xref: /linux/arch/x86/kernel/hpet.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/sysdev.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
15 
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19 
20 #define HPET_MASK			CLOCKSOURCE_MASK(32)
21 
22 /* FSEC = 10^-15
23    NSEC = 10^-9 */
24 #define FSEC_PER_NSEC			1000000L
25 
26 #define HPET_DEV_USED_BIT		2
27 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID			0x8
29 #define HPET_DEV_FSB_CAP		0x1000
30 #define HPET_DEV_PERI_CAP		0x2000
31 
32 #define HPET_MIN_CYCLES			128
33 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34 
35 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
36 
37 /*
38  * HPET address is set in acpi/boot.c, when an ACPI entry exists
39  */
40 unsigned long				hpet_address;
41 u8					hpet_blockid; /* OS timer block num */
42 u8					hpet_msi_disable;
43 
44 #ifdef CONFIG_PCI_MSI
45 static unsigned long			hpet_num_timers;
46 #endif
47 static void __iomem			*hpet_virt_address;
48 
49 struct hpet_dev {
50 	struct clock_event_device	evt;
51 	unsigned int			num;
52 	int				cpu;
53 	unsigned int			irq;
54 	unsigned int			flags;
55 	char				name[10];
56 };
57 
58 inline unsigned int hpet_readl(unsigned int a)
59 {
60 	return readl(hpet_virt_address + a);
61 }
62 
63 static inline void hpet_writel(unsigned int d, unsigned int a)
64 {
65 	writel(d, hpet_virt_address + a);
66 }
67 
68 #ifdef CONFIG_X86_64
69 #include <asm/pgtable.h>
70 #endif
71 
72 static inline void hpet_set_mapping(void)
73 {
74 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
75 #ifdef CONFIG_X86_64
76 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
77 #endif
78 }
79 
80 static inline void hpet_clear_mapping(void)
81 {
82 	iounmap(hpet_virt_address);
83 	hpet_virt_address = NULL;
84 }
85 
86 /*
87  * HPET command line enable / disable
88  */
89 static int boot_hpet_disable;
90 int hpet_force_user;
91 static int hpet_verbose;
92 
93 static int __init hpet_setup(char *str)
94 {
95 	if (str) {
96 		if (!strncmp("disable", str, 7))
97 			boot_hpet_disable = 1;
98 		if (!strncmp("force", str, 5))
99 			hpet_force_user = 1;
100 		if (!strncmp("verbose", str, 7))
101 			hpet_verbose = 1;
102 	}
103 	return 1;
104 }
105 __setup("hpet=", hpet_setup);
106 
107 static int __init disable_hpet(char *str)
108 {
109 	boot_hpet_disable = 1;
110 	return 1;
111 }
112 __setup("nohpet", disable_hpet);
113 
114 static inline int is_hpet_capable(void)
115 {
116 	return !boot_hpet_disable && hpet_address;
117 }
118 
119 /*
120  * HPET timer interrupt enable / disable
121  */
122 static int hpet_legacy_int_enabled;
123 
124 /**
125  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
126  */
127 int is_hpet_enabled(void)
128 {
129 	return is_hpet_capable() && hpet_legacy_int_enabled;
130 }
131 EXPORT_SYMBOL_GPL(is_hpet_enabled);
132 
133 static void _hpet_print_config(const char *function, int line)
134 {
135 	u32 i, timers, l, h;
136 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
137 	l = hpet_readl(HPET_ID);
138 	h = hpet_readl(HPET_PERIOD);
139 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
140 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
141 	l = hpet_readl(HPET_CFG);
142 	h = hpet_readl(HPET_STATUS);
143 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
144 	l = hpet_readl(HPET_COUNTER);
145 	h = hpet_readl(HPET_COUNTER+4);
146 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
147 
148 	for (i = 0; i < timers; i++) {
149 		l = hpet_readl(HPET_Tn_CFG(i));
150 		h = hpet_readl(HPET_Tn_CFG(i)+4);
151 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
152 		       i, l, h);
153 		l = hpet_readl(HPET_Tn_CMP(i));
154 		h = hpet_readl(HPET_Tn_CMP(i)+4);
155 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
156 		       i, l, h);
157 		l = hpet_readl(HPET_Tn_ROUTE(i));
158 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
159 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
160 		       i, l, h);
161 	}
162 }
163 
164 #define hpet_print_config()					\
165 do {								\
166 	if (hpet_verbose)					\
167 		_hpet_print_config(__FUNCTION__, __LINE__);	\
168 } while (0)
169 
170 /*
171  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
172  * timer 0 and timer 1 in case of RTC emulation.
