xref: /linux/arch/x86/kernel/hpet.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12 
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16 
17 #define HPET_MASK			CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT			22
19 
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC			1000000L
23 
24 #define HPET_DEV_USED_BIT		2
25 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID			0x8
27 #define HPET_DEV_FSB_CAP		0x1000
28 #define HPET_DEV_PERI_CAP		0x2000
29 
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31 
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long				hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long			hpet_num_timers;
38 #endif
39 static void __iomem			*hpet_virt_address;
40 
41 struct hpet_dev {
42 	struct clock_event_device	evt;
43 	unsigned int			num;
44 	int				cpu;
45 	unsigned int			irq;
46 	unsigned int			flags;
47 	char				name[10];
48 };
49 
50 unsigned long hpet_readl(unsigned long a)
51 {
52 	return readl(hpet_virt_address + a);
53 }
54 
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57 	writel(d, hpet_virt_address + a);
58 }
59 
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63 
64 static inline void hpet_set_mapping(void)
65 {
66 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71 
72 static inline void hpet_clear_mapping(void)
73 {
74 	iounmap(hpet_virt_address);
75 	hpet_virt_address = NULL;
76 }
77 
78 /*
79  * HPET command line enable / disable
80  */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83 
84 static int __init hpet_setup(char *str)
85 {
86 	if (str) {
87 		if (!strncmp("disable", str, 7))
88 			boot_hpet_disable = 1;
89 		if (!strncmp("force", str, 5))
90 			hpet_force_user = 1;
91 	}
92 	return 1;
93 }
94 __setup("hpet=", hpet_setup);
95 
96 static int __init disable_hpet(char *str)
97 {
98 	boot_hpet_disable = 1;
99 	return 1;
100 }
101 __setup("nohpet", disable_hpet);
102 
103 static inline int is_hpet_capable(void)
104 {
105 	return !boot_hpet_disable && hpet_address;
106 }
107 
108 /*
109  * HPET timer interrupt enable / disable
110  */
111 static int hpet_legacy_int_enabled;
112 
113 /**
114  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
115  */
116 int is_hpet_enabled(void)
117 {
118 	return is_hpet_capable() && hpet_legacy_int_enabled;
119 }
120 EXPORT_SYMBOL_GPL(is_hpet_enabled);
121 
122 /*
123  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
124  * timer 0 and timer 1 in case of RTC emulation.
125  */
126 #ifdef CONFIG_HPET
127 
128 static void hpet_reserve_msi_timers(struct hpet_data *hd);
129 
130 static void hpet_reserve_platform_timers(unsigned long id)
131 {
132 	struct hpet __iomem *hpet = hpet_virt_address;
133 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
134 	unsigned int nrtimers, i;
135 	struct hpet_data hd;
136 
137 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138 
139 	memset(&hd, 0, sizeof(hd));
140 	hd.hd_phys_address	= hpet_address;
141 	hd.hd_address		= hpet;
142 	hd.hd_nirqs		= nrtimers;
143 	hpet_reserve_timer(&hd, 0);
144 
145 #ifdef CONFIG_HPET_EMULATE_RTC
146 	hpet_reserve_timer(&hd, 1);
147 #endif
148 
149 	/*
150 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
151 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
152 	 * don't bother configuring *any* comparator interrupts.
