xref: /linux/arch/x86/kernel/hpet.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9 #include <linux/delay.h>
10 
11 #include <asm/fixmap.h>
12 #include <asm/hpet.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 
16 #define HPET_MASK	CLOCKSOURCE_MASK(32)
17 #define HPET_SHIFT	22
18 
19 /* FSEC = 10^-15 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC	1000000
21 
22 /*
23  * HPET address is set in acpi/boot.c, when an ACPI entry exists
24  */
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
27 
28 unsigned long hpet_readl(unsigned long a)
29 {
30 	return readl(hpet_virt_address + a);
31 }
32 
33 static inline void hpet_writel(unsigned long d, unsigned long a)
34 {
35 	writel(d, hpet_virt_address + a);
36 }
37 
38 #ifdef CONFIG_X86_64
39 
40 #include <asm/pgtable.h>
41 
42 static inline void hpet_set_mapping(void)
43 {
44 	set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 	hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
47 }
48 
49 static inline void hpet_clear_mapping(void)
50 {
51 	hpet_virt_address = NULL;
52 }
53 
54 #else
55 
56 static inline void hpet_set_mapping(void)
57 {
58 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
59 }
60 
61 static inline void hpet_clear_mapping(void)
62 {
63 	iounmap(hpet_virt_address);
64 	hpet_virt_address = NULL;
65 }
66 #endif
67 
68 /*
69  * HPET command line enable / disable
70  */
71 static int boot_hpet_disable;
72 int hpet_force_user;
73 
74 static int __init hpet_setup(char* str)
75 {
76 	if (str) {
77 		if (!strncmp("disable", str, 7))
78 			boot_hpet_disable = 1;
79 		if (!strncmp("force", str, 5))
80 			hpet_force_user = 1;
81 	}
82 	return 1;
83 }
84 __setup("hpet=", hpet_setup);
85 
86 static int __init disable_hpet(char *str)
87 {
88 	boot_hpet_disable = 1;
89 	return 1;
90 }
91 __setup("nohpet", disable_hpet);
92 
93 static inline int is_hpet_capable(void)
94 {
95 	return (!boot_hpet_disable && hpet_address);
96 }
97 
98 /*
99  * HPET timer interrupt enable / disable
100  */
101 static int hpet_legacy_int_enabled;
102 
103 /**
104  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
105  */
106 int is_hpet_enabled(void)
107 {
108 	return is_hpet_capable() && hpet_legacy_int_enabled;
109 }
110 
111 /*
112  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
113  * timer 0 and timer 1 in case of RTC emulation.
114  */
115 #ifdef CONFIG_HPET
116 static void hpet_reserve_platform_timers(unsigned long id)
117 {
118 	struct hpet __iomem *hpet = hpet_virt_address;
119 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
120 	unsigned int nrtimers, i;
121 	struct hpet_data hd;
122 
123 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
124 
125 	memset(&hd, 0, sizeof (hd));
126 	hd.hd_phys_address = hpet_address;
127 	hd.hd_address = hpet;
128 	hd.hd_nirqs = nrtimers;
129 	hd.hd_flags = HPET_DATA_PLATFORM;
130 	hpet_reserve_timer(&hd, 0);
131 
132 #ifdef CONFIG_HPET_EMULATE_RTC
133 	hpet_reserve_timer(&hd, 1);
134 #endif
135 
136 	hd.hd_irq[0] = HPET_LEGACY_8254;
137 	hd.hd_irq[1] = HPET_LEGACY_RTC;
138 
139 	for (i = 2; i < nrtimers; timer++, i++)
140 		hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
141 			Tn_INT_ROUTE_CNF_SHIFT;
142 
143 	hpet_alloc(&hd);
144 
145 }
146 #else