173  */
174 #ifdef CONFIG_HPET
175 
176 static void hpet_reserve_msi_timers(struct hpet_data *hd);
177 
178 static void hpet_reserve_platform_timers(unsigned int id)
179 {
180 	struct hpet __iomem *hpet = hpet_virt_address;
181 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
182 	unsigned int nrtimers, i;
183 	struct hpet_data hd;
184 
185 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
186 
187 	memset(&hd, 0, sizeof(hd));
188 	hd.hd_phys_address	= hpet_address;
189 	hd.hd_address		= hpet;
190 	hd.hd_nirqs		= nrtimers;
191 	hpet_reserve_timer(&hd, 0);
192 
193 #ifdef CONFIG_HPET_EMULATE_RTC
194 	hpet_reserve_timer(&hd, 1);
195 #endif
196 
197 	/*
198 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
199 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
200 	 * don't bother configuring *any* comparator interrupts.
201 	 */
202 	hd.hd_irq[0] = HPET_LEGACY_8254;
203 	hd.hd_irq[1] = HPET_LEGACY_RTC;
204 
205 	for (i = 2; i < nrtimers; timer++, i++) {
206 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
207 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
208 	}
209 
210 	hpet_reserve_msi_timers(&hd);
211 
212 	hpet_alloc(&hd);
213 
214 }
215 #else
216 static void hpet_reserve_platform_timers(unsigned int id) { }
217 #endif
218 
219 /*
220  * Common hpet info
221  */
222 static unsigned long hpet_freq;
223 
224 static void hpet_legacy_set_mode(enum clock_event_mode mode,
225 			  struct clock_event_device *evt);
226 static int hpet_legacy_next_event(unsigned long delta,
227 			   struct clock_event_device *evt);
228 
229 /*
230  * The hpet clock event device
231  */
232 static struct clock_event_device hpet_clockevent = {
233 	.name		= "hpet",
234 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
235 	.set_mode	= hpet_legacy_set_mode,
236 	.set_next_event = hpet_legacy_next_event,
237 	.irq		= 0,
238 	.rating		= 50,
239 };
240 
241 static void hpet_stop_counter(void)
242 {
243 	unsigned long cfg = hpet_readl(HPET_CFG);
244 	cfg &= ~HPET_CFG_ENABLE;
245 	hpet_writel(cfg, HPET_CFG);
246 }
247 
248 static void hpet_reset_counter(void)
249 {
250 	hpet_writel(0, HPET_COUNTER);
251 	hpet_writel(0, HPET_COUNTER + 4);
252 }
253 
254 static void hpet_start_counter(void)
255 {
256 	unsigned int cfg = hpet_readl(HPET_CFG);
257 	cfg |= HPET_CFG_ENABLE;
258 	hpet_writel(cfg, HPET_CFG);
259 }
260 
261 static void hpet_restart_counter(void)
262 {
263 	hpet_stop_counter();
264 	hpet_reset_counter();
265 	hpet_start_counter();
266 }
267 
268 static void hpet_resume_device(void)
269 {
270 	force_hpet_resume();
271 }
272 
273 static void hpet_resume_counter(struct clocksource *cs)
274 {
275 	hpet_resume_device();
276 	hpet_restart_counter();
277 }
278 
279 static void hpet_enable_legacy_int(void)
280 {
281 	unsigned int cfg = hpet_readl(HPET_CFG);
282 
283 	cfg |= HPET_CFG_LEGACY;
284 	hpet_writel(cfg, HPET_CFG);
285 	hpet_legacy_int_enabled = 1;
286 }
287 
288 static void hpet_legacy_clockevent_register(void)
289 {
290 	/* Start HPET legacy interrupts */
291 	hpet_enable_legacy_int();
292 
293 	/*
294 	 * Start hpet with the boot cpu mask and make it
295 	 * global after the IO_APIC has been initialized.