153 	 */
154 	hd.hd_irq[0] = HPET_LEGACY_8254;
155 	hd.hd_irq[1] = HPET_LEGACY_RTC;
156 
157 	for (i = 2; i < nrtimers; timer++, i++) {
158 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
159 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
160 	}
161 
162 	hpet_reserve_msi_timers(&hd);
163 
164 	hpet_alloc(&hd);
165 
166 }
167 #else
168 static void hpet_reserve_platform_timers(unsigned long id) { }
169 #endif
170 
171 /*
172  * Common hpet info
173  */
174 static unsigned long hpet_period;
175 
176 static void hpet_legacy_set_mode(enum clock_event_mode mode,
177 			  struct clock_event_device *evt);
178 static int hpet_legacy_next_event(unsigned long delta,
179 			   struct clock_event_device *evt);
180 
181 /*
182  * The hpet clock event device
183  */
184 static struct clock_event_device hpet_clockevent = {
185 	.name		= "hpet",
186 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
187 	.set_mode	= hpet_legacy_set_mode,
188 	.set_next_event = hpet_legacy_next_event,
189 	.shift		= 32,
190 	.irq		= 0,
191 	.rating		= 50,
192 };
193 
194 static void hpet_start_counter(void)
195 {
196 	unsigned long cfg = hpet_readl(HPET_CFG);
197 
198 	cfg &= ~HPET_CFG_ENABLE;
199 	hpet_writel(cfg, HPET_CFG);
200 	hpet_writel(0, HPET_COUNTER);
201 	hpet_writel(0, HPET_COUNTER + 4);
202 	cfg |= HPET_CFG_ENABLE;
203 	hpet_writel(cfg, HPET_CFG);
204 }
205 
206 static void hpet_resume_device(void)
207 {
208 	force_hpet_resume();
209 }
210 
211 static void hpet_restart_counter(void)
212 {
213 	hpet_resume_device();
214 	hpet_start_counter();
215 }
216 
217 static void hpet_enable_legacy_int(void)
218 {
219 	unsigned long cfg = hpet_readl(HPET_CFG);
220 
221 	cfg |= HPET_CFG_LEGACY;
222 	hpet_writel(cfg, HPET_CFG);
223 	hpet_legacy_int_enabled = 1;
224 }
225 
226 static void hpet_legacy_clockevent_register(void)
227 {
228 	/* Start HPET legacy interrupts */
229 	hpet_enable_legacy_int();
230 
231 	/*
232 	 * The mult factor is defined as (include/linux/clockchips.h)
233 	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
234 	 * hpet_period is in units of femtoseconds (per cycle), so
235 	 *  mult/2^shift = cyc/ns = 10^6/hpet_period
236 	 *  mult = (10^6 * 2^shift)/hpet_period
237 	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
238 	 */
239 	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
240 				      hpet_period, hpet_clockevent.shift);
241 	/* Calculate the min / max delta */
242 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
243 							   &hpet_clockevent);
244 	/* 5 usec minimum reprogramming delta. */
245 	hpet_clockevent.min_delta_ns = 5000;
246 
247 	/*
248 	 * Start hpet with the boot cpu mask and make it
249 	 * global after the IO_APIC has been initialized.
250 	 */
251 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
252 	clockevents_register_device(&hpet_clockevent);
253 	global_clock_event = &hpet_clockevent;
254 	printk(KERN_DEBUG "hpet clockevent registered\n");
255 }
256 
257 static int hpet_setup_msi_irq(unsigned int irq);
258 
259 static void hpet_set_mode(enum clock_event_mode mode,
260 			  struct clock_event_device *evt, int timer)
261 {
262 	unsigned long cfg, cmp, now;
263 	uint64_t delta;
264 
265 	switch (mode) {
266 	case CLOCK_EVT_MODE_PERIODIC:
267 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
268 		delta >>= evt->shift;
269 		now = hpet_readl(HPET_COUNTER);
270 		cmp = now + (unsigned long) delta;
271 		cfg = hpet_readl(HPET_Tn_CFG(timer));
272 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
273 		       HPET_TN_SETVAL | HPET_TN_32BIT;
274 		hpet_writel(cfg, HPET_Tn_CFG(timer));
275 		/*
276 		 * The first write after writing TN_SETVAL to the
277 		 * config register sets the counter value, the second
278 		 * write sets the period.
