1 #include <linux/clocksource.h> 2 #include <linux/clockchips.h> 3 #include <linux/interrupt.h> 4 #include <linux/export.h> 5 #include <linux/delay.h> 6 #include <linux/errno.h> 7 #include <linux/i8253.h> 8 #include <linux/slab.h> 9 #include <linux/hpet.h> 10 #include <linux/init.h> 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/io.h> 14 15 #include <asm/fixmap.h> 16 #include <asm/hpet.h> 17 #include <asm/time.h> 18 19 #define HPET_MASK CLOCKSOURCE_MASK(32) 20 21 /* FSEC = 10^-15 22 NSEC = 10^-9 */ 23 #define FSEC_PER_NSEC 1000000L 24 25 #define HPET_DEV_USED_BIT 2 26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT) 27 #define HPET_DEV_VALID 0x8 28 #define HPET_DEV_FSB_CAP 0x1000 29 #define HPET_DEV_PERI_CAP 0x2000 30 31 #define HPET_MIN_CYCLES 128 32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1)) 33 34 /* 35 * HPET address is set in acpi/boot.c, when an ACPI entry exists 36 */ 37 unsigned long hpet_address; 38 u8 hpet_blockid; /* OS timer block num */ 39 u8 hpet_msi_disable; 40 41 #ifdef CONFIG_PCI_MSI 42 static unsigned long hpet_num_timers; 43 #endif 44 static void __iomem *hpet_virt_address; 45 46 struct hpet_dev { 47 struct clock_event_device evt; 48 unsigned int num; 49 int cpu; 50 unsigned int irq; 51 unsigned int flags; 52 char name[10]; 53 }; 54 55 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev) 56 { 57 return container_of(evtdev, struct hpet_dev, evt); 58 } 59 60 inline unsigned int hpet_readl(unsigned int a) 61 { 62 return readl(hpet_virt_address + a); 63 } 64 65 static inline void hpet_writel(unsigned int d, unsigned int a) 66 { 67 writel(d, hpet_virt_address + a); 68 } 69 70 #ifdef CONFIG_X86_64 71 #include <asm/pgtable.h> 72 #endif 73 74 static inline void hpet_set_mapping(void) 75 { 76 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); 77 #ifdef CONFIG_X86_64 78 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE); 79 #endif 80 } 81 82 static inline void hpet_clear_mapping(void) 83 { 84 iounmap(hpet_virt_address); 85 hpet_virt_address = NULL; 86 } 87 88 /* 89 * HPET command line enable / disable 90 */ 91 static int boot_hpet_disable; 92 int hpet_force_user; 93 static int hpet_verbose; 94 95 static int __init hpet_setup(char *str) 96 { 97 while (str) { 98 char *next = strchr(str, ','); 99 100 if (next) 101 *next++ = 0; 102 if (!strncmp("disable", str, 7)) 103 boot_hpet_disable = 1; 104 if (!strncmp("force", str, 5)) 105 hpet_force_user = 1; 106 if (!strncmp("verbose", str, 7)) 107 hpet_verbose = 1; 108 str = next; 109 } 110 return 1; 111 } 112 __setup("hpet=", hpet_setup); 113 114 static int __init disable_hpet(char *str) 115 { 116 boot_hpet_disable = 1; 117 return 1; 118 } 119 __setup("nohpet", disable_hpet); 120 121 static inline int is_hpet_capable(void) 122 { 123 return !boot_hpet_disable && hpet_address; 124 } 125 126 /* 127 * HPET timer interrupt enable / disable 128 */ 129 static int hpet_legacy_int_enabled; 130 131 /** 132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled 133 */ 134 int is_hpet_enabled(void) 135 { 136 return is_hpet_capable() && hpet_legacy_int_enabled; 137 } 138 EXPORT_SYMBOL_GPL(is_hpet_enabled); 139 140 static void _hpet_print_config(const char *function, int line) 141 { 142 u32 i, timers, l, h; 143 printk(KERN_INFO "hpet: %s(%d):\n", function, line); 144 l = hpet_readl(HPET_ID); 145 h = hpet_readl(HPET_PERIOD); 146 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; 147 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h); 148 l = hpet_readl(HPET_CFG); 149 h = hpet_readl(HPET_STATUS); 150 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h); 151 l = hpet_readl(HPET_COUNTER); 152 h = hpet_readl(HPET_COUNTER+4); 153 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); 154 155 for (i = 0; i < timers; i++) { 156 l = hpet_readl(HPET_Tn_CFG(i)); 157 h = hpet_readl(HPET_Tn_CFG(i)+4); 158 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", 159 i, l, h); 160 l = hpet_readl(HPET_Tn_CMP(i)); 161 h = hpet_readl(HPET_Tn_CMP(i)+4); 162 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", 163 i, l, h); 164 l = hpet_readl(HPET_Tn_ROUTE(i)); 165 h = hpet_readl(HPET_Tn_ROUTE(i)+4); 166 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", 167 i, l, h); 168 } 169 } 170 171 #define hpet_print_config() \ 172 do { \ 173 if (hpet_verbose) \ 174 _hpet_print_config(__FUNCTION__, __LINE__); \ 175 } while (0) 176 177 /* 178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve 179 * timer 0 and timer 1 in case of RTC emulation. 