296 	 */
297 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
298 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
299 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
300 	global_clock_event = &hpet_clockevent;
301 	printk(KERN_DEBUG "hpet clockevent registered\n");
302 }
303 
304 static int hpet_setup_msi_irq(unsigned int irq);
305 
306 static void hpet_set_mode(enum clock_event_mode mode,
307 			  struct clock_event_device *evt, int timer)
308 {
309 	unsigned int cfg, cmp, now;
310 	uint64_t delta;
311 
312 	switch (mode) {
313 	case CLOCK_EVT_MODE_PERIODIC:
314 		hpet_stop_counter();
315 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
316 		delta >>= evt->shift;
317 		now = hpet_readl(HPET_COUNTER);
318 		cmp = now + (unsigned int) delta;
319 		cfg = hpet_readl(HPET_Tn_CFG(timer));
320 		/* Make sure we use edge triggered interrupts */
321 		cfg &= ~HPET_TN_LEVEL;
322 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
323 		       HPET_TN_SETVAL | HPET_TN_32BIT;
324 		hpet_writel(cfg, HPET_Tn_CFG(timer));
325 		hpet_writel(cmp, HPET_Tn_CMP(timer));
326 		udelay(1);
327 		/*
328 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
329 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
330 		 * bit is automatically cleared after the first write.
331 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
332 		 * Publication # 24674)
333 		 */
334 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
335 		hpet_start_counter();
336 		hpet_print_config();
337 		break;
338 
339 	case CLOCK_EVT_MODE_ONESHOT:
340 		cfg = hpet_readl(HPET_Tn_CFG(timer));
341 		cfg &= ~HPET_TN_PERIODIC;
342 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
343 		hpet_writel(cfg, HPET_Tn_CFG(timer));
344 		break;
345 
346 	case CLOCK_EVT_MODE_UNUSED:
347 	case CLOCK_EVT_MODE_SHUTDOWN:
348 		cfg = hpet_readl(HPET_Tn_CFG(timer));
349 		cfg &= ~HPET_TN_ENABLE;
350 		hpet_writel(cfg, HPET_Tn_CFG(timer));
351 		break;
352 
353 	case CLOCK_EVT_MODE_RESUME:
354 		if (timer == 0) {
355 			hpet_enable_legacy_int();
356 		} else {
357 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
358 			hpet_setup_msi_irq(hdev->irq);
359 			disable_irq(hdev->irq);
360 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
361 			enable_irq(hdev->irq);
362 		}
363 		hpet_print_config();
364 		break;
365 	}
366 }
367 
368 static int hpet_next_event(unsigned long delta,
369 			   struct clock_event_device *evt, int timer)
370 {
371 	u32 cnt;
372 	s32 res;
373 
374 	cnt = hpet_readl(HPET_COUNTER);
375 	cnt += (u32) delta;
376 	hpet_writel(cnt, HPET_Tn_CMP(timer));
377 
378 	/*
379 	 * HPETs are a complete disaster. The compare register is
380 	 * based on a equal comparison and neither provides a less
381 	 * than or equal functionality (which would require to take
382 	 * the wraparound into account) nor a simple count down event
383 	 * mode. Further the write to the comparator register is
384 	 * delayed internally up to two HPET clock cycles in certain
385 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
386 	 * longer delays. We worked around that by reading back the
387 	 * compare register, but that required another workaround for
388 	 * ICH9,10 chips where the first readout after write can
389 	 * return the old stale value. We already had a minimum
390 	 * programming delta of 5us enforced, but a NMI or SMI hitting
391 	 * between the counter readout and the comparator write can
392 	 * move us behind that point easily. Now instead of reading
393 	 * the compare register back several times, we make the ETIME
394 	 * decision based on the following: Return ETIME if the
395 	 * counter value after the write is less than HPET_MIN_CYCLES
396 	 * away from the event or if the counter is already ahead of
397 	 * the event. The minimum programming delta for the generic
398 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
399 	 */
400 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
401 
402 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
403 }
404 
