xref: /linux/arch/x86/kernel/hpet.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 
15 #include <asm/irqdomain.h>
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19 
20 #define HPET_MASK			CLOCKSOURCE_MASK(32)
21 
22 /* FSEC = 10^-15
23    NSEC = 10^-9 */
24 #define FSEC_PER_NSEC			1000000L
25 
26 #define HPET_DEV_USED_BIT		2
27 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID			0x8
29 #define HPET_DEV_FSB_CAP		0x1000
30 #define HPET_DEV_PERI_CAP		0x2000
31 
32 #define HPET_MIN_CYCLES			128
33 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34 
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long				hpet_address;
39 u8					hpet_blockid; /* OS timer block num */
40 u8					hpet_msi_disable;
41 
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long			hpet_num_timers;
44 #endif
45 static void __iomem			*hpet_virt_address;
46 
47 struct hpet_dev {
48 	struct clock_event_device	evt;
49 	unsigned int			num;
50 	int				cpu;
51 	unsigned int			irq;
52 	unsigned int			flags;
53 	char				name[10];
54 };
55 
56 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
57 {
58 	return container_of(evtdev, struct hpet_dev, evt);
59 }
60 
61 inline unsigned int hpet_readl(unsigned int a)
62 {
63 	return readl(hpet_virt_address + a);
64 }
65 
66 static inline void hpet_writel(unsigned int d, unsigned int a)
67 {
68 	writel(d, hpet_virt_address + a);
69 }
70 
71 #ifdef CONFIG_X86_64
72 #include <asm/pgtable.h>
73 #endif
74 
75 static inline void hpet_set_mapping(void)
76 {
77 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
78 }
79 
80 static inline void hpet_clear_mapping(void)
81 {
82 	iounmap(hpet_virt_address);
83 	hpet_virt_address = NULL;
84 }
85 
86 /*
87  * HPET command line enable / disable
88  */
89 int boot_hpet_disable;
90 int hpet_force_user;
91 static int hpet_verbose;
92 
93 static int __init hpet_setup(char *str)
94 {
95 	while (str) {
96 		char *next = strchr(str, ',');
97 
98 		if (next)
99 			*next++ = 0;
100 		if (!strncmp("disable", str, 7))
101 			boot_hpet_disable = 1;
102 		if (!strncmp("force", str, 5))
103 			hpet_force_user = 1;
104 		if (!strncmp("verbose", str, 7))
105 			hpet_verbose = 1;
106 		str = next;
107 	}
108 	return 1;
109 }
110 __setup("hpet=", hpet_setup);
111 
112 static int __init disable_hpet(char *str)
113 {
114 	boot_hpet_disable = 1;
115 	return 1;
116 }
117 __setup("nohpet", disable_hpet);
118 
119 static inline int is_hpet_capable(void)
120 {
121 	return !boot_hpet_disable && hpet_address;
122 }
123 
124 /*
125  * HPET timer interrupt enable / disable
126  */
127 static int hpet_legacy_int_enabled;
128 
129 /**
130  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
131  */
132 int is_hpet_enabled(void)
133 {
134 	return is_hpet_capable() && hpet_legacy_int_enabled;
135 }
136 EXPORT_SYMBOL_GPL(is_hpet_enabled);
137 
138 static void _hpet_print_config(const char *function, int line)
139 {
140 	u32 i, timers, l, h;
141 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
142 	l = hpet_readl(HPET_ID);
143 	h = hpet_readl(HPET_PERIOD);
144 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
145 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
146 	l = hpet_readl(HPET_CFG);
147 	h = hpet_readl(HPET_STATUS);
148 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
149 	l = hpet_readl(HPET_COUNTER);
150 	h = hpet_readl(HPET_COUNTER+4);
151 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
152 
153 	for (i = 0; i < timers; i++) {
154 		l = hpet_readl(HPET_Tn_CFG(i));
155 		h = hpet_readl(HPET_Tn_CFG(i)+4);
156 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
157 		       i, l, h);
158 		l = hpet_readl(HPET_Tn_CMP(i));
159 		h = hpet_readl(HPET_Tn_CMP(i)+4);
160 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
161 		       i, l, h);
162 		l = hpet_readl(HPET_Tn_ROUTE(i));
163 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
164 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
165 		       i, l, h);
166 	}
167 }
168 
169 #define hpet_print_config()					\
170 do {								\
171 	if (hpet_verbose)					\
172 		_hpet_print_config(__func__, __LINE__);	\
173 } while (0)
174 
175 /*
176  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177  * timer 0 and timer 1 in case of RTC emulation.