279 		 */
280 		hpet_writel(cmp, HPET_Tn_CMP(timer));
281 		udelay(1);
282 		hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
283 		break;
284 
285 	case CLOCK_EVT_MODE_ONESHOT:
286 		cfg = hpet_readl(HPET_Tn_CFG(timer));
287 		cfg &= ~HPET_TN_PERIODIC;
288 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
289 		hpet_writel(cfg, HPET_Tn_CFG(timer));
290 		break;
291 
292 	case CLOCK_EVT_MODE_UNUSED:
293 	case CLOCK_EVT_MODE_SHUTDOWN:
294 		cfg = hpet_readl(HPET_Tn_CFG(timer));
295 		cfg &= ~HPET_TN_ENABLE;
296 		hpet_writel(cfg, HPET_Tn_CFG(timer));
297 		break;
298 
299 	case CLOCK_EVT_MODE_RESUME:
300 		if (timer == 0) {
301 			hpet_enable_legacy_int();
302 		} else {
303 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
304 			hpet_setup_msi_irq(hdev->irq);
305 			disable_irq(hdev->irq);
306 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
307 			enable_irq(hdev->irq);
308 		}
309 		break;
310 	}
311 }
312 
313 static int hpet_next_event(unsigned long delta,
314 			   struct clock_event_device *evt, int timer)
315 {
316 	u32 cnt;
317 
318 	cnt = hpet_readl(HPET_COUNTER);
319 	cnt += (u32) delta;
320 	hpet_writel(cnt, HPET_Tn_CMP(timer));
321 
322 	/*
323 	 * We need to read back the CMP register to make sure that
324 	 * what we wrote hit the chip before we compare it to the
325 	 * counter.
326 	 */
327 	WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
328 
329 	return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
330 }
331 
332 static void hpet_legacy_set_mode(enum clock_event_mode mode,
333 			struct clock_event_device *evt)
334 {
335 	hpet_set_mode(mode, evt, 0);
336 }
337 
338 static int hpet_legacy_next_event(unsigned long delta,
339 			struct clock_event_device *evt)
340 {
341 	return hpet_next_event(delta, evt, 0);
342 }
343 
344 /*
345  * HPET MSI Support
346  */
347 #ifdef CONFIG_PCI_MSI
348 
349 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
350 static struct hpet_dev	*hpet_devs;
351 
352 void hpet_msi_unmask(unsigned int irq)
353 {
354 	struct hpet_dev *hdev = get_irq_data(irq);
355 	unsigned long cfg;
356 
357 	/* unmask it */
358 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
359 	cfg |= HPET_TN_FSB;
360 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
361 }
362 
363 void hpet_msi_mask(unsigned int irq)
364 {
365 	unsigned long cfg;
366 	struct hpet_dev *hdev = get_irq_data(irq);
367 
368 	/* mask it */
369 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
370 	cfg &= ~HPET_TN_FSB;
371 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
372 }
373 
374 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
375 {
376 	struct hpet_dev *hdev = get_irq_data(irq);
377 
378 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
379 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
380 }
381 
382 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
383 {
384 	struct hpet_dev *hdev = get_irq_data(irq);
385 
386 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
387 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
388 	msg->address_hi = 0;
389 }
390 
391 static void hpet_msi_set_mode(enum clock_event_mode mode,
392 				struct clock_event_device *evt)
393 {
394 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
395 	hpet_set_mode(mode, evt, hdev->num);
396 }
397 
398 static int hpet_msi_next_event(unsigned long delta,
399 				struct clock_event_device *evt)
400 {
401 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
402 	return hpet_next_event(delta, evt, hdev->num);
403 }
404 
405 static int hpet_setup_msi_irq(unsigned int irq)
406 {
407 	if (arch_setup_hpet_msi(irq)) {
408 		destroy_irq(irq);
409 		return -EINVAL;
410 	}
411 	return 0;
412 }
413 
414 static int hpet_assign_irq(struct hpet_dev *dev)
415 {
416 	unsigned int irq;
417 
418 	irq = create_irq();
419 	if (!irq)
420 		return -EINVAL;
421 
422 	set_irq_data(irq, dev);
423 