405 static void hpet_legacy_set_mode(enum clock_event_mode mode,
406 			struct clock_event_device *evt)
407 {
408 	hpet_set_mode(mode, evt, 0);
409 }
410 
411 static int hpet_legacy_next_event(unsigned long delta,
412 			struct clock_event_device *evt)
413 {
414 	return hpet_next_event(delta, evt, 0);
415 }
416 
417 /*
418  * HPET MSI Support
419  */
420 #ifdef CONFIG_PCI_MSI
421 
422 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
423 static struct hpet_dev	*hpet_devs;
424 
425 void hpet_msi_unmask(struct irq_data *data)
426 {
427 	struct hpet_dev *hdev = data->handler_data;
428 	unsigned int cfg;
429 
430 	/* unmask it */
431 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
432 	cfg |= HPET_TN_FSB;
433 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
434 }
435 
436 void hpet_msi_mask(struct irq_data *data)
437 {
438 	struct hpet_dev *hdev = data->handler_data;
439 	unsigned int cfg;
440 
441 	/* mask it */
442 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
443 	cfg &= ~HPET_TN_FSB;
444 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
445 }
446 
447 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
448 {
449 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
450 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
451 }
452 
453 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
454 {
455 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
456 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
457 	msg->address_hi = 0;
458 }
459 
460 static void hpet_msi_set_mode(enum clock_event_mode mode,
461 				struct clock_event_device *evt)
462 {
463 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
464 	hpet_set_mode(mode, evt, hdev->num);
465 }
466 
467 static int hpet_msi_next_event(unsigned long delta,
468 				struct clock_event_device *evt)
469 {
470 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
471 	return hpet_next_event(delta, evt, hdev->num);
472 }
473 
474 static int hpet_setup_msi_irq(unsigned int irq)
475 {
476 	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
477 		destroy_irq(irq);
478 		return -EINVAL;
479 	}
480 	return 0;
481 }
482 
483 static int hpet_assign_irq(struct hpet_dev *dev)
484 {
485 	unsigned int irq;
486 
487 	irq = create_irq_nr(0, -1);
488 	if (!irq)
489 		return -EINVAL;
490 
491 	irq_set_handler_data(irq, dev);
492 
493 	if (hpet_setup_msi_irq(irq))
494 		return -EINVAL;
495 
496 	dev->irq = irq;
497 	return 0;
498 }
499 
500 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
501 {
502 	struct hpet_dev *dev = (struct hpet_dev *)data;
503 	struct clock_event_device *hevt = &dev->evt;
504 
505 	if (!hevt->event_handler) {
506 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
507 				dev->num);
508 		return IRQ_HANDLED;
509 	}
510 
511 	hevt->event_handler(hevt);
512 	return IRQ_HANDLED;
513 }
514 
515 static int hpet_setup_irq(struct hpet_dev *dev)
516 {
517 
518 	if (request_irq(dev->irq, hpet_interrupt_handler,
519 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
520 			dev->name, dev))
521 		return -1;
522 
523 	disable_irq(dev->irq);
524 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
525 	enable_irq(dev->irq);
526 
527 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
528 			 dev->name, dev->irq);
529 
530 	return 0;
531 }
532 
533 /* This should be called in specific @cpu */
534 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
535 {
536 	struct clock_event_device *evt = &hdev->evt;
537 
538 	WARN_ON(cpu != smp_processor_id());
539 	if (!(hdev->flags & HPET_DEV_VALID))
540 		return;
541 
542 	if (hpet_setup_msi_irq(hdev->irq))
543 		return;
544 
545 	hdev->cpu = cpu;
546 	per_cpu(cpu_hpet_dev, cpu) = hdev;
547 	evt->name = hdev->name;
548 	hpet_setup_irq(hdev);
549 	evt->irq = hdev->irq;
550 
551 	evt->rating = 110;
552 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
553 	if (hdev->flags & HPET_DEV_PERI_CAP)
554 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
555 
556 	evt->set_mode = hpet_msi_set_mode;
557 	evt->set_next_event = hpet_msi_next_event;