147 static void hpet_reserve_platform_timers(unsigned long id) { }
148 #endif
149 
150 /*
151  * Common hpet info
152  */
153 static unsigned long hpet_period;
154 
155 static void hpet_legacy_set_mode(enum clock_event_mode mode,
156 			  struct clock_event_device *evt);
157 static int hpet_legacy_next_event(unsigned long delta,
158 			   struct clock_event_device *evt);
159 
160 /*
161  * The hpet clock event device
162  */
163 static struct clock_event_device hpet_clockevent = {
164 	.name		= "hpet",
165 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
166 	.set_mode	= hpet_legacy_set_mode,
167 	.set_next_event = hpet_legacy_next_event,
168 	.shift		= 32,
169 	.irq		= 0,
170 	.rating		= 50,
171 };
172 
173 static void hpet_start_counter(void)
174 {
175 	unsigned long cfg = hpet_readl(HPET_CFG);
176 
177 	cfg &= ~HPET_CFG_ENABLE;
178 	hpet_writel(cfg, HPET_CFG);
179 	hpet_writel(0, HPET_COUNTER);
180 	hpet_writel(0, HPET_COUNTER + 4);
181 	cfg |= HPET_CFG_ENABLE;
182 	hpet_writel(cfg, HPET_CFG);
183 }
184 
185 static void hpet_resume_device(void)
186 {
187 	force_hpet_resume();
188 }
189 
190 static void hpet_restart_counter(void)
191 {
192 	hpet_resume_device();
193 	hpet_start_counter();
194 }
195 
196 static void hpet_enable_legacy_int(void)
197 {
198 	unsigned long cfg = hpet_readl(HPET_CFG);
199 
200 	cfg |= HPET_CFG_LEGACY;
201 	hpet_writel(cfg, HPET_CFG);
202 	hpet_legacy_int_enabled = 1;
203 }
204 
205 static void hpet_legacy_clockevent_register(void)
206 {
207 	uint64_t hpet_freq;
208 
209 	/* Start HPET legacy interrupts */
210 	hpet_enable_legacy_int();
211 
212 	/*
213 	 * The period is a femto seconds value. We need to calculate the
214 	 * scaled math multiplication factor for nanosecond to hpet tick
215 	 * conversion.
216 	 */
217 	hpet_freq = 1000000000000000ULL;
218 	do_div(hpet_freq, hpet_period);
219 	hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
220 				      NSEC_PER_SEC, 32);
221 	/* Calculate the min / max delta */
222 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
223 							   &hpet_clockevent);
224 	hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
225 							   &hpet_clockevent);
226 
227 	/*
228 	 * Start hpet with the boot cpu mask and make it
229 	 * global after the IO_APIC has been initialized.
230 	 */
231 	hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
232 	clockevents_register_device(&hpet_clockevent);
233 	global_clock_event = &hpet_clockevent;
234 	printk(KERN_DEBUG "hpet clockevent registered\n");
235 }
236 
237 static void hpet_legacy_set_mode(enum clock_event_mode mode,
238 			  struct clock_event_device *evt)
239 {
240 	unsigned long cfg, cmp, now;
241 	uint64_t delta;
242 
243 	switch(mode) {
244 	case CLOCK_EVT_MODE_PERIODIC:
245 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
246 		delta >>= hpet_clockevent.shift;
247 		now = hpet_readl(HPET_COUNTER);
248 		cmp = now + (unsigned long) delta;
249 		cfg = hpet_readl(HPET_T0_CFG);
250 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
251 		       HPET_TN_SETVAL | HPET_TN_32BIT;
252 		hpet_writel(cfg, HPET_T0_CFG);
253 		/*
254 		 * The first write after writing TN_SETVAL to the
255 		 * config register sets the counter value, the second
256 		 * write sets the period.