178  */
179 #ifdef CONFIG_HPET
180 
181 static void hpet_reserve_msi_timers(struct hpet_data *hd);
182 
183 static void hpet_reserve_platform_timers(unsigned int id)
184 {
185 	struct hpet __iomem *hpet = hpet_virt_address;
186 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
187 	unsigned int nrtimers, i;
188 	struct hpet_data hd;
189 
190 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
191 
192 	memset(&hd, 0, sizeof(hd));
193 	hd.hd_phys_address	= hpet_address;
194 	hd.hd_address		= hpet;
195 	hd.hd_nirqs		= nrtimers;
196 	hpet_reserve_timer(&hd, 0);
197 
198 #ifdef CONFIG_HPET_EMULATE_RTC
199 	hpet_reserve_timer(&hd, 1);
200 #endif
201 
202 	/*
203 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
205 	 * don't bother configuring *any* comparator interrupts.
206 	 */
207 	hd.hd_irq[0] = HPET_LEGACY_8254;
208 	hd.hd_irq[1] = HPET_LEGACY_RTC;
209 
210 	for (i = 2; i < nrtimers; timer++, i++) {
211 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
212 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
213 	}
214 
215 	hpet_reserve_msi_timers(&hd);
216 
217 	hpet_alloc(&hd);
218 
219 }
220 #else
221 static void hpet_reserve_platform_timers(unsigned int id) { }
222 #endif
223 
224 /*
225  * Common hpet info
226  */
227 static unsigned long hpet_freq;
228 
229 static struct clock_event_device hpet_clockevent;
230 
231 static void hpet_stop_counter(void)
232 {
233 	unsigned long cfg = hpet_readl(HPET_CFG);
234 	cfg &= ~HPET_CFG_ENABLE;
235 	hpet_writel(cfg, HPET_CFG);
236 }
237 
238 static void hpet_reset_counter(void)
239 {
240 	hpet_writel(0, HPET_COUNTER);
241 	hpet_writel(0, HPET_COUNTER + 4);
242 }
243 
244 static void hpet_start_counter(void)
245 {
246 	unsigned int cfg = hpet_readl(HPET_CFG);
247 	cfg |= HPET_CFG_ENABLE;
248 	hpet_writel(cfg, HPET_CFG);
249 }
250 
251 static void hpet_restart_counter(void)
252 {
253 	hpet_stop_counter();
254 	hpet_reset_counter();
255 	hpet_start_counter();
256 }
257 
258 static void hpet_resume_device(void)
259 {
260 	force_hpet_resume();
261 }
262 
263 static void hpet_resume_counter(struct clocksource *cs)
264 {
265 	hpet_resume_device();
266 	hpet_restart_counter();
267 }
268 
269 static void hpet_enable_legacy_int(void)
270 {
271 	unsigned int cfg = hpet_readl(HPET_CFG);
272 
273 	cfg |= HPET_CFG_LEGACY;
274 	hpet_writel(cfg, HPET_CFG);
275 	hpet_legacy_int_enabled = 1;
276 }
277 
278 static void hpet_legacy_clockevent_register(void)
279 {
280 	/* Start HPET legacy interrupts */
281 	hpet_enable_legacy_int();
282 
283 	/*
284 	 * Start hpet with the boot cpu mask and make it
285 	 * global after the IO_APIC has been initialized.
286 	 */
287 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
288 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
289 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
290 	global_clock_event = &hpet_clockevent;
291 	printk(KERN_DEBUG "hpet clockevent registered\n");
292 }
293 
294 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
295 {
296 	unsigned int cfg, cmp, now;
297 	uint64_t delta;
298 
299 	hpet_stop_counter();
300 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
301 	delta >>= evt->shift;
302 	now = hpet_readl(HPET_COUNTER);
303 	cmp = now + (unsigned int)delta;
304 	cfg = hpet_readl(HPET_Tn_CFG(timer));
305 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
306 	       HPET_TN_32BIT;
307 	hpet_writel(cfg, HPET_Tn_CFG(timer));
308 	hpet_writel(cmp, HPET_Tn_CMP(timer));
309 	udelay(1);
310 	/*
311 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
312 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
313 	 * bit is automatically cleared after the first write.