558 	evt->cpumask = cpumask_of(hdev->cpu);
559 
560 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
561 					0x7FFFFFFF);
562 }
563 
564 #ifdef CONFIG_HPET
565 /* Reserve at least one timer for userspace (/dev/hpet) */
566 #define RESERVE_TIMERS 1
567 #else
568 #define RESERVE_TIMERS 0
569 #endif
570 
571 static void hpet_msi_capability_lookup(unsigned int start_timer)
572 {
573 	unsigned int id;
574 	unsigned int num_timers;
575 	unsigned int num_timers_used = 0;
576 	int i;
577 
578 	if (hpet_msi_disable)
579 		return;
580 
581 	if (boot_cpu_has(X86_FEATURE_ARAT))
582 		return;
583 	id = hpet_readl(HPET_ID);
584 
585 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
586 	num_timers++; /* Value read out starts from 0 */
587 	hpet_print_config();
588 
589 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
590 	if (!hpet_devs)
591 		return;
592 
593 	hpet_num_timers = num_timers;
594 
595 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
596 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
597 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
598 
599 		/* Only consider HPET timer with MSI support */
600 		if (!(cfg & HPET_TN_FSB_CAP))
601 			continue;
602 
603 		hdev->flags = 0;
604 		if (cfg & HPET_TN_PERIODIC_CAP)
605 			hdev->flags |= HPET_DEV_PERI_CAP;
606 		hdev->num = i;
607 
608 		sprintf(hdev->name, "hpet%d", i);
609 		if (hpet_assign_irq(hdev))
610 			continue;
611 
612 		hdev->flags |= HPET_DEV_FSB_CAP;
613 		hdev->flags |= HPET_DEV_VALID;
614 		num_timers_used++;
615 		if (num_timers_used == num_possible_cpus())
616 			break;
617 	}
618 
619 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
620 		num_timers, num_timers_used);
621 }
622 
623 #ifdef CONFIG_HPET
624 static void hpet_reserve_msi_timers(struct hpet_data *hd)
625 {
626 	int i;
627 
628 	if (!hpet_devs)
629 		return;
630 
631 	for (i = 0; i < hpet_num_timers; i++) {
632 		struct hpet_dev *hdev = &hpet_devs[i];
633 
634 		if (!(hdev->flags & HPET_DEV_VALID))
635 			continue;
636 
637 		hd->hd_irq[hdev->num] = hdev->irq;
638 		hpet_reserve_timer(hd, hdev->num);
639 	}
640 }
641 #endif
642 
643 static struct hpet_dev *hpet_get_unused_timer(void)
644 {
645 	int i;
646 
647 	if (!hpet_devs)
648 		return NULL;
649 
650 	for (i = 0; i < hpet_num_timers; i++) {
651 		struct hpet_dev *hdev = &hpet_devs[i];
652 
653 		if (!(hdev->flags & HPET_DEV_VALID))
654 			continue;
655 		if (test_and_set_bit(HPET_DEV_USED_BIT,
656 			(unsigned long *)&hdev->flags))
657 			continue;
658 		return hdev;
659 	}
660 	return NULL;
661 }
662 
663 struct hpet_work_struct {
664 	struct delayed_work work;
665 	struct completion complete;
666 };
667 
668 static void hpet_work(struct work_struct *w)
669 {
670 	struct hpet_dev *hdev;
671 	int cpu = smp_processor_id();
672 	struct hpet_work_struct *hpet_work;
673 
674 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
675 
676 	hdev = hpet_get_unused_timer();
677 	if (hdev)
678 		init_one_hpet_msi_clockevent(hdev, cpu);
679 
680 	complete(&hpet_work->complete);
681 }
682 
683 static int hpet_cpuhp_notify(struct notifier_block *n,
684 		unsigned long action, void *hcpu)
685 {
686 	unsigned long cpu = (unsigned long)hcpu;
687 	struct hpet_work_struct work;
688 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
689 
690 	switch (action & 0xf) {
691 	case CPU_ONLINE:
692 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
693 		init_completion(&work.complete);
694 		/* FIXME: add schedule_work_on() */
695 		schedule_delayed_work_on(cpu, &work.work, 0);
696 		wait_for_completion(&work.complete);
697 		destroy_timer_on_stack(&work.work.timer);
698 		break;
699 	case CPU_DEAD:
700 		if (hdev) {
701 			free_irq(hdev->irq, hdev);
702 			hdev->flags &= ~HPET_DEV_USED;
703 			per_cpu(cpu_hpet_dev, cpu) = NULL;
704 		}
705 		break;
706 	}
707 	return NOTIFY_OK;
708 }
709 #else
710 
711 static int hpet_setup_msi_irq(unsigned int irq)
712 {
713 	return 0;
714 }
715 static void hpet_msi_capability_lookup(unsigned int start_timer)
716 {
717 	return;
718 }