257 		 */
258 		hpet_writel(cmp, HPET_T0_CMP);
259 		udelay(1);
260 		hpet_writel((unsigned long) delta, HPET_T0_CMP);
261 		break;
262 
263 	case CLOCK_EVT_MODE_ONESHOT:
264 		cfg = hpet_readl(HPET_T0_CFG);
265 		cfg &= ~HPET_TN_PERIODIC;
266 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
267 		hpet_writel(cfg, HPET_T0_CFG);
268 		break;
269 
270 	case CLOCK_EVT_MODE_UNUSED:
271 	case CLOCK_EVT_MODE_SHUTDOWN:
272 		cfg = hpet_readl(HPET_T0_CFG);
273 		cfg &= ~HPET_TN_ENABLE;
274 		hpet_writel(cfg, HPET_T0_CFG);
275 		break;
276 
277 	case CLOCK_EVT_MODE_RESUME:
278 		hpet_enable_legacy_int();
279 		break;
280 	}
281 }
282 
283 static int hpet_legacy_next_event(unsigned long delta,
284 			   struct clock_event_device *evt)
285 {
286 	unsigned long cnt;
287 
288 	cnt = hpet_readl(HPET_COUNTER);
289 	cnt += delta;
290 	hpet_writel(cnt, HPET_T0_CMP);
291 
292 	return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
293 }
294 
295 /*
296  * Clock source related code
297  */
298 static cycle_t read_hpet(void)
299 {
300 	return (cycle_t)hpet_readl(HPET_COUNTER);
301 }
302 
303 #ifdef CONFIG_X86_64
304 static cycle_t __vsyscall_fn vread_hpet(void)
305 {
306 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
307 }
308 #endif
309 
310 static struct clocksource clocksource_hpet = {
311 	.name		= "hpet",
312 	.rating		= 250,
313 	.read		= read_hpet,
314 	.mask		= HPET_MASK,
315 	.shift		= HPET_SHIFT,
316 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
317 	.resume		= hpet_restart_counter,
318 #ifdef CONFIG_X86_64
319 	.vread		= vread_hpet,
320 #endif
321 };
322 
323 static int hpet_clocksource_register(void)
324 {
325 	u64 tmp, start, now;
326 	cycle_t t1;
327 
328 	/* Start the counter */
329 	hpet_start_counter();
330 
331 	/* Verify whether hpet counter works */
332 	t1 = read_hpet();
333 	rdtscll(start);
334 
335 	/*
336 	 * We don't know the TSC frequency yet, but waiting for
337 	 * 200000 TSC cycles is safe:
338 	 * 4 GHz == 50us
339 	 * 1 GHz == 200us
340 	 */
341 	do {
342 		rep_nop();
343 		rdtscll(now);
344 	} while ((now - start) < 200000UL);
345 
346 	if (t1 == read_hpet()) {
347 		printk(KERN_WARNING
348 		       "HPET counter not counting. HPET disabled\n");
349 		return -ENODEV;
350 	}
351 
352 	/* Initialize and register HPET clocksource
353 	 *
354 	 * hpet period is in femto seconds per cycle
355 	 * so we need to convert this to ns/cyc units
356 	 * approximated by mult/2^shift
357 	 *
358 	 *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
359 	 *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
360 	 *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
361 	 *  (fsec/cyc << shift)/1000000 = mult
362 	 *  (hpet_period << shift)/FSEC_PER_NSEC = mult
363 	 */
364 	tmp = (u64)hpet_period << HPET_SHIFT;
365 	do_div(tmp, FSEC_PER_NSEC);
366 	clocksource_hpet.mult = (u32)tmp;
367 
368 	clocksource_register(&clocksource_hpet);
369 
370 	return 0;
371 }
372 
373 /*
374  * Try to setup the HPET timer
375  */
376 int __init hpet_enable(void)
377 {
378 	unsigned long id;
379 
380 	if (!is_hpet_capable())
381 		return 0;
382 
383 	hpet_set_mapping();
384 
385 	/*
386 	 * Read the period and check for a sane value:
387 	 */
388 	hpet_period = hpet_readl(HPET_PERIOD);
389 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
390 		goto out_nohpet;
391 
392 	/*
393 	 * Read the HPET ID register to retrieve the IRQ routing
394 	 * information and the number of channels
395 	 */
396 	id = hpet_readl(HPET_ID);
397 
398 #ifdef CONFIG_HPET_EMULATE_RTC
399 	/*
400 	 * The legacy routing mode needs at least two channels, tick timer
401 	 * and the rtc emulation channel.