314 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
315 	 * Publication # 24674)
316 	 */
317 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
318 	hpet_start_counter();
319 	hpet_print_config();
320 
321 	return 0;
322 }
323 
324 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
325 {
326 	unsigned int cfg;
327 
328 	cfg = hpet_readl(HPET_Tn_CFG(timer));
329 	cfg &= ~HPET_TN_PERIODIC;
330 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
331 	hpet_writel(cfg, HPET_Tn_CFG(timer));
332 
333 	return 0;
334 }
335 
336 static int hpet_shutdown(struct clock_event_device *evt, int timer)
337 {
338 	unsigned int cfg;
339 
340 	cfg = hpet_readl(HPET_Tn_CFG(timer));
341 	cfg &= ~HPET_TN_ENABLE;
342 	hpet_writel(cfg, HPET_Tn_CFG(timer));
343 
344 	return 0;
345 }
346 
347 static int hpet_resume(struct clock_event_device *evt, int timer)
348 {
349 	if (!timer) {
350 		hpet_enable_legacy_int();
351 	} else {
352 		struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
353 
354 		irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
355 		disable_irq(hdev->irq);
356 		irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
357 		enable_irq(hdev->irq);
358 	}
359 	hpet_print_config();
360 
361 	return 0;
362 }
363 
364 static int hpet_next_event(unsigned long delta,
365 			   struct clock_event_device *evt, int timer)
366 {
367 	u32 cnt;
368 	s32 res;
369 
370 	cnt = hpet_readl(HPET_COUNTER);
371 	cnt += (u32) delta;
372 	hpet_writel(cnt, HPET_Tn_CMP(timer));
373 
374 	/*
375 	 * HPETs are a complete disaster. The compare register is
376 	 * based on a equal comparison and neither provides a less
377 	 * than or equal functionality (which would require to take
378 	 * the wraparound into account) nor a simple count down event
379 	 * mode. Further the write to the comparator register is
380 	 * delayed internally up to two HPET clock cycles in certain
381 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
382 	 * longer delays. We worked around that by reading back the
383 	 * compare register, but that required another workaround for
384 	 * ICH9,10 chips where the first readout after write can
385 	 * return the old stale value. We already had a minimum
386 	 * programming delta of 5us enforced, but a NMI or SMI hitting
387 	 * between the counter readout and the comparator write can
388 	 * move us behind that point easily. Now instead of reading
389 	 * the compare register back several times, we make the ETIME
390 	 * decision based on the following: Return ETIME if the
391 	 * counter value after the write is less than HPET_MIN_CYCLES
392 	 * away from the event or if the counter is already ahead of
393 	 * the event. The minimum programming delta for the generic
394 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
395 	 */
396 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
397 
398 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
399 }
400 
401 static int hpet_legacy_shutdown(struct clock_event_device *evt)
402 {
403 	return hpet_shutdown(evt, 0);
404 }
405 
406 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
407 {
408 	return hpet_set_oneshot(evt, 0);
409 }
410 
411 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
412 {
413 	return hpet_set_periodic(evt, 0);
414 }
415 
416 static int hpet_legacy_resume(struct clock_event_device *evt)
417 {
418 	return hpet_resume(evt, 0);
419 }
420 
421 static int hpet_legacy_next_event(unsigned long delta,
422 			struct clock_event_device *evt)
423 {
424 	return hpet_next_event(delta, evt, 0);
425 }
426 
427 /*
428  * The hpet clock event device
429  */
430 static struct clock_event_device hpet_clockevent = {
431 	.name			= "hpet",
432 	.features		= CLOCK_EVT_FEAT_PERIODIC |
433 				  CLOCK_EVT_FEAT_ONESHOT,
434 	.set_state_periodic	= hpet_legacy_set_periodic,
435 	.set_state_oneshot	= hpet_legacy_set_oneshot,
436 	.set_state_shutdown	= hpet_legacy_shutdown,
437 	.tick_resume		= hpet_legacy_resume,
438 	.set_next_event		= hpet_legacy_next_event,
439 	.irq			= 0,
440 	.rating			= 50,
441 };
442 
443 /*
444  * HPET MSI Support
445  */
446 #ifdef CONFIG_PCI_MSI
447 
448 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
449 static struct hpet_dev	*hpet_devs;
450 static struct irq_domain *hpet_domain;
451 
452 void hpet_msi_unmask(struct irq_data *data)
453 {
454 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
455 	unsigned int cfg;
456 
457 	/* unmask it */
458 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
459 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
460 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
461 }
462 
463 void hpet_msi_mask(struct irq_data *data)
464 {
465 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
466 	unsigned int cfg;
467 
468 	/* mask it */
469 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
470 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
471 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