424 	if (hpet_setup_msi_irq(irq))
425 		return -EINVAL;
426 
427 	dev->irq = irq;
428 	return 0;
429 }
430 
431 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
432 {
433 	struct hpet_dev *dev = (struct hpet_dev *)data;
434 	struct clock_event_device *hevt = &dev->evt;
435 
436 	if (!hevt->event_handler) {
437 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
438 				dev->num);
439 		return IRQ_HANDLED;
440 	}
441 
442 	hevt->event_handler(hevt);
443 	return IRQ_HANDLED;
444 }
445 
446 static int hpet_setup_irq(struct hpet_dev *dev)
447 {
448 
449 	if (request_irq(dev->irq, hpet_interrupt_handler,
450 			IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
451 		return -1;
452 
453 	disable_irq(dev->irq);
454 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
455 	enable_irq(dev->irq);
456 
457 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
458 			 dev->name, dev->irq);
459 
460 	return 0;
461 }
462 
463 /* This should be called in specific @cpu */
464 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
465 {
466 	struct clock_event_device *evt = &hdev->evt;
467 	uint64_t hpet_freq;
468 
469 	WARN_ON(cpu != smp_processor_id());
470 	if (!(hdev->flags & HPET_DEV_VALID))
471 		return;
472 
473 	if (hpet_setup_msi_irq(hdev->irq))
474 		return;
475 
476 	hdev->cpu = cpu;
477 	per_cpu(cpu_hpet_dev, cpu) = hdev;
478 	evt->name = hdev->name;
479 	hpet_setup_irq(hdev);
480 	evt->irq = hdev->irq;
481 
482 	evt->rating = 110;
483 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
484 	if (hdev->flags & HPET_DEV_PERI_CAP)
485 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
486 
487 	evt->set_mode = hpet_msi_set_mode;
488 	evt->set_next_event = hpet_msi_next_event;
489 	evt->shift = 32;
490 
491 	/*
492 	 * The period is a femto seconds value. We need to calculate the
493 	 * scaled math multiplication factor for nanosecond to hpet tick
494 	 * conversion.
495 	 */
496 	hpet_freq = 1000000000000000ULL;
497 	do_div(hpet_freq, hpet_period);
498 	evt->mult = div_sc((unsigned long) hpet_freq,
499 				      NSEC_PER_SEC, evt->shift);
500 	/* Calculate the max delta */
501 	evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
502 	/* 5 usec minimum reprogramming delta. */
503 	evt->min_delta_ns = 5000;
504 
505 	evt->cpumask = cpumask_of(hdev->cpu);
506 	clockevents_register_device(evt);
507 }
508 
509 #ifdef CONFIG_HPET
510 /* Reserve at least one timer for userspace (/dev/hpet) */
511 #define RESERVE_TIMERS 1
512 #else
513 #define RESERVE_TIMERS 0
514 #endif
515 
516 static void hpet_msi_capability_lookup(unsigned int start_timer)
517 {
518 	unsigned int id;
519 	unsigned int num_timers;
520 	unsigned int num_timers_used = 0;
521 	int i;
522 
523 	id = hpet_readl(HPET_ID);
524 
525 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
526 	num_timers++; /* Value read out starts from 0 */
527 
528 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
529 	if (!hpet_devs)
530 		return;
531 
532 	hpet_num_timers = num_timers;
533 
534 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
535 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
536 		unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
537 
538 		/* Only consider HPET timer with MSI support */
539 		if (!(cfg & HPET_TN_FSB_CAP))
540 			continue;
541 
542 		hdev->flags = 0;
543 		if (cfg & HPET_TN_PERIODIC_CAP)
544 			hdev->flags |= HPET_DEV_PERI_CAP;
545 		hdev->num = i;
546 
547 		sprintf(hdev->name, "hpet%d", i);
548 		if (hpet_assign_irq(hdev))
549 			continue;
550 
551 		hdev->flags |= HPET_DEV_FSB_CAP;
552 		hdev->flags |= HPET_DEV_VALID;
553 		num_timers_used++;
554 		if (num_timers_used == num_possible_cpus())
555 			break;
556 	}
557 
558 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
559 		num_timers, num_timers_used);
560 }
561 
562 #ifdef CONFIG_HPET
563 static void hpet_reserve_msi_timers(struct hpet_data *hd)
564 {
565 	int i;
566 