402 	 */
403 	if (!(id & HPET_ID_NUMBER))
404 		goto out_nohpet;
405 #endif
406 
407 	if (hpet_clocksource_register())
408 		goto out_nohpet;
409 
410 	if (id & HPET_ID_LEGSUP) {
411 		hpet_legacy_clockevent_register();
412 		return 1;
413 	}
414 	return 0;
415 
416 out_nohpet:
417 	hpet_clear_mapping();
418 	boot_hpet_disable = 1;
419 	return 0;
420 }
421 
422 /*
423  * Needs to be late, as the reserve_timer code calls kalloc !
424  *
425  * Not a problem on i386 as hpet_enable is called from late_time_init,
426  * but on x86_64 it is necessary !
427  */
428 static __init int hpet_late_init(void)
429 {
430 	if (boot_hpet_disable)
431 		return -ENODEV;
432 
433 	if (!hpet_address) {
434 		if (!force_hpet_address)
435 			return -ENODEV;
436 
437 		hpet_address = force_hpet_address;
438 		hpet_enable();
439 		if (!hpet_virt_address)
440 			return -ENODEV;
441 	}
442 
443 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
444 
445 	return 0;
446 }
447 fs_initcall(hpet_late_init);
448 
449 #ifdef CONFIG_HPET_EMULATE_RTC
450 
451 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
452  * is enabled, we support RTC interrupt functionality in software.
453  * RTC has 3 kinds of interrupts:
454  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
455  *    is updated
456  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
457  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
458  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
459  * (1) and (2) above are implemented using polling at a frequency of
460  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
461  * overhead. (DEFAULT_RTC_INT_FREQ)
462  * For (3), we use interrupts at 64Hz or user specified periodic
463  * frequency, whichever is higher.
464  */
465 #include <linux/mc146818rtc.h>
466 #include <linux/rtc.h>
467 
468 #define DEFAULT_RTC_INT_FREQ	64
469 #define DEFAULT_RTC_SHIFT	6
470 #define RTC_NUM_INTS		1
471 
472 static unsigned long hpet_rtc_flags;
473 static unsigned long hpet_prev_update_sec;
474 static struct rtc_time hpet_alarm_time;
475 static unsigned long hpet_pie_count;
476 static unsigned long hpet_t1_cmp;
477 static unsigned long hpet_default_delta;
478 static unsigned long hpet_pie_delta;
479 static unsigned long hpet_pie_limit;
480 
481 /*
482  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
483  * is not supported by all HPET implementations for timer 1.
484  *
485  * hpet_rtc_timer_init() is called when the rtc is initialized.
486  */
487 int hpet_rtc_timer_init(void)
488 {
489 	unsigned long cfg, cnt, delta, flags;
490 
491 	if (!is_hpet_enabled())
492 		return 0;
493 
494 	if (!hpet_default_delta) {
495 		uint64_t clc;
496 
497 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
498 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
499 		hpet_default_delta = (unsigned long) clc;
500 	}
501 
502 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
503 		delta = hpet_default_delta;
504 	else
505 		delta = hpet_pie_delta;
506 
507 	local_irq_save(flags);
508 
509 	cnt = delta + hpet_readl(HPET_COUNTER);
510 	hpet_writel(cnt, HPET_T1_CMP);
511 	hpet_t1_cmp = cnt;
512 
513 	cfg = hpet_readl(HPET_T1_CFG);
514 	cfg &= ~HPET_TN_PERIODIC;
515 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
516 	hpet_writel(cfg, HPET_T1_CFG);
517 
518 	local_irq_restore(flags);
519 
520 	return 1;
521 }
522 
523 /*
524  * The functions below are called from rtc driver.