472 }
473 
474 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
475 {
476 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
477 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
478 }
479 
480 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
481 {
482 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
483 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
484 	msg->address_hi = 0;
485 }
486 
487 static int hpet_msi_shutdown(struct clock_event_device *evt)
488 {
489 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
490 
491 	return hpet_shutdown(evt, hdev->num);
492 }
493 
494 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
495 {
496 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
497 
498 	return hpet_set_oneshot(evt, hdev->num);
499 }
500 
501 static int hpet_msi_set_periodic(struct clock_event_device *evt)
502 {
503 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
504 
505 	return hpet_set_periodic(evt, hdev->num);
506 }
507 
508 static int hpet_msi_resume(struct clock_event_device *evt)
509 {
510 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
511 
512 	return hpet_resume(evt, hdev->num);
513 }
514 
515 static int hpet_msi_next_event(unsigned long delta,
516 				struct clock_event_device *evt)
517 {
518 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
519 	return hpet_next_event(delta, evt, hdev->num);
520 }
521 
522 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
523 {
524 	struct hpet_dev *dev = (struct hpet_dev *)data;
525 	struct clock_event_device *hevt = &dev->evt;
526 
527 	if (!hevt->event_handler) {
528 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
529 				dev->num);
530 		return IRQ_HANDLED;
531 	}
532 
533 	hevt->event_handler(hevt);
534 	return IRQ_HANDLED;
535 }
536 
537 static int hpet_setup_irq(struct hpet_dev *dev)
538 {
539 
540 	if (request_irq(dev->irq, hpet_interrupt_handler,
541 			IRQF_TIMER | IRQF_NOBALANCING,
542 			dev->name, dev))
543 		return -1;
544 
545 	disable_irq(dev->irq);
546 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
547 	enable_irq(dev->irq);
548 
549 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
550 			 dev->name, dev->irq);
551 
552 	return 0;
553 }
554 
555 /* This should be called in specific @cpu */
556 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
557 {
558 	struct clock_event_device *evt = &hdev->evt;
559 
560 	WARN_ON(cpu != smp_processor_id());
561 	if (!(hdev->flags & HPET_DEV_VALID))
562 		return;
563 
564 	hdev->cpu = cpu;
565 	per_cpu(cpu_hpet_dev, cpu) = hdev;
566 	evt->name = hdev->name;
567 	hpet_setup_irq(hdev);
568 	evt->irq = hdev->irq;
569 
570 	evt->rating = 110;
571 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
572 	if (hdev->flags & HPET_DEV_PERI_CAP) {
573 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
574 		evt->set_state_periodic = hpet_msi_set_periodic;
575 	}
576 
577 	evt->set_state_shutdown = hpet_msi_shutdown;
578 	evt->set_state_oneshot = hpet_msi_set_oneshot;
579 	evt->tick_resume = hpet_msi_resume;
580 	evt->set_next_event = hpet_msi_next_event;
581 	evt->cpumask = cpumask_of(hdev->cpu);
582 
583 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
584 					0x7FFFFFFF);
585 }
586 
587 #ifdef CONFIG_HPET
588 /* Reserve at least one timer for userspace (/dev/hpet) */
589 #define RESERVE_TIMERS 1
590 #else
591 #define RESERVE_TIMERS 0
592 #endif
593 
594 static void hpet_msi_capability_lookup(unsigned int start_timer)
595 {
596 	unsigned int id;
597 	unsigned int num_timers;
598 	unsigned int num_timers_used = 0;
599 	int i, irq;
600 
601 	if (hpet_msi_disable)
602 		return;
603 
604 	if (boot_cpu_has(X86_FEATURE_ARAT))
605 		return;
606 	id = hpet_readl(HPET_ID);
607 
608 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
609 	num_timers++; /* Value read out starts from 0 */
610 	hpet_print_config();
611 
612 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
613 	if (!hpet_domain)
614 		return;
615 
616 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
617 	if (!hpet_devs)
618 		return;
619 
620 	hpet_num_timers = num_timers;
621 
622 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
623 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
624 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
625 
626 		/* Only consider HPET timer with MSI support */
627 		if (!(cfg & HPET_TN_FSB_CAP))
628 			continue;
629 
630 		hdev->flags = 0;
631 		if (cfg & HPET_TN_PERIODIC_CAP)
632 			hdev->flags |= HPET_DEV_PERI_CAP;
633 		sprintf(hdev->name, "hpet%d", i);
634 		hdev->num = i;
635 
636 		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
637 		if (irq <= 0)
638 			continue;
639 
640 		hdev->irq = irq;
641 		hdev->flags |= HPET_DEV_FSB_CAP;
642 		hdev->flags |= HPET_DEV_VALID;
643 		num_timers_used++;
644 		if (num_timers_used == num_possible_cpus())
645 			break;
646 	}
647 
648 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