180 */ 181 #ifdef CONFIG_HPET 182 183 static void hpet_reserve_msi_timers(struct hpet_data *hd); 184 185 static void hpet_reserve_platform_timers(unsigned int id) 186 { 187 struct hpet __iomem *hpet = hpet_virt_address; 188 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; 189 unsigned int nrtimers, i; 190 struct hpet_data hd; 191 192 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; 193 194 memset(&hd, 0, sizeof(hd)); 195 hd.hd_phys_address = hpet_address; 196 hd.hd_address = hpet; 197 hd.hd_nirqs = nrtimers; 198 hpet_reserve_timer(&hd, 0); 199 200 #ifdef CONFIG_HPET_EMULATE_RTC 201 hpet_reserve_timer(&hd, 1); 202 #endif 203 204 /* 205 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 206 * is wrong for i8259!) not the output IRQ. Many BIOS writers 207 * don't bother configuring *any* comparator interrupts. 208 */ 209 hd.hd_irq[0] = HPET_LEGACY_8254; 210 hd.hd_irq[1] = HPET_LEGACY_RTC; 211 212 for (i = 2; i < nrtimers; timer++, i++) { 213 hd.hd_irq[i] = (readl(&timer->hpet_config) & 214 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; 215 } 216 217 hpet_reserve_msi_timers(&hd); 218 219 hpet_alloc(&hd); 220 221 } 222 #else 223 static void hpet_reserve_platform_timers(unsigned int id) { } 224 #endif 225 226 /* 227 * Common hpet info 228 */ 229 static unsigned long hpet_freq; 230 231 static void hpet_legacy_set_mode(enum clock_event_mode mode, 232 struct clock_event_device *evt); 233 static int hpet_legacy_next_event(unsigned long delta, 234 struct clock_event_device *evt); 235 236 /* 237 * The hpet clock event device 238 */ 239 static struct clock_event_device hpet_clockevent = { 240 .name = "hpet", 241 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, 242 .set_mode = hpet_legacy_set_mode, 243 .set_next_event = hpet_legacy_next_event, 244 .irq = 0, 245 .rating = 50, 246 }; 247 248 static void hpet_stop_counter(void) 249 { 250 unsigned long cfg = hpet_readl(HPET_CFG); 251 cfg &= ~HPET_CFG_ENABLE; 252 hpet_writel(cfg, HPET_CFG); 253 } 254 255 static void hpet_reset_counter(void) 256 { 257 hpet_writel(0, HPET_COUNTER); 258 hpet_writel(0, HPET_COUNTER + 4); 259 } 260 261 static void hpet_start_counter(void) 262 { 263 unsigned int cfg = hpet_readl(HPET_CFG); 264 cfg |= HPET_CFG_ENABLE; 265 hpet_writel(cfg, HPET_CFG); 266 } 267 268 static void hpet_restart_counter(void) 269 { 270 hpet_stop_counter(); 271 hpet_reset_counter(); 272 hpet_start_counter(); 273 } 274 275 static void hpet_resume_device(void) 276 { 277 force_hpet_resume(); 278 } 279 280 static void hpet_resume_counter(struct clocksource *cs) 281 { 282 hpet_resume_device(); 283 hpet_restart_counter(); 284 } 285 286 static void hpet_enable_legacy_int(void) 287 { 288 unsigned int cfg = hpet_readl(HPET_CFG); 289 290 cfg |= HPET_CFG_LEGACY; 291 hpet_writel(cfg, HPET_CFG); 292 hpet_legacy_int_enabled = 1; 293 } 294 295 static void hpet_legacy_clockevent_register(void) 296 { 297 /* Start HPET legacy interrupts */ 298 hpet_enable_legacy_int(); 299 300 /* 301 * Start hpet with the boot cpu mask and make it 302 * global after the IO_APIC has been initialized. 