567 	if (!hpet_devs)
568 		return;
569 
570 	for (i = 0; i < hpet_num_timers; i++) {
571 		struct hpet_dev *hdev = &hpet_devs[i];
572 
573 		if (!(hdev->flags & HPET_DEV_VALID))
574 			continue;
575 
576 		hd->hd_irq[hdev->num] = hdev->irq;
577 		hpet_reserve_timer(hd, hdev->num);
578 	}
579 }
580 #endif
581 
582 static struct hpet_dev *hpet_get_unused_timer(void)
583 {
584 	int i;
585 
586 	if (!hpet_devs)
587 		return NULL;
588 
589 	for (i = 0; i < hpet_num_timers; i++) {
590 		struct hpet_dev *hdev = &hpet_devs[i];
591 
592 		if (!(hdev->flags & HPET_DEV_VALID))
593 			continue;
594 		if (test_and_set_bit(HPET_DEV_USED_BIT,
595 			(unsigned long *)&hdev->flags))
596 			continue;
597 		return hdev;
598 	}
599 	return NULL;
600 }
601 
602 struct hpet_work_struct {
603 	struct delayed_work work;
604 	struct completion complete;
605 };
606 
607 static void hpet_work(struct work_struct *w)
608 {
609 	struct hpet_dev *hdev;
610 	int cpu = smp_processor_id();
611 	struct hpet_work_struct *hpet_work;
612 
613 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
614 
615 	hdev = hpet_get_unused_timer();
616 	if (hdev)
617 		init_one_hpet_msi_clockevent(hdev, cpu);
618 
619 	complete(&hpet_work->complete);
620 }
621 
622 static int hpet_cpuhp_notify(struct notifier_block *n,
623 		unsigned long action, void *hcpu)
624 {
625 	unsigned long cpu = (unsigned long)hcpu;
626 	struct hpet_work_struct work;
627 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
628 
629 	switch (action & 0xf) {
630 	case CPU_ONLINE:
631 		INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
632 		init_completion(&work.complete);
633 		/* FIXME: add schedule_work_on() */
634 		schedule_delayed_work_on(cpu, &work.work, 0);
635 		wait_for_completion(&work.complete);
636 		destroy_timer_on_stack(&work.work.timer);
637 		break;
638 	case CPU_DEAD:
639 		if (hdev) {
640 			free_irq(hdev->irq, hdev);
641 			hdev->flags &= ~HPET_DEV_USED;
642 			per_cpu(cpu_hpet_dev, cpu) = NULL;
643 		}
644 		break;
645 	}
646 	return NOTIFY_OK;
647 }
648 #else
649 
650 static int hpet_setup_msi_irq(unsigned int irq)
651 {
652 	return 0;
653 }
654 static void hpet_msi_capability_lookup(unsigned int start_timer)
655 {
656 	return;
657 }
658 
659 #ifdef CONFIG_HPET
660 static void hpet_reserve_msi_timers(struct hpet_data *hd)
661 {
662 	return;
663 }
664 #endif
665 
666 static int hpet_cpuhp_notify(struct notifier_block *n,
667 		unsigned long action, void *hcpu)
668 {
669 	return NOTIFY_OK;
670 }
671 
672 #endif
673 
674 /*
675  * Clock source related code
676  */
677 static cycle_t read_hpet(void)
678 {
679 	return (cycle_t)hpet_readl(HPET_COUNTER);
680 }
681 
682 #ifdef CONFIG_X86_64
683 static cycle_t __vsyscall_fn vread_hpet(void)
684 {
685 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
686 }
687 #endif
688 
689 static struct clocksource clocksource_hpet = {
690 	.name		= "hpet",
691 	.rating		= 250,
692 	.read		= read_hpet,
693 	.mask		= HPET_MASK,
694 	.shift		= HPET_SHIFT,
695 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
696 	.resume		= hpet_restart_counter,
697 #ifdef CONFIG_X86_64
698 	.vread		= vread_hpet,
699 #endif
700 };
701 
702 static int hpet_clocksource_register(void)
703 {
704 	u64 start, now;
705 	cycle_t t1;
706 
707 	/* Start the counter */
708 	hpet_start_counter();
709 
710 	/* Verify whether hpet counter works */
711 	t1 = read_hpet();
712 	rdtscll(start);
713 
714 	/*
715 	 * We don't know the TSC frequency yet, but waiting for
716 	 * 200000 TSC cycles is safe:
717 	 * 4 GHz == 50us
718 	 * 1 GHz == 200us
719 	 */
720 	do {
721 		rep_nop();
722 		rdtscll(now);
723 	} while ((now - start) < 200000UL);
724 
725 	if (t1 == read_hpet()) {
726 		printk(KERN_WARNING
727 		       "HPET counter not counting. HPET disabled\n");
728 		return -ENODEV;
729 	}
730 
731 	/*
732 	 * The definition of mult is (include/linux/clocksource.h)