649 		num_timers, num_timers_used);
650 }
651 
652 #ifdef CONFIG_HPET
653 static void hpet_reserve_msi_timers(struct hpet_data *hd)
654 {
655 	int i;
656 
657 	if (!hpet_devs)
658 		return;
659 
660 	for (i = 0; i < hpet_num_timers; i++) {
661 		struct hpet_dev *hdev = &hpet_devs[i];
662 
663 		if (!(hdev->flags & HPET_DEV_VALID))
664 			continue;
665 
666 		hd->hd_irq[hdev->num] = hdev->irq;
667 		hpet_reserve_timer(hd, hdev->num);
668 	}
669 }
670 #endif
671 
672 static struct hpet_dev *hpet_get_unused_timer(void)
673 {
674 	int i;
675 
676 	if (!hpet_devs)
677 		return NULL;
678 
679 	for (i = 0; i < hpet_num_timers; i++) {
680 		struct hpet_dev *hdev = &hpet_devs[i];
681 
682 		if (!(hdev->flags & HPET_DEV_VALID))
683 			continue;
684 		if (test_and_set_bit(HPET_DEV_USED_BIT,
685 			(unsigned long *)&hdev->flags))
686 			continue;
687 		return hdev;
688 	}
689 	return NULL;
690 }
691 
692 struct hpet_work_struct {
693 	struct delayed_work work;
694 	struct completion complete;
695 };
696 
697 static void hpet_work(struct work_struct *w)
698 {
699 	struct hpet_dev *hdev;
700 	int cpu = smp_processor_id();
701 	struct hpet_work_struct *hpet_work;
702 
703 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
704 
705 	hdev = hpet_get_unused_timer();
706 	if (hdev)
707 		init_one_hpet_msi_clockevent(hdev, cpu);
708 
709 	complete(&hpet_work->complete);
710 }
711 
712 static int hpet_cpuhp_notify(struct notifier_block *n,
713 		unsigned long action, void *hcpu)
714 {
715 	unsigned long cpu = (unsigned long)hcpu;
716 	struct hpet_work_struct work;
717 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
718 
719 	switch (action & 0xf) {
720 	case CPU_ONLINE:
721 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
722 		init_completion(&work.complete);
723 		/* FIXME: add schedule_work_on() */
724 		schedule_delayed_work_on(cpu, &work.work, 0);
725 		wait_for_completion(&work.complete);
726 		destroy_delayed_work_on_stack(&work.work);
727 		break;
728 	case CPU_DEAD:
729 		if (hdev) {
730 			free_irq(hdev->irq, hdev);
731 			hdev->flags &= ~HPET_DEV_USED;
732 			per_cpu(cpu_hpet_dev, cpu) = NULL;
733 		}
734 		break;
735 	}
736 	return NOTIFY_OK;
737 }
738 #else
739 
740 static void hpet_msi_capability_lookup(unsigned int start_timer)
741 {
742 	return;
743 }
744 
745 #ifdef CONFIG_HPET
746 static void hpet_reserve_msi_timers(struct hpet_data *hd)
747 {
748 	return;
749 }
750 #endif
751 
752 static int hpet_cpuhp_notify(struct notifier_block *n,
753 		unsigned long action, void *hcpu)
754 {
755 	return NOTIFY_OK;
756 }
757 
758 #endif
759 
760 /*
761  * Clock source related code
762  */
763 static cycle_t read_hpet(struct clocksource *cs)
764 {
765 	return (cycle_t)hpet_readl(HPET_COUNTER);
766 }
767 
768 static struct clocksource clocksource_hpet = {
769 	.name		= "hpet",
770 	.rating		= 250,
771 	.read		= read_hpet,
772 	.mask		= HPET_MASK,
773 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
774 	.resume		= hpet_resume_counter,
775 	.archdata	= { .vclock_mode = VCLOCK_HPET },
776 };
777 
778 static int hpet_clocksource_register(void)
779 {
780 	u64 start, now;
781 	cycle_t t1;
782 
783 	/* Start the counter */
784 	hpet_restart_counter();
785 
786 	/* Verify whether hpet counter works */
787 	t1 = hpet_readl(HPET_COUNTER);
788 	start = rdtsc();
789 
790 	/*
791 	 * We don't know the TSC frequency yet, but waiting for
792 	 * 200000 TSC cycles is safe:
793 	 * 4 GHz == 50us
794 	 * 1 GHz == 200us
795 	 */
796 	do {
797 		rep_nop();
798 		now = rdtsc();
799 	} while ((now - start) < 200000UL);
800 
801 	if (t1 == hpet_readl(HPET_COUNTER)) {
802 		printk(KERN_WARNING
803 		       "HPET counter not counting. HPET disabled\n");
804 		return -ENODEV;
805 	}
806 
807 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
808 	return 0;
809 }
810 
811 static u32 *hpet_boot_cfg;
812 
813 /**
814  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
815  */
816 int __init hpet_enable(void)
817 {
818 	u32 hpet_period, cfg, id;
819 	u64 freq;
820 	unsigned int i, last;
821 
822 	if (!is_hpet_capable())
823 		return 0;
824 
825 	hpet_set_mapping();
826 
827 	/*
828 	 * Read the period and check for a sane value:
829 	 */
830 	hpet_period = hpet_readl(HPET_PERIOD);
831 
832 	/*
833 	 * AMD SB700 based systems with spread spectrum enabled use a
834 	 * SMM based HPET emulation to provide proper frequency
835 	 * setting. The SMM code is initialized with the first HPET
836 	 * register access and takes some time to complete. During
837 	 * this time the config register reads 0xffffffff. We check
838 	 * for max. 1000 loops whether the config register reads a non
839 	 * 0xffffffff value to make sure that HPET is up and running
840 	 * before we go further. A counting loop is safe, as the HPET
841 	 * access takes thousands of CPU cycles. On non SB700 based
842 	 * machines this check is only done once and has no side
843 	 * effects.