303 */ 304 hpet_clockevent.cpumask = cpumask_of(smp_processor_id()); 305 clockevents_config_and_register(&hpet_clockevent, hpet_freq, 306 HPET_MIN_PROG_DELTA, 0x7FFFFFFF); 307 global_clock_event = &hpet_clockevent; 308 printk(KERN_DEBUG "hpet clockevent registered\n"); 309 } 310 311 static int hpet_setup_msi_irq(unsigned int irq); 312 313 static void hpet_set_mode(enum clock_event_mode mode, 314 struct clock_event_device *evt, int timer) 315 { 316 unsigned int cfg, cmp, now; 317 uint64_t delta; 318 319 switch (mode) { 320 case CLOCK_EVT_MODE_PERIODIC: 321 hpet_stop_counter(); 322 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult; 323 delta >>= evt->shift; 324 now = hpet_readl(HPET_COUNTER); 325 cmp = now + (unsigned int) delta; 326 cfg = hpet_readl(HPET_Tn_CFG(timer)); 327 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | 328 HPET_TN_SETVAL | HPET_TN_32BIT; 329 hpet_writel(cfg, HPET_Tn_CFG(timer)); 330 hpet_writel(cmp, HPET_Tn_CMP(timer)); 331 udelay(1); 332 /* 333 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL 334 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL 335 * bit is automatically cleared after the first write. 336 * (See AMD-8111 HyperTransport I/O Hub Data Sheet, 337 * Publication # 24674) 338 */ 339 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer)); 340 hpet_start_counter(); 341 hpet_print_config(); 342 break; 343 344 case CLOCK_EVT_MODE_ONESHOT: 345 cfg = hpet_readl(HPET_Tn_CFG(timer)); 346 cfg &= ~HPET_TN_PERIODIC; 347 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; 348 hpet_writel(cfg, HPET_Tn_CFG(timer)); 349 break; 350 351 case CLOCK_EVT_MODE_UNUSED: 352 case CLOCK_EVT_MODE_SHUTDOWN: 353 cfg = hpet_readl(HPET_Tn_CFG(timer)); 354 cfg &= ~HPET_TN_ENABLE; 355 hpet_writel(cfg, HPET_Tn_CFG(timer)); 356 break; 357 358 case CLOCK_EVT_MODE_RESUME: 359 if (timer == 0) { 360 hpet_enable_legacy_int(); 361 } else { 362 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 363 hpet_setup_msi_irq(hdev->irq); 364 disable_irq(hdev->irq); 365 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu)); 366 enable_irq(hdev->irq); 367 } 368 hpet_print_config(); 369 break; 370 } 371 } 372 373 static int hpet_next_event(unsigned long delta, 374 struct clock_event_device *evt, int timer) 375 { 376 u32 cnt; 377 s32 res; 378 379 cnt = hpet_readl(HPET_COUNTER); 380 cnt += (u32) delta; 381 hpet_writel(cnt, HPET_Tn_CMP(timer)); 382 383 /* 384 * HPETs are a complete disaster. The compare register is 385 * based on a equal comparison and neither provides a less 386 * than or equal functionality (which would require to take 387 * the wraparound into account) nor a simple count down event 388 * mode. Further the write to the comparator register is 389 * delayed internally up to two HPET clock cycles in certain 390 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even 391 * longer delays. We worked around that by reading back the 392 * compare register, but that required another workaround for 393 * ICH9,10 chips where the first readout after write can 394 * return the old stale value. We already had a minimum 395 * programming delta of 5us enforced, but a NMI or SMI hitting 396 * between the counter readout and the comparator write can 397 * move us behind that point easily. Now instead of reading 398 * the compare register back several times, we make the ETIME 399 * decision based on the following: Return ETIME if the 400 * counter value after the write is less than HPET_MIN_CYCLES 401 * away from the event or if the counter is already ahead of 402 * the event. The minimum programming delta for the generic 403 * clockevents code is set to 1.5 * HPET_MIN_CYCLES. 404 */ 405 res = (s32)(cnt - hpet_readl(HPET_COUNTER)); 406 407 return res < HPET_MIN_CYCLES ? -ETIME : 0; 408 } 409 410 static void hpet_legacy_set_mode(enum clock_event_mode mode, 411 struct clock_event_device *evt) 412 { 413 hpet_set_mode(mode, evt, 0); 414 } 415 416 static int hpet_legacy_next_event(unsigned long delta, 417 struct clock_event_device *evt) 418 { 419 return hpet_next_event(delta, evt, 0); 420 } 421 422 /* 423 * HPET MSI Support 424 */ 425 #ifdef CONFIG_PCI_MSI 426 427 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev); 428 static struct hpet_dev *hpet_devs; 429 430 void hpet_msi_unmask(struct irq_data *data) 431 { 432 struct hpet_dev *hdev = data->handler_data; 433 unsigned int cfg; 434 435 /* unmask it */ 436 cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); 437 cfg |= HPET_TN_ENABLE | HPET_TN_FSB; 438 hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); 439 } 440 441 void hpet_msi_mask(struct irq_data *data) 442 { 443 struct hpet_dev *hdev = data->handler_data; 444 unsigned int cfg; 445 446 /* mask it */ 447 cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); 448 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB); 449 hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); 450 } 451 452 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg) 453 { 454 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num)); 455 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4); 456 } 457 458 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg) 459 { 460 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num)); 461 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4); 462 msg->address_hi = 0; 463 } 464 465 static void hpet_msi_set_mode(enum clock_event_mode mode, 466 struct clock_event_device *evt) 467 { 468 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 469 hpet_set_mode(mode, evt, hdev->num); 470 } 471 472 static int hpet_msi_next_event(unsigned long delta, 473 struct clock_event_device *evt) 474 { 475 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 476 return hpet_next_event(delta, evt, hdev->num); 477 } 478 479 static int hpet_setup_msi_irq(unsigned int irq) 480 { 481 if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) { 482 destroy_irq(irq); 483 return -EINVAL; 484 } 485 return 0; 486 } 487 488 static int hpet_assign_irq(struct hpet_dev *dev) 489 { 490 unsigned int irq; 491 492 irq = create_irq_nr(0, -1); 493 if (!irq) 494 return -EINVAL; 495 496 irq_set_handler_data(irq, dev); 497 498 if (hpet_setup_msi_irq(irq)) 499 return -EINVAL; 500 501 dev->irq = irq; 502 return 0; 503 } 504 505 static irqreturn_t hpet_interrupt_handler(int irq, void *data) 506 { 507 struct hpet_dev *dev = (struct hpet_dev *)data; 508 struct clock_event_device *hevt = &dev->evt; 509 510 if (!hevt->event_handler) { 511 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n", 512 dev->num); 513 return IRQ_HANDLED; 514 } 515 516 hevt->event_handler(hevt); 517 return IRQ_HANDLED; 518 } 519 520 static int hpet_setup_irq(struct hpet_dev *dev) 521 { 522 523 if (request_irq(dev->irq, hpet_interrupt_handler, 524 IRQF_TIMER | IRQF_NOBALANCING, 525 dev->name, dev)) 526 return -1; 527 528 disable_irq(dev->irq); 529 irq_set_affinity(dev->irq, cpumask_of(dev->cpu)); 530 enable_irq(dev->irq); 531 532 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n", 533 dev->name, dev->irq); 534 535 return 0; 536 } 537 538 /* This should be called in specific @cpu */ 539 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu) 540 { 541 struct clock_event_device *evt = &hdev->evt; 542 543 WARN_ON(cpu != smp_processor_id()); 544 if (!(hdev->flags & HPET_DEV_VALID)) 545 return; 546 547 if (hpet_setup_msi_irq(hdev->irq)) 548 return; 549 550 hdev->cpu = cpu; 551 per_cpu(cpu_hpet_dev, cpu) = hdev; 552 evt->name = hdev->name; 553 hpet_setup_irq(hdev); 554 evt->irq = hdev->irq; 555 556 evt->rating = 110; 557 evt->features = CLOCK_EVT_FEAT_ONESHOT; 558 if (hdev->flags & HPET_DEV_PERI_CAP) 559 evt->features |= CLOCK_EVT_FEAT_PERIODIC; 560 561 evt->set_mode = hpet_msi_set_mode; 562 evt->set_next_event = hpet_msi_next_event; 563 evt->cpumask = cpumask_of(hdev->cpu); 564 565 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA, 566 0x7FFFFFFF); 567 } 568 569 #ifdef CONFIG_HPET 570 /* Reserve at least one timer for userspace (/dev/hpet) */ 571 #define RESERVE_TIMERS 1 572 #else 573 #define RESERVE_TIMERS 0 574 #endif 575 576 static void hpet_msi_capability_lookup(unsigned int start_timer) 577 { 578 unsigned int id; 579 unsigned int num_timers; 580 unsigned int num_timers_used = 0; 581 int i; 582 583 if (hpet_msi_disable) 584 return; 585 586 if (boot_cpu_has(X86_FEATURE_ARAT)) 587 return; 588 id = hpet_readl(HPET_ID); 589 590 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); 591 num_timers++; /* Value read out starts from 0 */ 592 hpet_print_config(); 593 594 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL); 595 if (!hpet_devs) 596 return; 597 598 hpet_num_timers = num_timers; 599 600 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) { 601 struct hpet_dev *hdev = &hpet_devs[num_timers_used]; 602 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i)); 603 604 /* Only consider HPET timer with MSI support */ 605 if (!