525  * Return 0 if HPET is not being used.
526  * Otherwise do the necessary changes and return 1.
527  */
528 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
529 {
530 	if (!is_hpet_enabled())
531 		return 0;
532 
533 	hpet_rtc_flags &= ~bit_mask;
534 	return 1;
535 }
536 
537 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
538 {
539 	unsigned long oldbits = hpet_rtc_flags;
540 
541 	if (!is_hpet_enabled())
542 		return 0;
543 
544 	hpet_rtc_flags |= bit_mask;
545 
546 	if (!oldbits)
547 		hpet_rtc_timer_init();
548 
549 	return 1;
550 }
551 
552 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
553 			unsigned char sec)
554 {
555 	if (!is_hpet_enabled())
556 		return 0;
557 
558 	hpet_alarm_time.tm_hour = hrs;
559 	hpet_alarm_time.tm_min = min;
560 	hpet_alarm_time.tm_sec = sec;
561 
562 	return 1;
563 }
564 
565 int hpet_set_periodic_freq(unsigned long freq)
566 {
567 	uint64_t clc;
568 
569 	if (!is_hpet_enabled())
570 		return 0;
571 
572 	if (freq <= DEFAULT_RTC_INT_FREQ)
573 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
574 	else {
575 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
576 		do_div(clc, freq);
577 		clc >>= hpet_clockevent.shift;
578 		hpet_pie_delta = (unsigned long) clc;
579 	}
580 	return 1;
581 }
582 
583 int hpet_rtc_dropped_irq(void)
584 {
585 	return is_hpet_enabled();
586 }
587 
588 static void hpet_rtc_timer_reinit(void)
589 {
590 	unsigned long cfg, delta;
591 	int lost_ints = -1;
592 
593 	if (unlikely(!hpet_rtc_flags)) {
594 		cfg = hpet_readl(HPET_T1_CFG);
595 		cfg &= ~HPET_TN_ENABLE;
596 		hpet_writel(cfg, HPET_T1_CFG);
597 		return;
598 	}
599 
600 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
601 		delta = hpet_default_delta;
602 	else
603 		delta = hpet_pie_delta;
604 
605 	/*
606 	 * Increment the comparator value until we are ahead of the
607 	 * current count.
608 	 */
609 	do {
610 		hpet_t1_cmp += delta;
611 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
612 		lost_ints++;
613 	} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
614 
615 	if (lost_ints) {
616 		if (hpet_rtc_flags & RTC_PIE)
617 			hpet_pie_count += lost_ints;
618 		if (printk_ratelimit())
619 			printk(KERN_WARNING "rtc: lost %d interrupts\n",
620 				lost_ints);
621 	}
622 }
623 
624 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
625 {
626 	struct rtc_time curr_time;
627 	unsigned long rtc_int_flag = 0;
628 
629 	hpet_rtc_timer_reinit();
630 
631 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
632 		rtc_get_rtc_time(&curr_time);
633 
634 	if (hpet_rtc_flags & RTC_UIE &&
635 	    curr_time.tm_sec != hpet_prev_update_sec) {
636 		rtc_int_flag = RTC_UF;
637 		hpet_prev_update_sec = curr_time.tm_sec;
638 	}
639 
640 	if (hpet_rtc_flags & RTC_PIE &&
641 	    ++hpet_pie_count >= hpet_pie_limit) {
642 		rtc_int_flag |= RTC_PF;
643 		hpet_pie_count = 0;
644 	}
645 
646 	if (hpet_rtc_flags & RTC_PIE &&
647 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
648 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
649 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
650 			rtc_int_flag |= RTC_AF;
651 
652 	if (rtc_int_flag) {
653 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
654 		rtc_interrupt(rtc_int_flag, dev_id);
655 	}
656 	return IRQ_HANDLED;
657 }
658 #endif
659