733 	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
734 	 * so we first need to convert hpet_period to ns/cyc units:
735 	 *  mult/2^shift = ns/cyc = hpet_period/10^6
736 	 *  mult = (hpet_period * 2^shift)/10^6
737 	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC
738 	 */
739 	clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
740 
741 	clocksource_register(&clocksource_hpet);
742 
743 	return 0;
744 }
745 
746 /**
747  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
748  */
749 int __init hpet_enable(void)
750 {
751 	unsigned long id;
752 	int i;
753 
754 	if (!is_hpet_capable())
755 		return 0;
756 
757 	hpet_set_mapping();
758 
759 	/*
760 	 * Read the period and check for a sane value:
761 	 */
762 	hpet_period = hpet_readl(HPET_PERIOD);
763 
764 	/*
765 	 * AMD SB700 based systems with spread spectrum enabled use a
766 	 * SMM based HPET emulation to provide proper frequency
767 	 * setting. The SMM code is initialized with the first HPET
768 	 * register access and takes some time to complete. During
769 	 * this time the config register reads 0xffffffff. We check
770 	 * for max. 1000 loops whether the config register reads a non
771 	 * 0xffffffff value to make sure that HPET is up and running
772 	 * before we go further. A counting loop is safe, as the HPET
773 	 * access takes thousands of CPU cycles. On non SB700 based
774 	 * machines this check is only done once and has no side
775 	 * effects.
776 	 */
777 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
778 		if (i == 1000) {
779 			printk(KERN_WARNING
780 			       "HPET config register value = 0xFFFFFFFF. "
781 			       "Disabling HPET\n");
782 			goto out_nohpet;
783 		}
784 	}
785 
786 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
787 		goto out_nohpet;
788 
789 	/*
790 	 * Read the HPET ID register to retrieve the IRQ routing
791 	 * information and the number of channels
792 	 */
793 	id = hpet_readl(HPET_ID);
794 
795 #ifdef CONFIG_HPET_EMULATE_RTC
796 	/*
797 	 * The legacy routing mode needs at least two channels, tick timer
798 	 * and the rtc emulation channel.
799 	 */
800 	if (!(id & HPET_ID_NUMBER))
801 		goto out_nohpet;
802 #endif
803 
804 	if (hpet_clocksource_register())
805 		goto out_nohpet;
806 
807 	if (id & HPET_ID_LEGSUP) {
808 		hpet_legacy_clockevent_register();
809 		hpet_msi_capability_lookup(2);
810 		return 1;
811 	}
812 	hpet_msi_capability_lookup(0);
813 	return 0;
814 
815 out_nohpet:
816 	hpet_clear_mapping();
817 	hpet_address = 0;
818 	return 0;
819 }
820 
821 /*
822  * Needs to be late, as the reserve_timer code calls kalloc !
823  *
824  * Not a problem on i386 as hpet_enable is called from late_time_init,
825  * but on x86_64 it is necessary !
826  */
827 static __init int hpet_late_init(void)
828 {
829 	int cpu;
830 
831 	if (boot_hpet_disable)
832 		return -ENODEV;
833 
834 	if (!hpet_address) {
835 		if (!force_hpet_address)
836 			return -ENODEV;
837 
838 		hpet_address = force_hpet_address;
839 		hpet_enable();
840 	}
841 
842 	if (!hpet_virt_address)
843 		return -ENODEV;
844 
845 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
846 
847 	for_each_online_cpu(cpu) {
848 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
849 	}
850 
851 	/* This notifier should be called after workqueue is ready */
852 	hotcpu_notifier(hpet_cpuhp_notify, -20);
853 
854 	return 0;
855 }
856 fs_initcall(hpet_late_init);
857 
858 void hpet_disable(void)
859 {
860 	if (is_hpet_capable()) {
861 		unsigned long cfg = hpet_readl(HPET_CFG);
862 
863 		if (hpet_legacy_int_enabled) {
864 			cfg &= ~HPET_CFG_LEGACY;
865 			hpet_legacy_int_enabled = 0;
866 		}
867 		cfg &= ~HPET_CFG_ENABLE;
868 		hpet_writel(cfg, HPET_CFG);
869 	}
870 }
871 
872 #ifdef CONFIG_HPET_EMULATE_RTC
873 
874 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
875  * is enabled, we support RTC interrupt functionality in software.