844 	 */
845 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
846 		if (i == 1000) {
847 			printk(KERN_WARNING
848 			       "HPET config register value = 0xFFFFFFFF. "
849 			       "Disabling HPET\n");
850 			goto out_nohpet;
851 		}
852 	}
853 
854 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
855 		goto out_nohpet;
856 
857 	/*
858 	 * The period is a femto seconds value. Convert it to a
859 	 * frequency.
860 	 */
861 	freq = FSEC_PER_SEC;
862 	do_div(freq, hpet_period);
863 	hpet_freq = freq;
864 
865 	/*
866 	 * Read the HPET ID register to retrieve the IRQ routing
867 	 * information and the number of channels
868 	 */
869 	id = hpet_readl(HPET_ID);
870 	hpet_print_config();
871 
872 	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
873 
874 #ifdef CONFIG_HPET_EMULATE_RTC
875 	/*
876 	 * The legacy routing mode needs at least two channels, tick timer
877 	 * and the rtc emulation channel.
878 	 */
879 	if (!last)
880 		goto out_nohpet;
881 #endif
882 
883 	cfg = hpet_readl(HPET_CFG);
884 	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
885 				GFP_KERNEL);
886 	if (hpet_boot_cfg)
887 		*hpet_boot_cfg = cfg;
888 	else
889 		pr_warn("HPET initial state will not be saved\n");
890 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
891 	hpet_writel(cfg, HPET_CFG);
892 	if (cfg)
893 		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
894 			cfg);
895 
896 	for (i = 0; i <= last; ++i) {
897 		cfg = hpet_readl(HPET_Tn_CFG(i));
898 		if (hpet_boot_cfg)
899 			hpet_boot_cfg[i + 1] = cfg;
900 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
901 		hpet_writel(cfg, HPET_Tn_CFG(i));
902 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
903 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
904 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
905 		if (cfg)
906 			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
907 				cfg, i);
908 	}
909 	hpet_print_config();
910 
911 	if (hpet_clocksource_register())
912 		goto out_nohpet;
913 
914 	if (id & HPET_ID_LEGSUP) {
915 		hpet_legacy_clockevent_register();
916 		return 1;
917 	}
918 	return 0;
919 
920 out_nohpet:
921 	hpet_clear_mapping();
922 	hpet_address = 0;
923 	return 0;
924 }
925 
926 /*
927  * Needs to be late, as the reserve_timer code calls kalloc !
928  *
929  * Not a problem on i386 as hpet_enable is called from late_time_init,
930  * but on x86_64 it is necessary !
