xref: /linux/arch/x86/kernel/hpet.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9 
10 #include <asm/fixmap.h>
11 #include <asm/hpet.h>
12 #include <asm/i8253.h>
13 #include <asm/io.h>
14 
15 #define HPET_MASK	CLOCKSOURCE_MASK(32)
16 #define HPET_SHIFT	22
17 
18 /* FSEC = 10^-15
19    NSEC = 10^-9 */
20 #define FSEC_PER_NSEC	1000000
21 
22 /*
23  * HPET address is set in acpi/boot.c, when an ACPI entry exists
24  */
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
27 
28 unsigned long hpet_readl(unsigned long a)
29 {
30 	return readl(hpet_virt_address + a);
31 }
32 
33 static inline void hpet_writel(unsigned long d, unsigned long a)
34 {
35 	writel(d, hpet_virt_address + a);
36 }
37 
38 #ifdef CONFIG_X86_64
39 
40 #include <asm/pgtable.h>
41 
42 static inline void hpet_set_mapping(void)
43 {
44 	set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 	hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
47 }
48 
49 static inline void hpet_clear_mapping(void)
50 {
51 	hpet_virt_address = NULL;
52 }
53 
54 #else
55 
56 static inline void hpet_set_mapping(void)
57 {
58 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
59 }
60 
61 static inline void hpet_clear_mapping(void)
62 {
63 	iounmap(hpet_virt_address);
64 	hpet_virt_address = NULL;
65 }
66 #endif
67 
68 /*
69  * HPET command line enable / disable
70  */
71 static int boot_hpet_disable;
72 int hpet_force_user;
73 
74 static int __init hpet_setup(char* str)
75 {
76 	if (str) {
77 		if (!strncmp("disable", str, 7))
78 			boot_hpet_disable = 1;
79 		if (!strncmp("force", str, 5))
80 			hpet_force_user = 1;
81 	}
82 	return 1;
83 }
84 __setup("hpet=", hpet_setup);
85 
86 static int __init disable_hpet(char *str)
87 {
88 	boot_hpet_disable = 1;
89 	return 1;
90 }
91 __setup("nohpet", disable_hpet);
92 
93 static inline int is_hpet_capable(void)
94 {
95 	return (!boot_hpet_disable && hpet_address);
96 }
97 
98 /*
99  * HPET timer interrupt enable / disable
100  */
101 static int hpet_legacy_int_enabled;
102 
103 /**
104  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
105  */
106 int is_hpet_enabled(void)
107 {
108 	return is_hpet_capable() && hpet_legacy_int_enabled;
109 }
110 EXPORT_SYMBOL_GPL(is_hpet_enabled);
111 
112 /*
113  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
114  * timer 0 and timer 1 in case of RTC emulation.
115  */
116 #ifdef CONFIG_HPET
117 static void hpet_reserve_platform_timers(unsigned long id)
118 {
119 	struct hpet __iomem *hpet = hpet_virt_address;
120 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
121 	unsigned int nrtimers, i;
122 	struct hpet_data hd;
123 
124 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
125 
126 	memset(&hd, 0, sizeof (hd));
127 	hd.hd_phys_address = hpet_address;
128 	hd.hd_address = hpet;
129 	hd.hd_nirqs = nrtimers;
130 	hd.hd_flags = HPET_DATA_PLATFORM;
131 	hpet_reserve_timer(&hd, 0);
132 
133 #ifdef CONFIG_HPET_EMULATE_RTC
134 	hpet_reserve_timer(&hd, 1);
135 #endif
136 	hd.hd_irq[0] = HPET_LEGACY_8254;
137 	hd.hd_irq[1] = HPET_LEGACY_RTC;
138 
139        for (i = 2; i < nrtimers; timer++, i++)
140 	       hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
141 		       Tn_INT_ROUTE_CNF_SHIFT;
142 	hpet_alloc(&hd);
143 }
144 #else
