 break; 176 case X86_BREAKPOINT_LEN_2: 177 len_in_bytes = 2; 178 break; 179 case X86_BREAKPOINT_LEN_4: 180 len_in_bytes = 4; 181 break; 182 #ifdef CONFIG_X86_64 183 case X86_BREAKPOINT_LEN_8: 184 len_in_bytes = 8; 185 break; 186 #endif 187 } 188 return len_in_bytes; 189 } 190 191 /* 192 * Check for virtual address in kernel space. 193 */ 194 int arch_check_bp_in_kernelspace(struct perf_event *bp) 195 { 196 unsigned int len; 197 unsigned long va; 198 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 199 200 va = info->address; 201 len = get_hbp_len(info->len); 202 203 return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); 204 } 205 206 int arch_bp_generic_fields(int x86_len, int x86_type, 207 int *gen_len, int *gen_type) 208 { 209 /* Type */ 210 switch (x86_type) { 211 case X86_BREAKPOINT_EXECUTE: 212 if (x86_len != X86_BREAKPOINT_LEN_X) 213 return -EINVAL; 214 215 *gen_type = HW_BREAKPOINT_X; 216 *gen_len = sizeof(long); 217 return 0; 218 case X86_BREAKPOINT_WRITE: 219 *gen_type = HW_BREAKPOINT_W; 220 break; 221 case X86_BREAKPOINT_RW: 222 *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R; 223 break; 224 default: 225 return -EINVAL; 226 } 227 228 /* Len */ 229 switch (x86_len) { 230 case X86_BREAKPOINT_LEN_1: 231 *gen_len = HW_BREAKPOINT_LEN_1; 232 break; 233 case X86_BREAKPOINT_LEN_2: 234 *gen_len = HW_BREAKPOINT_LEN_2; 235 break; 236 case X86_BREAKPOINT_LEN_4: 237 *gen_len = HW_BREAKPOINT_LEN_4; 238 break; 239 #ifdef CONFIG_X86_64 240 case X86_BREAKPOINT_LEN_8: 241 *gen_len = HW_BREAKPOINT_LEN_8; 242 break; 243 #endif 244 default: 245 return -EINVAL; 246 } 247 248 return 0; 249 } 250 251 252 static int arch_build_bp_info(struct perf_event *bp) 253 { 254 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 255 256 info->address = bp->attr.bp_addr; 257 258 /* Type */ 259 switch (bp->attr.bp_type) { 260 case HW_BREAKPOINT_W: 261 info->type = X86_BREAKPOINT_WRITE; 262 break; 263 case HW_BREAKPOINT_W | HW_BREAKPOINT_R: 264 info->type = X86_BREAKPOINT_RW; 265 break; 266 case HW_BREAKPOINT_X: 267 info->type = X86_BREAKPOINT_EXECUTE; 268 /* 269 * x86 inst breakpoints need to have a specific undefined len. 270 * But we still need to check userspace is not trying to setup 271 * an unsupported length, to get a range breakpoint for example. 272 */ 273 if (bp->attr.bp_len == sizeof(long)) { 274 info->len = X86_BREAKPOINT_LEN_X; 275 return 0; 276 } 277 default: 278 return -EINVAL; 279 } 280 281 /* Len */ 282 switch (bp->attr.bp_len) { 283 case HW_BREAKPOINT_LEN_1: 284 info->len = X86_BREAKPOINT_LEN_1; 285 break; 286 case HW_BREAKPOINT_LEN_2: 287 info->len = X86_BREAKPOINT_LEN_2; 288 break; 289 case HW_BREAKPOINT_LEN_4: 290 info->len = X86_BREAKPOINT_LEN_4; 291 break; 292 #ifdef CONFIG_X86_64 293 case HW_BREAKPOINT_LEN_8: 294 info->len = X86_BREAKPOINT_LEN_8; 295 break; 296 #endif 297 default: 298 return -EINVAL; 299 } 300 301 return 0; 302 } 303 /* 304 * Validate the arch-specific HW Breakpoint register settings 305 */ 306 int arch_validate_hwbkpt_settings(struct perf_event *bp) 307 { 308 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 309 unsigned int align; 310 int ret; 311 312 313 ret = arch_build_bp_info(bp); 314 if (ret) 315 return ret; 316 317 ret = -EINVAL; 318 319 switch (info->len) { 320 case X86_BREAKPOINT_LEN_1: 321 align = 0; 322 break; 323 case X86_BREAKPOINT_LEN_2: 324 align = 1; 325 break; 326 case X86_BREAKPOINT_LEN_4: 327 align = 3; 328 break; 329 #ifdef CONFIG_X86_64 330 case X86_BREAKPOINT_LEN_8: 331 align = 7; 332 break; 333 #endif 334 default: 335 return ret; 336 } 337 338 /* 339 * Check that the low-order bits of the address are appropriate 340 * for the alignment implied by len. 341 */ 342 if (info->address & align) 343 return -EINVAL; 344 345 return 0; 346 } 347 348 /* 349 * Dump the debug register contents to the user. 350 * We can't dump our per cpu values because it 351 * may contain cpu wide breakpoint, something that 352 * doesn't belong to the current task. 353 * 354 * TODO: include non-ptrace user breakpoints (perf) 355 */ 356 void aout_dump_debugregs(struct user *dump) 357 { 358 int i; 359 int dr7 = 0; 360 struct perf_event *bp; 361 struct arch_hw_breakpoint *info; 362 struct thread_struct *thread = ¤t->thread; 363 364 for (i = 0; i < HBP_NUM; i++) { 365 bp = thread->ptrace_bps[i]; 366 367 if (bp && !bp->attr.disabled) { 368 dump->u_debugreg[i] = bp->attr.bp_addr; 369 info = counter_arch_bp(bp); 