931  */
932 static __init int hpet_late_init(void)
933 {
934 	int cpu;
935 
936 	if (boot_hpet_disable)
937 		return -ENODEV;
938 
939 	if (!hpet_address) {
940 		if (!force_hpet_address)
941 			return -ENODEV;
942 
943 		hpet_address = force_hpet_address;
944 		hpet_enable();
945 	}
946 
947 	if (!hpet_virt_address)
948 		return -ENODEV;
949 
950 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
951 		hpet_msi_capability_lookup(2);
952 	else
953 		hpet_msi_capability_lookup(0);
954 
955 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
956 	hpet_print_config();
957 
958 	if (hpet_msi_disable)
959 		return 0;
960 
961 	if (boot_cpu_has(X86_FEATURE_ARAT))
962 		return 0;
963 
964 	cpu_notifier_register_begin();
965 	for_each_online_cpu(cpu) {
966 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
967 	}
968 
969 	/* This notifier should be called after workqueue is ready */
970 	__hotcpu_notifier(hpet_cpuhp_notify, -20);
971 	cpu_notifier_register_done();
972 
973 	return 0;
974 }
975 fs_initcall(hpet_late_init);
976 
977 void hpet_disable(void)
978 {
979 	if (is_hpet_capable() && hpet_virt_address) {
980 		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
981 
982 		if (hpet_boot_cfg)
983 			cfg = *hpet_boot_cfg;
984 		else if (hpet_legacy_int_enabled) {
985 			cfg &= ~HPET_CFG_LEGACY;
986 			hpet_legacy_int_enabled = 0;
987 		}
988 		cfg &= ~HPET_CFG_ENABLE;
989 		hpet_writel(cfg, HPET_CFG);
990 
991 		if (!hpet_boot_cfg)
992 			return;
993 
994 		id = hpet_readl(HPET_ID);
995 		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
996 
997 		for (id = 0; id <= last; ++id)
998 			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
999 
1000 		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1001 			hpet_writel(*hpet_boot_cfg, HPET_CFG);
1002 	}
1003 }
1004 
1005 #ifdef CONFIG_HPET_EMULATE_RTC
1006 
1007 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1008  * is enabled, we support RTC interrupt functionality in software.
1009  * RTC has 3 kinds of interrupts:
1010  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1011  *    is updated
1012  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1013  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1014  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1015  * (1) and (2) above are implemented using polling at a frequency of
1016  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1017  * overhead. (DEFAULT_RTC_INT_FREQ)
1018  * For (3), we use interrupts at 64Hz or user specified periodic
1019  * frequency, whichever is higher.
1020  */
1021 #include <linux/mc146818rtc.h>
1022 #include <linux/rtc.h>
1023 #include <asm/rtc.h>
1024 
1025 #define DEFAULT_RTC_INT_FREQ	64
1026 #define DEFAULT_RTC_SHIFT	6
1027 #define RTC_NUM_INTS		1
1028 
1029 static unsigned long hpet_rtc_flags;
1030 static int hpet_prev_update_sec;
1031 static struct rtc_time hpet_alarm_time;
1032 static unsigned long hpet_pie_count;
1033 static u32 hpet_t1_cmp;
1034 static u32 hpet_default_delta;
1035 static u32 hpet_pie_delta;
1036 static unsigned long hpet_pie_limit;
1037 
1038 static rtc_irq_handler irq_handler;
1039 
1040 /*
1041  * Check that the hpet counter c1 is ahead of the c2
1042  */
1043 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1044 {
1045 	return (s32)(c2 - c1) < 0;
1046 }
1047 
1048 /*
1049  * Registers a IRQ handler.
1050  */
1051 int hpet_register_irq_handler(rtc_irq_handler handler)
1052 {
1053 	if (!is_hpet_enabled())
1054 		return -ENODEV;
1055 	if (irq_handler)
1056 		return -EBUSY;
1057 
1058 	irq_handler = handler;
1059 
1060 	return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1063 
1064 /*
1065  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1066  * and does cleanup.
1067  */
1068 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1069 {
1070 	if (!is_hpet_enabled())
1071 		return;
1072 
1073 	irq_handler = NULL;
1074 	hpet_rtc_flags = 0;
1075 }
1076 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1077 
1078 /*
1079  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1080  * is not supported by all HPET implementations for timer 1.
1081  *
1082  * hpet_rtc_timer_init() is called when the rtc is initialized.
1083  */
1084 int hpet_rtc_timer_init(void)
1085 {
1086 	unsigned int cfg, cnt, delta;
1087 	unsigned long flags;
1088 
1089 	if (!is_hpet_enabled())
1090 		return 0;
1091 
1092 	if (!hpet_default_delta) {
1093 		uint64_t clc;
1094 
1095 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1096 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1097 		hpet_default_delta = clc;
1098 	}
1099 
1100 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1101 		delta = hpet_default_delta;
1102 	else
1103 		delta = hpet_pie_delta;
1104 
1105 	local_irq_save(flags);
1106 
1107 	cnt = delta + hpet_readl(HPET_COUNTER);
1108 	hpet_writel(cnt, HPET_T1_CMP);
1109 	hpet_t1_cmp = cnt;
1110 
1111 	cfg = hpet_readl(HPET_T1_CFG);
1112 	cfg &= ~HPET_TN_PERIODIC;
1113 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1114 	hpet_writel(cfg, HPET_T1_CFG);
1115 
1116 	local_irq_restore(flags);
1117 
1118 	return 1;
1119 }
1120 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1121 
1122 static void hpet_disable_rtc_channel(void)
1123 {
1124 	unsigned long cfg;
1125 	cfg = hpet_readl(HPET_T1_CFG);
1126 	cfg &= ~HPET_TN_ENABLE;
1127 	hpet_writel(cfg, HPET_T1_CFG);
1128 }
1129 
1130 /*
1131  * The functions below are called from rtc driver.