145 static void hpet_reserve_platform_timers(unsigned long id) { }
146 #endif
147 
148 /*
149  * Common hpet info
150  */
151 static unsigned long hpet_period;
152 
153 static void hpet_legacy_set_mode(enum clock_event_mode mode,
154 			  struct clock_event_device *evt);
155 static int hpet_legacy_next_event(unsigned long delta,
156 			   struct clock_event_device *evt);
157 
158 /*
159  * The hpet clock event device
160  */
161 static struct clock_event_device hpet_clockevent = {
162 	.name		= "hpet",
163 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
164 	.set_mode	= hpet_legacy_set_mode,
165 	.set_next_event = hpet_legacy_next_event,
166 	.shift		= 32,
167 	.irq		= 0,
168 	.rating		= 50,
169 };
170 
171 static void hpet_start_counter(void)
172 {
173 	unsigned long cfg = hpet_readl(HPET_CFG);
174 
175 	cfg &= ~HPET_CFG_ENABLE;
176 	hpet_writel(cfg, HPET_CFG);
177 	hpet_writel(0, HPET_COUNTER);
178 	hpet_writel(0, HPET_COUNTER + 4);
179 	cfg |= HPET_CFG_ENABLE;
180 	hpet_writel(cfg, HPET_CFG);
181 }
182 
183 static void hpet_resume_device(void)
184 {
185 	force_hpet_resume();
186 }
187 
188 static void hpet_restart_counter(void)
189 {
190 	hpet_resume_device();
191 	hpet_start_counter();
192 }
193 
194 static void hpet_enable_legacy_int(void)
195 {
196 	unsigned long cfg = hpet_readl(HPET_CFG);
197 
198 	cfg |= HPET_CFG_LEGACY;
199 	hpet_writel(cfg, HPET_CFG);
200 	hpet_legacy_int_enabled = 1;
201 }
202 
203 static void hpet_legacy_clockevent_register(void)
204 {
205 	uint64_t hpet_freq;
206 
207 	/* Start HPET legacy interrupts */
208 	hpet_enable_legacy_int();
209 
210 	/*
211 	 * The period is a femto seconds value. We need to calculate the
212 	 * scaled math multiplication factor for nanosecond to hpet tick
213 	 * conversion.
214 	 */
215 	hpet_freq = 1000000000000000ULL;
216 	do_div(hpet_freq, hpet_period);
217 	hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
218 				      NSEC_PER_SEC, 32);
219 	/* Calculate the min / max delta */
220 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
221 							   &hpet_clockevent);
222 	hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
223 							   &hpet_clockevent);
224 
225 	/*
226 	 * Start hpet with the boot cpu mask and make it
227 	 * global after the IO_APIC has been initialized.
228 	 */
229 	hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
230 	clockevents_register_device(&hpet_clockevent);
231 	global_clock_event = &hpet_clockevent;
232 	printk(KERN_DEBUG "hpet clockevent registered\n");
233 }
234 
235 static void hpet_legacy_set_mode(enum clock_event_mode mode,
236 			  struct clock_event_device *evt)
237 {
238 	unsigned long cfg, cmp, now;
239 	uint64_t delta;
240 
241 	switch(mode) {
242 	case CLOCK_EVT_MODE_PERIODIC:
243 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
244 		delta >>= hpet_clockevent.shift;
245 		now = hpet_readl(HPET_COUNTER);
246 		cmp = now + (unsigned long) delta;
247 		cfg = hpet_readl(HPET_T0_CFG);
248 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
249 		       HPET_TN_SETVAL | HPET_TN_32BIT;
250 		hpet_writel(cfg, HPET_T0_CFG);
251 		/*
252 		 * The first write after writing TN_SETVAL to the
253 		 * config register sets the counter value, the second
254 		 * write sets the period.