876  * RTC has 3 kinds of interrupts:
877  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
878  *    is updated
879  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
880  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
881  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
882  * (1) and (2) above are implemented using polling at a frequency of
883  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
884  * overhead. (DEFAULT_RTC_INT_FREQ)
885  * For (3), we use interrupts at 64Hz or user specified periodic
886  * frequency, whichever is higher.
887  */
888 #include <linux/mc146818rtc.h>
889 #include <linux/rtc.h>
890 #include <asm/rtc.h>
891 
892 #define DEFAULT_RTC_INT_FREQ	64
893 #define DEFAULT_RTC_SHIFT	6
894 #define RTC_NUM_INTS		1
895 
896 static unsigned long hpet_rtc_flags;
897 static int hpet_prev_update_sec;
898 static struct rtc_time hpet_alarm_time;
899 static unsigned long hpet_pie_count;
900 static u32 hpet_t1_cmp;
901 static unsigned long hpet_default_delta;
902 static unsigned long hpet_pie_delta;
903 static unsigned long hpet_pie_limit;
904 
905 static rtc_irq_handler irq_handler;
906 
907 /*
908  * Check that the hpet counter c1 is ahead of the c2
909  */
910 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
911 {
912 	return (s32)(c2 - c1) < 0;
913 }
914 
915 /*
916  * Registers a IRQ handler.
917  */
918 int hpet_register_irq_handler(rtc_irq_handler handler)
919 {
920 	if (!is_hpet_enabled())
921 		return -ENODEV;
922 	if (irq_handler)
923 		return -EBUSY;
924 
925 	irq_handler = handler;
926 
927 	return 0;
928 }
929 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
930 
931 /*
932  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
933  * and does cleanup.
934  */
935 void hpet_unregister_irq_handler(rtc_irq_handler handler)
936 {
937 	if (!is_hpet_enabled())
938 		return;
939 
940 	irq_handler = NULL;
941 	hpet_rtc_flags = 0;
942 }
943 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
944 
945 /*
946  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
947  * is not supported by all HPET implementations for timer 1.
948  *
949  * hpet_rtc_timer_init() is called when the rtc is initialized.
950  */
951 int hpet_rtc_timer_init(void)
952 {
953 	unsigned long cfg, cnt, delta, flags;
954 
955 	if (!is_hpet_enabled())
956 		return 0;
957 
958 	if (!hpet_default_delta) {
959 		uint64_t clc;
960 
961 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
962 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
963 		hpet_default_delta = (unsigned long) clc;
964 	}
965 
966 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
967 		delta = hpet_default_delta;
968 	else
969 		delta = hpet_pie_delta;
970 
971 	local_irq_save(flags);
972 
973 	cnt = delta + hpet_readl(HPET_COUNTER);
974 	hpet_writel(cnt, HPET_T1_CMP);
975 	hpet_t1_cmp = cnt;
976 
977 	cfg = hpet_readl(HPET_T1_CFG);
978 	cfg &= ~HPET_TN_PERIODIC;
979 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
980 	hpet_writel(cfg, HPET_T1_CFG);
981 
982 	local_irq_restore(flags);
983 
984 	return 1;
985 }
986 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
987 
988 /*
989  * The functions below are called from rtc driver.
990  * Return 0 if HPET is not being used.
991  * Otherwise do the necessary changes and return 1.