1132  * Return 0 if HPET is not being used.
1133  * Otherwise do the necessary changes and return 1.
1134  */
1135 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1136 {
1137 	if (!is_hpet_enabled())
1138 		return 0;
1139 
1140 	hpet_rtc_flags &= ~bit_mask;
1141 	if (unlikely(!hpet_rtc_flags))
1142 		hpet_disable_rtc_channel();
1143 
1144 	return 1;
1145 }
1146 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1147 
1148 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1149 {
1150 	unsigned long oldbits = hpet_rtc_flags;
1151 
1152 	if (!is_hpet_enabled())
1153 		return 0;
1154 
1155 	hpet_rtc_flags |= bit_mask;
1156 
1157 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1158 		hpet_prev_update_sec = -1;
1159 
1160 	if (!oldbits)
1161 		hpet_rtc_timer_init();
1162 
1163 	return 1;
1164 }
1165 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1166 
1167 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1168 			unsigned char sec)
1169 {
1170 	if (!is_hpet_enabled())
1171 		return 0;
1172 
1173 	hpet_alarm_time.tm_hour = hrs;
1174 	hpet_alarm_time.tm_min = min;
1175 	hpet_alarm_time.tm_sec = sec;
1176 
1177 	return 1;
1178 }
1179 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1180 
1181 int hpet_set_periodic_freq(unsigned long freq)
1182 {
1183 	uint64_t clc;
1184 
1185 	if (!is_hpet_enabled())
1186 		return 0;
1187 
1188 	if (freq <= DEFAULT_RTC_INT_FREQ)
1189 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1190 	else {
1191 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1192 		do_div(clc, freq);
1193 		clc >>= hpet_clockevent.shift;
1194 		hpet_pie_delta = clc;
1195 		hpet_pie_limit = 0;
1196 	}
1197 	return 1;
1198 }
1199 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1200 
1201 int hpet_rtc_dropped_irq(void)
1202 {
1203 	return is_hpet_enabled();
1204 }
1205 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1206 
1207 static void hpet_rtc_timer_reinit(void)
1208 {
1209 	unsigned int delta;
1210 	int lost_ints = -1;
1211 
1212 	if (unlikely(!hpet_rtc_flags))
1213 		hpet_disable_rtc_channel();
1214 
1215 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1216 		delta = hpet_default_delta;
1217 	else
1218 		delta = hpet_pie_delta;
1219 
1220 	/*
1221 	 * Increment the comparator value until we are ahead of the
1222 	 * current count.
1223 	 */
1224 	do {
1225 		hpet_t1_cmp += delta;
1226 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1227 		lost_ints++;
1228 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1229 
1230 	if (lost_ints) {
1231 		if (hpet_rtc_flags & RTC_PIE)
1232 			hpet_pie_count += lost_ints;
1233 		if (printk_ratelimit())
1234 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1235 				lost_ints);
1236 	}
1237 }
1238 
1239 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1240 {
1241 	struct rtc_time curr_time;
1242 	unsigned long rtc_int_flag = 0;
1243 
1244 	hpet_rtc_timer_reinit();
1245 	memset(&curr_time, 0, sizeof(struct rtc_time));
1246 
1247 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1248 		get_rtc_time(&curr_time);
1249 
1250 	if (hpet_rtc_flags & RTC_UIE &&
1251 	    curr_time.tm_sec != hpet_prev_update_sec) {
1252 		if (hpet_prev_update_sec >= 0)
1253 			rtc_int_flag = RTC_UF;
1254 		hpet_prev_update_sec = curr_time.tm_sec;
1255 	}
1256 
1257 	if (hpet_rtc_flags & RTC_PIE &&
1258 	    ++hpet_pie_count >= hpet_pie_limit) {
1259 		rtc_int_flag |= RTC_PF;
1260 		hpet_pie_count = 0;
1261 	}
1262 
1263 	if (hpet_rtc_flags & RTC_AIE &&
1264 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1265 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1266 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1267 			rtc_int_flag |= RTC_AF;
1268 
1269 	if (rtc_int_flag) {
1270 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1271 		if (irq_handler)
1272 			irq_handler(rtc_int_flag, dev_id);
1273 	}
1274 	return IRQ_HANDLED;
1275 }
1276 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1277 #endif
1278