255 		 */
256 		hpet_writel(cmp, HPET_T0_CMP);
257 		udelay(1);
258 		hpet_writel((unsigned long) delta, HPET_T0_CMP);
259 		break;
260 
261 	case CLOCK_EVT_MODE_ONESHOT:
262 		cfg = hpet_readl(HPET_T0_CFG);
263 		cfg &= ~HPET_TN_PERIODIC;
264 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
265 		hpet_writel(cfg, HPET_T0_CFG);
266 		break;
267 
268 	case CLOCK_EVT_MODE_UNUSED:
269 	case CLOCK_EVT_MODE_SHUTDOWN:
270 		cfg = hpet_readl(HPET_T0_CFG);
271 		cfg &= ~HPET_TN_ENABLE;
272 		hpet_writel(cfg, HPET_T0_CFG);
273 		break;
274 
275 	case CLOCK_EVT_MODE_RESUME:
276 		hpet_enable_legacy_int();
277 		break;
278 	}
279 }
280 
281 static int hpet_legacy_next_event(unsigned long delta,
282 			   struct clock_event_device *evt)
283 {
284 	unsigned long cnt;
285 
286 	cnt = hpet_readl(HPET_COUNTER);
287 	cnt += delta;
288 	hpet_writel(cnt, HPET_T0_CMP);
289 
290 	return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
291 }
292 
293 /*
294  * Clock source related code
295  */
296 static cycle_t read_hpet(void)
297 {
298 	return (cycle_t)hpet_readl(HPET_COUNTER);
299 }
300 
301 #ifdef CONFIG_X86_64
302 static cycle_t __vsyscall_fn vread_hpet(void)
303 {
304 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
305 }
306 #endif
307 
308 static struct clocksource clocksource_hpet = {
309 	.name		= "hpet",
310 	.rating		= 250,
311 	.read		= read_hpet,
312 	.mask		= HPET_MASK,
313 	.shift		= HPET_SHIFT,
314 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
315 	.resume		= hpet_restart_counter,
316 #ifdef CONFIG_X86_64
317 	.vread		= vread_hpet,
318 #endif
319 };
320 
321 static int hpet_clocksource_register(void)
322 {
323 	u64 tmp, start, now;
324 	cycle_t t1;
325 
326 	/* Start the counter */
327 	hpet_start_counter();
328 
329 	/* Verify whether hpet counter works */
330 	t1 = read_hpet();
331 	rdtscll(start);
332 
333 	/*
334 	 * We don't know the TSC frequency yet, but waiting for
335 	 * 200000 TSC cycles is safe:
336 	 * 4 GHz == 50us
337 	 * 1 GHz == 200us
338 	 */
339 	do {
340 		rep_nop();
341 		rdtscll(now);
342 	} while ((now - start) < 200000UL);
343 
344 	if (t1 == read_hpet()) {
345 		printk(KERN_WARNING
346 		       "HPET counter not counting. HPET disabled\n");
347 		return -ENODEV;
348 	}
349 
350 	/* Initialize and register HPET clocksource
351 	 *
352 	 * hpet period is in femto seconds per cycle
353 	 * so we need to convert this to ns/cyc units
354 	 * approximated by mult/2^shift
355 	 *
356 	 *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
357 	 *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
358 	 *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
359 	 *  (fsec/cyc << shift)/1000000 = mult
360 	 *  (hpet_period << shift)/FSEC_PER_NSEC = mult
361 	 */
362 	tmp = (u64)hpet_period << HPET_SHIFT;
363 	do_div(tmp, FSEC_PER_NSEC);
364 	clocksource_hpet.mult = (u32)tmp;
365 
366 	clocksource_register(&clocksource_hpet);
367 
368 	return 0;
369 }
370 
371 /*
372  * Try to setup the HPET timer
373  */
374 int __init hpet_enable(void)
375 {
376 	unsigned long id;
377 
378 	if (!is_hpet_capable())
379 		return 0;
380 
381 	hpet_set_mapping();
382 
383 	/*
384 	 * Read the period and check for a sane value:
385 	 */
386 	hpet_period = hpet_readl(HPET_PERIOD);
387 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
388 		goto out_nohpet;
389 
390 	/*
391 	 * Read the HPET ID register to retrieve the IRQ routing
392 	 * information and the number of channels
393 	 */
394 	id = hpet_readl(HPET_ID);
395 
396 #ifdef CONFIG_HPET_EMULATE_RTC
397 	/*
398 	 * The legacy routing mode needs at least two channels, tick timer
399 	 * and the rtc emulation channel.
400 	 */
401 	if (!(id & HPET_ID_NUMBER))
402 		goto out_nohpet;
403 #endif
404 
405 	if (hpet_clocksource_register())
406 		goto out_nohpet;
407 
408 	if (id & HPET_ID_LEGSUP) {
409 		hpet_legacy_clockevent_register();
410 		return 1;
411 	}
412 	return 0;
413 
414 out_nohpet:
415 	hpet_clear_mapping();
416 	boot_hpet_disable = 1;
417 	return 0;
418 }
419 
420 /*
421  * Needs to be late, as the reserve_timer code calls kalloc !