992  */
993 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
994 {
995 	if (!is_hpet_enabled())
996 		return 0;
997 
998 	hpet_rtc_flags &= ~bit_mask;
999 	return 1;
1000 }
1001 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1002 
1003 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1004 {
1005 	unsigned long oldbits = hpet_rtc_flags;
1006 
1007 	if (!is_hpet_enabled())
1008 		return 0;
1009 
1010 	hpet_rtc_flags |= bit_mask;
1011 
1012 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1013 		hpet_prev_update_sec = -1;
1014 
1015 	if (!oldbits)
1016 		hpet_rtc_timer_init();
1017 
1018 	return 1;
1019 }
1020 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1021 
1022 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1023 			unsigned char sec)
1024 {
1025 	if (!is_hpet_enabled())
1026 		return 0;
1027 
1028 	hpet_alarm_time.tm_hour = hrs;
1029 	hpet_alarm_time.tm_min = min;
1030 	hpet_alarm_time.tm_sec = sec;
1031 
1032 	return 1;
1033 }
1034 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1035 
1036 int hpet_set_periodic_freq(unsigned long freq)
1037 {
1038 	uint64_t clc;
1039 
1040 	if (!is_hpet_enabled())
1041 		return 0;
1042 
1043 	if (freq <= DEFAULT_RTC_INT_FREQ)
1044 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1045 	else {
1046 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1047 		do_div(clc, freq);
1048 		clc >>= hpet_clockevent.shift;
1049 		hpet_pie_delta = (unsigned long) clc;
1050 	}
1051 	return 1;
1052 }
1053 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1054 
1055 int hpet_rtc_dropped_irq(void)
1056 {
1057 	return is_hpet_enabled();
1058 }
1059 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1060 
1061 static void hpet_rtc_timer_reinit(void)
1062 {
1063 	unsigned long cfg, delta;
1064 	int lost_ints = -1;
1065 
1066 	if (unlikely(!hpet_rtc_flags)) {
1067 		cfg = hpet_readl(HPET_T1_CFG);
1068 		cfg &= ~HPET_TN_ENABLE;
1069 		hpet_writel(cfg, HPET_T1_CFG);
1070 		return;
1071 	}
1072 
1073 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1074 		delta = hpet_default_delta;
1075 	else
1076 		delta = hpet_pie_delta;
1077 
1078 	/*
1079 	 * Increment the comparator value until we are ahead of the
1080 	 * current count.
1081 	 */
1082 	do {
1083 		hpet_t1_cmp += delta;
1084 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1085 		lost_ints++;
1086 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1087 
1088 	if (lost_ints) {
1089 		if (hpet_rtc_flags & RTC_PIE)
1090 			hpet_pie_count += lost_ints;
1091 		if (printk_ratelimit())
1092 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1093 				lost_ints);
1094 	}
1095 }
1096 
1097 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1098 {
1099 	struct rtc_time curr_time;
1100 	unsigned long rtc_int_flag = 0;
1101 
1102 	hpet_rtc_timer_reinit();
1103 	memset(&curr_time, 0, sizeof(struct rtc_time));
1104 
1105 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1106 		get_rtc_time(&curr_time);
1107 
1108 	if (hpet_rtc_flags & RTC_UIE &&
1109 	    curr_time.tm_sec != hpet_prev_update_sec) {
1110 		if (hpet_prev_update_sec >= 0)
1111 			rtc_int_flag = RTC_UF;
1112 		hpet_prev_update_sec = curr_time.tm_sec;
1113 	}
1114 
1115 	if (hpet_rtc_flags & RTC_PIE &&
1116 	    ++hpet_pie_count >= hpet_pie_limit) {
1117 		rtc_int_flag |= RTC_PF;
1118 		hpet_pie_count = 0;
1119 	}
1120 
1121 	if (hpet_rtc_flags & RTC_AIE &&
1122 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1123 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1124 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1125 			rtc_int_flag |= RTC_AF;
1126 
1127 	if (rtc_int_flag) {
1128 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1129 		if (irq_handler)
1130 			irq_handler(rtc_int_flag, dev_id);
1131 	}
1132 	return IRQ_HANDLED;
1133 }
1134 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1135 #endif
1136