719 
720 #ifdef CONFIG_HPET
721 static void hpet_reserve_msi_timers(struct hpet_data *hd)
722 {
723 	return;
724 }
725 #endif
726 
727 static int hpet_cpuhp_notify(struct notifier_block *n,
728 		unsigned long action, void *hcpu)
729 {
730 	return NOTIFY_OK;
731 }
732 
733 #endif
734 
735 /*
736  * Clock source related code
737  */
738 static cycle_t read_hpet(struct clocksource *cs)
739 {
740 	return (cycle_t)hpet_readl(HPET_COUNTER);
741 }
742 
743 static struct clocksource clocksource_hpet = {
744 	.name		= "hpet",
745 	.rating		= 250,
746 	.read		= read_hpet,
747 	.mask		= HPET_MASK,
748 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
749 	.resume		= hpet_resume_counter,
750 #ifdef CONFIG_X86_64
751 	.archdata	= { .vclock_mode = VCLOCK_HPET },
752 #endif
753 };
754 
755 static int hpet_clocksource_register(void)
756 {
757 	u64 start, now;
758 	cycle_t t1;
759 
760 	/* Start the counter */
761 	hpet_restart_counter();
762 
763 	/* Verify whether hpet counter works */
764 	t1 = hpet_readl(HPET_COUNTER);
765 	rdtscll(start);
766 
767 	/*
768 	 * We don't know the TSC frequency yet, but waiting for
769 	 * 200000 TSC cycles is safe:
770 	 * 4 GHz == 50us
771 	 * 1 GHz == 200us
772 	 */
773 	do {
774 		rep_nop();
775 		rdtscll(now);
776 	} while ((now - start) < 200000UL);
777 
778 	if (t1 == hpet_readl(HPET_COUNTER)) {
779 		printk(KERN_WARNING
780 		       "HPET counter not counting. HPET disabled\n");
781 		return -ENODEV;
782 	}
783 
784 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
785 	return 0;
786 }
787 
788 /**
789  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
790  */
791 int __init hpet_enable(void)
792 {
793 	unsigned long hpet_period;
794 	unsigned int id;
795 	u64 freq;
796 	int i;
797 
798 	if (!is_hpet_capable())
799 		return 0;
800 
801 	hpet_set_mapping();
802 
803 	/*
804 	 * Read the period and check for a sane value:
805 	 */
806 	hpet_period = hpet_readl(HPET_PERIOD);
807 
808 	/*
809 	 * AMD SB700 based systems with spread spectrum enabled use a
810 	 * SMM based HPET emulation to provide proper frequency
811 	 * setting. The SMM code is initialized with the first HPET
812 	 * register access and takes some time to complete. During
813 	 * this time the config register reads 0xffffffff. We check
814 	 * for max. 1000 loops whether the config register reads a non
815 	 * 0xffffffff value to make sure that HPET is up and running
816 	 * before we go further. A counting loop is safe, as the HPET
817 	 * access takes thousands of CPU cycles. On non SB700 based
818 	 * machines this check is only done once and has no side
819 	 * effects.
820 	 */
821 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
822 		if (i == 1000) {
823 			printk(KERN_WARNING
824 			       "HPET config register value = 0xFFFFFFFF. "
825 			       "Disabling HPET\n");
826 			goto out_nohpet;
827 		}
828 	}
829 
830 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
831 		goto out_nohpet;
832 
833 	/*
834 	 * The period is a femto seconds value. Convert it to a
835 	 * frequency.
836 	 */
837 	freq = FSEC_PER_SEC;
838 	do_div(freq, hpet_period);
839 	hpet_freq = freq;
840 
841 	/*
842 	 * Read the HPET ID register to retrieve the IRQ routing
843 	 * information and the number of channels
844 	 */
845 	id = hpet_readl(HPET_ID);
846 	hpet_print_config();
847 
848 #ifdef CONFIG_HPET_EMULATE_RTC
849 	/*
850 	 * The legacy routing mode needs at least two channels, tick timer
851 	 * and the rtc emulation channel.
852 	 */
853 	if (!(id & HPET_ID_NUMBER))
854 		goto out_nohpet;
855 #endif
856 
857 	if (hpet_clocksource_register())
858 		goto out_nohpet;
859 
860 	if (id & HPET_ID_LEGSUP) {
861 		hpet_legacy_clockevent_register();
862 		return 1;
863 	}
864 	return 0;
865 
866 out_nohpet:
867 	hpet_clear_mapping();
868 	hpet_address = 0;
869 	return 0;
870 }
871 
872 /*
873  * Needs to be late, as the reserve_timer code calls kalloc !
874  *
875  * Not a problem on i386 as hpet_enable is called from late_time_init,
876  * but on x86_64 it is necessary !