422  *
423  * Not a problem on i386 as hpet_enable is called from late_time_init,
424  * but on x86_64 it is necessary !
425  */
426 static __init int hpet_late_init(void)
427 {
428 	if (boot_hpet_disable)
429 		return -ENODEV;
430 
431 	if (!hpet_address) {
432 		if (!force_hpet_address)
433 			return -ENODEV;
434 
435 		hpet_address = force_hpet_address;
436 		hpet_enable();
437 		if (!hpet_virt_address)
438 			return -ENODEV;
439 	}
440 
441 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
442 
443 	return 0;
444 }
445 fs_initcall(hpet_late_init);
446 
447 void hpet_disable(void)
448 {
449 	if (is_hpet_capable()) {
450 		unsigned long cfg = hpet_readl(HPET_CFG);
451 
452 		if (hpet_legacy_int_enabled) {
453 			cfg &= ~HPET_CFG_LEGACY;
454 			hpet_legacy_int_enabled = 0;
455 		}
456 		cfg &= ~HPET_CFG_ENABLE;
457 		hpet_writel(cfg, HPET_CFG);
458 	}
459 }
460 
461 #ifdef CONFIG_HPET_EMULATE_RTC
462 
463 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
464  * is enabled, we support RTC interrupt functionality in software.
465  * RTC has 3 kinds of interrupts:
466  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
467  *    is updated
468  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
469  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
470  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
471  * (1) and (2) above are implemented using polling at a frequency of
472  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
473  * overhead. (DEFAULT_RTC_INT_FREQ)
474  * For (3), we use interrupts at 64Hz or user specified periodic
475  * frequency, whichever is higher.
476  */
477 #include <linux/mc146818rtc.h>
478 #include <linux/rtc.h>
479 #include <asm/rtc.h>
480 
481 #define DEFAULT_RTC_INT_FREQ	64
482 #define DEFAULT_RTC_SHIFT	6
483 #define RTC_NUM_INTS		1
484 
485 static unsigned long hpet_rtc_flags;
486 static unsigned long hpet_prev_update_sec;
487 static struct rtc_time hpet_alarm_time;
488 static unsigned long hpet_pie_count;
489 static unsigned long hpet_t1_cmp;
490 static unsigned long hpet_default_delta;
491 static unsigned long hpet_pie_delta;
492 static unsigned long hpet_pie_limit;
493 
494 static rtc_irq_handler irq_handler;
495 
496 /*
497  * Registers a IRQ handler.
498  */
499 int hpet_register_irq_handler(rtc_irq_handler handler)
500 {
501 	if (!is_hpet_enabled())
502 		return -ENODEV;
503 	if (irq_handler)
504 		return -EBUSY;
505 
506 	irq_handler = handler;
507 
508 	return 0;
509 }
510 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
511 
512 /*
513  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
514  * and does cleanup.
515  */
516 void hpet_unregister_irq_handler(rtc_irq_handler handler)
517 {
518 	if (!is_hpet_enabled())
519 		return;
520 
521 	irq_handler = NULL;
522 	hpet_rtc_flags = 0;
523 }
524 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
525 
526 /*
527  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
528  * is not supported by all HPET implementations for timer 1.
529  *
530  * hpet_rtc_timer_init() is called when the rtc is initialized.
531  */
532 int hpet_rtc_timer_init(void)
533 {
534 	unsigned long cfg, cnt, delta, flags;
535 
536 	if (!is_hpet_enabled())
537 		return 0;
538 
539 	if (!hpet_default_delta) {
540 		uint64_t clc;
541 
542 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
543 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
544 		hpet_default_delta = (unsigned long) clc;
545 	}
546 
547 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
548 		delta = hpet_default_delta;
549 	else
550 		delta = hpet_pie_delta;
551 
552 	local_irq_save(flags);
553 
554 	cnt = delta + hpet_readl(HPET_COUNTER);
555 	hpet_writel(cnt, HPET_T1_CMP);
556 	hpet_t1_cmp = cnt;
557 
558 	cfg = hpet_readl(HPET_T1_CFG);
559 	cfg &= ~HPET_TN_PERIODIC;
560 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
561 	hpet_writel(cfg, HPET_T1_CFG);
562 
563 	local_irq_restore(flags);
564 
565 	return 1;
566 }
567 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
568 
569 /*
570  * The functions below are called from rtc driver.