370 dr7 |= encode_dr7(i, info->len, info->type); 371 } else { 372 dump->u_debugreg[i] = 0; 373 } 374 } 375 376 dump->u_debugreg[4] = 0; 377 dump->u_debugreg[5] = 0; 378 dump->u_debugreg[6] = current->thread.debugreg6; 379 380 dump->u_debugreg[7] = dr7; 381 } 382 EXPORT_SYMBOL_GPL(aout_dump_debugregs); 383 384 /* 385 * Release the user breakpoints used by ptrace 386 */ 387 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 388 { 389 int i; 390 struct thread_struct *t = &tsk->thread; 391 392 for (i = 0; i < HBP_NUM; i++) { 393 unregister_hw_breakpoint(t->ptrace_bps[i]); 394 t->ptrace_bps[i] = NULL; 395 } 396 } 397 398 void hw_breakpoint_restore(void) 399 { 400 set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0); 401 set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1); 402 set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2); 403 set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3); 404 set_debugreg(current->thread.debugreg6, 6); 405 set_debugreg(__this_cpu_read(cpu_dr7), 7); 406 } 407 EXPORT_SYMBOL_GPL(hw_breakpoint_restore); 408 409 /* 410 * Handle debug exception notifications. 411 * 412 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below. 413 * 414 * NOTIFY_DONE returned if one of the following conditions is true. 415 * i) When the causative address is from user-space and the exception 416 * is a valid one, i.e. not triggered as a result of lazy debug register 417 * switching 418 * ii) When there are more bits than trap<n> set in DR6 register (such 419 * as BD, BS or BT) indicating that more than one debug condition is 420 * met and requires some more action in do_debug(). 421 * 422 * NOTIFY_STOP returned for all other cases 423 * 424 */ 425 static int __kprobes hw_breakpoint_handler(struct die_args *args) 426 { 427 int i, cpu, rc = NOTIFY_STOP; 428 struct perf_event *bp; 429 unsigned long dr7, dr6; 430 unsigned long *dr6_p; 431 432 /* The DR6 value is pointed by args->err */ 433 dr6_p = (unsigned long *)ERR_PTR(args->err); 434 dr6 = *dr6_p; 435 436 /* If it's a single step, TRAP bits are random */ 437 if (dr6 & DR_STEP) 438 return NOTIFY_DONE; 439 440 /* Do an early return if no trap bits are set in DR6 */ 441 if ((dr6 & DR_TRAP_BITS) == 0) 442 return NOTIFY_DONE; 443 444 get_debugreg(dr7, 7); 445 /* Disable breakpoints during exception handling */ 446 set_debugreg(0UL, 7); 447 /* 448 * Assert that local interrupts are disabled 449 * Reset the DRn bits in the virtualized register value. 450 * The ptrace trigger routine will add in whatever is needed. 451 */ 452 current->thread.debugreg6 &= ~DR_TRAP_BITS; 453 cpu = get_cpu(); 454 455 /* Handle all the breakpoints that were triggered */ 456 for (i = 0; i < HBP_NUM; ++i) { 457 if (likely(!(dr6 & (DR_TRAP0 << i)))) 458 continue; 459 460 /* 461 * The counter may be concurrently released but that can only 462 * occur from a call_rcu() path. We can then safely fetch 463 * the breakpoint, use its callback, touch its counter 464 * while we are in an rcu_read_lock() path. 465 */ 466 rcu_read_lock(); 467 468 bp = per_cpu(bp_per_reg[i], cpu); 469 /* 470 * Reset the 'i'th TRAP bit in dr6 to denote completion of 471 * exception handling 472 */ 473 (*dr6_p) &= ~(DR_TRAP0 << i); 474 /* 475 * bp can be NULL due to lazy debug register switching 476 * or due to concurrent perf counter removing. 477 */ 478 if (!bp) { 479 rcu_read_unlock(); 480 break; 481 } 482 483 perf_bp_event(bp, args->regs); 484 485 /* 486 * Set up resume flag to avoid breakpoint recursion when 487 * returning back to origin. 488 */ 489 if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE) 490 args->regs->flags |= X86_EFLAGS_RF; 491 492 rcu_read_unlock(); 493 } 494 /* 495 * Further processing in do_debug() is needed for a) user-space 496 * breakpoints (to generate signals) and b) when the system has 497 * taken exception due to multiple causes 498 */ 499 if ((current->thread.debugreg6 & DR_TRAP_BITS) || 500 (dr6 & (~DR_TRAP_BITS))) 501 rc = NOTIFY_DONE; 502 503 set_debugreg(dr7, 7); 504 put_cpu(); 505 506 return rc; 507 } 508 509 /* 510 * Handle debug exception notifications. 511 */ 512 int __kprobes hw_breakpoint_exceptions_notify( 513 struct notifier_block *unused, unsigned long val, void *data) 514 { 515 if (val != DIE_DEBUG) 516 return NOTIFY_DONE; 517 518 return hw_breakpoint_handler(data); 519 } 520 521 void hw_breakpoint_pmu_read(struct perf_event *bp) 522 { 523 /* TODO */ 524 } 525