877  */
878 static __init int hpet_late_init(void)
879 {
880 	int cpu;
881 
882 	if (boot_hpet_disable)
883 		return -ENODEV;
884 
885 	if (!hpet_address) {
886 		if (!force_hpet_address)
887 			return -ENODEV;
888 
889 		hpet_address = force_hpet_address;
890 		hpet_enable();
891 	}
892 
893 	if (!hpet_virt_address)
894 		return -ENODEV;
895 
896 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
897 		hpet_msi_capability_lookup(2);
898 	else
899 		hpet_msi_capability_lookup(0);
900 
901 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
902 	hpet_print_config();
903 
904 	if (hpet_msi_disable)
905 		return 0;
906 
907 	if (boot_cpu_has(X86_FEATURE_ARAT))
908 		return 0;
909 
910 	for_each_online_cpu(cpu) {
911 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
912 	}
913 
914 	/* This notifier should be called after workqueue is ready */
915 	hotcpu_notifier(hpet_cpuhp_notify, -20);
916 
917 	return 0;
918 }
919 fs_initcall(hpet_late_init);
920 
921 void hpet_disable(void)
922 {
923 	if (is_hpet_capable() && hpet_virt_address) {
924 		unsigned int cfg = hpet_readl(HPET_CFG);
925 
926 		if (hpet_legacy_int_enabled) {
927 			cfg &= ~HPET_CFG_LEGACY;
928 			hpet_legacy_int_enabled = 0;
929 		}
930 		cfg &= ~HPET_CFG_ENABLE;
931 		hpet_writel(cfg, HPET_CFG);
932 	}
933 }
934 
935 #ifdef CONFIG_HPET_EMULATE_RTC
936 
937 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
938  * is enabled, we support RTC interrupt functionality in software.
939  * RTC has 3 kinds of interrupts:
940  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
941  *    is updated
942  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
943  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
944  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
945  * (1) and (2) above are implemented using polling at a frequency of
946  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
947  * overhead. (DEFAULT_RTC_INT_FREQ)
948  * For (3), we use interrupts at 64Hz or user specified periodic
949  * frequency, whichever is higher.
950  */
951 #include <linux/mc146818rtc.h>
952 #include <linux/rtc.h>
953 #include <asm/rtc.h>
954 
955 #define DEFAULT_RTC_INT_FREQ	64
956 #define DEFAULT_RTC_SHIFT	6
957 #define RTC_NUM_INTS		1
958 
959 static unsigned long hpet_rtc_flags;
960 static int hpet_prev_update_sec;
961 static struct rtc_time hpet_alarm_time;
962 static unsigned long hpet_pie_count;
963 static u32 hpet_t1_cmp;
964 static u32 hpet_default_delta;
965 static u32 hpet_pie_delta;
966 static unsigned long hpet_pie_limit;
967 
968 static rtc_irq_handler irq_handler;
969 
970 /*
971  * Check that the hpet counter c1 is ahead of the c2
972  */
973 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
974 {
975 	return (s32)(c2 - c1) < 0;
976 }
977 
978 /*
979  * Registers a IRQ handler.
980  */
981 int hpet_register_irq_handler(rtc_irq_handler handler)
982 {
983 	if (!is_hpet_enabled())
984 		return -ENODEV;
985 	if (irq_handler)
986 		return -EBUSY;
987 
988 	irq_handler = handler;
989 
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
993 
994 /*
995  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
996  * and does cleanup.
997  */
998 void hpet_unregister_irq_handler(rtc_irq_handler handler)
999 {
1000 	if (!is_hpet_enabled())
1001 		return;
1002 
1003 	irq_handler = NULL;
1004 	hpet_rtc_flags = 0;
1005 }
1006 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1007 
1008 /*
1009  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1010  * is not supported by all HPET implementations for timer 1.
1011  *
1012  * hpet_rtc_timer_init() is called when the rtc is initialized.
1013  */
1014 int hpet_rtc_timer_init(void)
1015 {
1016 	unsigned int cfg, cnt, delta;
1017 	unsigned long flags;
1018 
1019 	if (!is_hpet_enabled())
1020 		return 0;
1021 
1022 	if (!hpet_default_delta) {
1023 		uint64_t clc;
1024 
1025 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1026 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1027 		hpet_default_delta = clc;
1028 	}
1029 
1030 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1031 		delta = hpet_default_delta;
1032 	else
1033 		delta = hpet_pie_delta;
1034 
1035 	local_irq_save(flags);
1036 
1037 	cnt = delta + hpet_readl(HPET_COUNTER);
1038 	hpet_writel(cnt, HPET_T1_CMP);
1039 	hpet_t1_cmp = cnt;
1040 
1041 	cfg = hpet_readl(HPET_T1_CFG);
1042 	cfg &= ~HPET_TN_PERIODIC;
1043 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1044 	hpet_writel(cfg, HPET_T1_CFG);
1045 
1046 	local_irq_restore(flags);
1047 
1048 	return 1;
1049 }
1050 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1051 
1052 /*
1053  * The functions below are called from rtc driver.