571  * Return 0 if HPET is not being used.
572  * Otherwise do the necessary changes and return 1.
573  */
574 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
575 {
576 	if (!is_hpet_enabled())
577 		return 0;
578 
579 	hpet_rtc_flags &= ~bit_mask;
580 	return 1;
581 }
582 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
583 
584 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
585 {
586 	unsigned long oldbits = hpet_rtc_flags;
587 
588 	if (!is_hpet_enabled())
589 		return 0;
590 
591 	hpet_rtc_flags |= bit_mask;
592 
593 	if (!oldbits)
594 		hpet_rtc_timer_init();
595 
596 	return 1;
597 }
598 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
599 
600 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
601 			unsigned char sec)
602 {
603 	if (!is_hpet_enabled())
604 		return 0;
605 
606 	hpet_alarm_time.tm_hour = hrs;
607 	hpet_alarm_time.tm_min = min;
608 	hpet_alarm_time.tm_sec = sec;
609 
610 	return 1;
611 }
612 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
613 
614 int hpet_set_periodic_freq(unsigned long freq)
615 {
616 	uint64_t clc;
617 
618 	if (!is_hpet_enabled())
619 		return 0;
620 
621 	if (freq <= DEFAULT_RTC_INT_FREQ)
622 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
623 	else {
624 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
625 		do_div(clc, freq);
626 		clc >>= hpet_clockevent.shift;
627 		hpet_pie_delta = (unsigned long) clc;
628 	}
629 	return 1;
630 }
631 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
632 
633 int hpet_rtc_dropped_irq(void)
634 {
635 	return is_hpet_enabled();
636 }
637 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
638 
639 static void hpet_rtc_timer_reinit(void)
640 {
641 	unsigned long cfg, delta;
642 	int lost_ints = -1;
643 
644 	if (unlikely(!hpet_rtc_flags)) {
645 		cfg = hpet_readl(HPET_T1_CFG);
646 		cfg &= ~HPET_TN_ENABLE;
647 		hpet_writel(cfg, HPET_T1_CFG);
648 		return;
649 	}
650 
651 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
652 		delta = hpet_default_delta;
653 	else
654 		delta = hpet_pie_delta;
655 
656 	/*
657 	 * Increment the comparator value until we are ahead of the
658 	 * current count.
659 	 */
660 	do {
661 		hpet_t1_cmp += delta;
662 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
663 		lost_ints++;
664 	} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
665 
666 	if (lost_ints) {
667 		if (hpet_rtc_flags & RTC_PIE)
668 			hpet_pie_count += lost_ints;
669 		if (printk_ratelimit())
670 			printk(KERN_WARNING "rtc: lost %d interrupts\n",
671 				lost_ints);
672 	}
673 }
674 
675 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
676 {
677 	struct rtc_time curr_time;
678 	unsigned long rtc_int_flag = 0;
679 
680 	hpet_rtc_timer_reinit();
681 	memset(&curr_time, 0, sizeof(struct rtc_time));
682 
683 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
684 		get_rtc_time(&curr_time);
685 
686 	if (hpet_rtc_flags & RTC_UIE &&
687 	    curr_time.tm_sec != hpet_prev_update_sec) {
688 		rtc_int_flag = RTC_UF;
689 		hpet_prev_update_sec = curr_time.tm_sec;
690 	}
691 
692 	if (hpet_rtc_flags & RTC_PIE &&
693 	    ++hpet_pie_count >= hpet_pie_limit) {
694 		rtc_int_flag |= RTC_PF;
695 		hpet_pie_count = 0;
696 	}
697 
698 	if (hpet_rtc_flags & RTC_AIE &&
699 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
700 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
701 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
702 			rtc_int_flag |= RTC_AF;
703 
704 	if (rtc_int_flag) {
705 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
706 		if (irq_handler)
707 			irq_handler(rtc_int_flag, dev_id);
708 	}
709 	return IRQ_HANDLED;
710 }
711 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
712 #endif
713