1054  * Return 0 if HPET is not being used.
1055  * Otherwise do the necessary changes and return 1.
1056  */
1057 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1058 {
1059 	if (!is_hpet_enabled())
1060 		return 0;
1061 
1062 	hpet_rtc_flags &= ~bit_mask;
1063 	return 1;
1064 }
1065 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1066 
1067 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1068 {
1069 	unsigned long oldbits = hpet_rtc_flags;
1070 
1071 	if (!is_hpet_enabled())
1072 		return 0;
1073 
1074 	hpet_rtc_flags |= bit_mask;
1075 
1076 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1077 		hpet_prev_update_sec = -1;
1078 
1079 	if (!oldbits)
1080 		hpet_rtc_timer_init();
1081 
1082 	return 1;
1083 }
1084 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1085 
1086 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1087 			unsigned char sec)
1088 {
1089 	if (!is_hpet_enabled())
1090 		return 0;
1091 
1092 	hpet_alarm_time.tm_hour = hrs;
1093 	hpet_alarm_time.tm_min = min;
1094 	hpet_alarm_time.tm_sec = sec;
1095 
1096 	return 1;
1097 }
1098 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1099 
1100 int hpet_set_periodic_freq(unsigned long freq)
1101 {
1102 	uint64_t clc;
1103 
1104 	if (!is_hpet_enabled())
1105 		return 0;
1106 
1107 	if (freq <= DEFAULT_RTC_INT_FREQ)
1108 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1109 	else {
1110 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1111 		do_div(clc, freq);
1112 		clc >>= hpet_clockevent.shift;
1113 		hpet_pie_delta = clc;
1114 		hpet_pie_limit = 0;
1115 	}
1116 	return 1;
1117 }
1118 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1119 
1120 int hpet_rtc_dropped_irq(void)
1121 {
1122 	return is_hpet_enabled();
1123 }
1124 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1125 
1126 static void hpet_rtc_timer_reinit(void)
1127 {
1128 	unsigned int cfg, delta;
1129 	int lost_ints = -1;
1130 
1131 	if (unlikely(!hpet_rtc_flags)) {
1132 		cfg = hpet_readl(HPET_T1_CFG);
1133 		cfg &= ~HPET_TN_ENABLE;
1134 		hpet_writel(cfg, HPET_T1_CFG);
1135 		return;
1136 	}
1137 
1138 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1139 		delta = hpet_default_delta;
1140 	else
1141 		delta = hpet_pie_delta;
1142 
1143 	/*
1144 	 * Increment the comparator value until we are ahead of the
1145 	 * current count.
1146 	 */
1147 	do {
1148 		hpet_t1_cmp += delta;
1149 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1150 		lost_ints++;
1151 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1152 
1153 	if (lost_ints) {
1154 		if (hpet_rtc_flags & RTC_PIE)
1155 			hpet_pie_count += lost_ints;
1156 		if (printk_ratelimit())
1157 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1158 				lost_ints);
1159 	}
1160 }
1161 
1162 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1163 {
1164 	struct rtc_time curr_time;
1165 	unsigned long rtc_int_flag = 0;
1166 
1167 	hpet_rtc_timer_reinit();
1168 	memset(&curr_time, 0, sizeof(struct rtc_time));
1169 
1170 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1171 		get_rtc_time(&curr_time);
1172 
1173 	if (hpet_rtc_flags & RTC_UIE &&
1174 	    curr_time.tm_sec != hpet_prev_update_sec) {
1175 		if (hpet_prev_update_sec >= 0)
1176 			rtc_int_flag = RTC_UF;
1177 		hpet_prev_update_sec = curr_time.tm_sec;
1178 	}
1179 
1180 	if (hpet_rtc_flags & RTC_PIE &&
1181 	    ++hpet_pie_count >= hpet_pie_limit) {
1182 		rtc_int_flag |= RTC_PF;
1183 		hpet_pie_count = 0;
1184 	}
1185 
1186 	if (hpet_rtc_flags & RTC_AIE &&
1187 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1188 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1189 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1190 			rtc_int_flag |= RTC_AF;
1191 
1192 	if (rtc_int_flag) {
1193 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1194 		if (irq_handler)
1195 			irq_handler(rtc_int_flag, dev_id);
1196 	}
1197 	return IRQ_HANDLED;
1198 }
1199 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1200 #endif
1201