(cfg & HPET_TN_FSB_CAP)) 606 continue; 607 608 hdev->flags = 0; 609 if (cfg & HPET_TN_PERIODIC_CAP) 610 hdev->flags |= HPET_DEV_PERI_CAP; 611 hdev->num = i; 612 613 sprintf(hdev->name, "hpet%d", i); 614 if (hpet_assign_irq(hdev)) 615 continue; 616 617 hdev->flags |= HPET_DEV_FSB_CAP; 618 hdev->flags |= HPET_DEV_VALID; 619 num_timers_used++; 620 if (num_timers_used == num_possible_cpus()) 621 break; 622 } 623 624 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n", 625 num_timers, num_timers_used); 626 } 627 628 #ifdef CONFIG_HPET 629 static void hpet_reserve_msi_timers(struct hpet_data *hd) 630 { 631 int i; 632 633 if (!hpet_devs) 634 return; 635 636 for (i = 0; i < hpet_num_timers; i++) { 637 struct hpet_dev *hdev = &hpet_devs[i]; 638 639 if (!(hdev->flags & HPET_DEV_VALID)) 640 continue; 641 642 hd->hd_irq[hdev->num] = hdev->irq; 643 hpet_reserve_timer(hd, hdev->num); 644 } 645 } 646 #endif 647 648 static struct hpet_dev *hpet_get_unused_timer(void) 649 { 650 int i; 651 652 if (!hpet_devs) 653 return NULL; 654 655 for (i = 0; i < hpet_num_timers; i++) { 656 struct hpet_dev *hdev = &hpet_devs[i]; 657 658 if (!(hdev->flags & HPET_DEV_VALID)) 659 continue; 660 if (test_and_set_bit(HPET_DEV_USED_BIT, 661 (unsigned long *)&hdev->flags)) 662 continue; 663 return hdev; 664 } 665 return NULL; 666 } 667 668 struct hpet_work_struct { 669 struct delayed_work work; 670 struct completion complete; 671 }; 672 673 static void hpet_work(struct work_struct *w) 674 { 675 struct hpet_dev *hdev; 676 int cpu = smp_processor_id(); 677 struct hpet_work_struct *hpet_work; 678 679 hpet_work = container_of(w, struct hpet_work_struct, work.work); 680 681 hdev = hpet_get_unused_timer(); 682 if (hdev) 683 init_one_hpet_msi_clockevent(hdev, cpu); 684 685 complete(&hpet_work->complete); 686 } 687 688 static int hpet_cpuhp_notify(struct notifier_block *n, 689 unsigned long action, void *hcpu) 690 { 691 unsigned long cpu = (unsigned long)hcpu; 692 struct hpet_work_struct work; 693 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu); 694 695 switch (action & 0xf) { 696 case CPU_ONLINE: 697 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work); 698 init_completion(&work.complete); 699 /* FIXME: add schedule_work_on() */ 700 schedule_delayed_work_on(cpu, &work.work, 0); 701 wait_for_completion(&work.complete); 702 destroy_delayed_work_on_stack(&work.work); 703 break; 704 case CPU_DEAD: 705 if (hdev) { 706 free_irq(hdev->irq, hdev); 707 hdev->flags &= ~HPET_DEV_USED; 708 per_cpu(cpu_hpet_dev, cpu) = NULL; 709 } 710 break; 711 } 712 return NOTIFY_OK; 713 } 714 #else 715 716 static int hpet_setup_msi_irq(unsigned int irq) 717 { 718 return 0; 719 } 720 static void hpet_msi_capability_lookup(unsigned int start_timer) 721 { 722 return; 723 } 724 725 #ifdef CONFIG_HPET 726 static void hpet_reserve_msi_timers(struct hpet_data *hd) 727 { 728 return; 729 } 730 #endif 731 732 static int hpet_cpuhp_notify(struct notifier_block *n, 733 unsigned long action, void *hcpu) 734 { 735 return NOTIFY_OK; 736 } 737 738 #endif 739 740 /* 741 * Clock source related code 742 */ 743 static cycle_t read_hpet(struct clocksource *cs) 744 { 745 return (cycle_t)hpet_readl(HPET_COUNTER); 746 } 747 748 static struct clocksource clocksource_hpet = { 749 .name = "hpet", 750 .rating = 250, 751 .read = read_hpet, 752 .mask = HPET_MASK, 753 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 754 .resume = hpet_resume_counter, 755 .archdata = { .vclock_mode = VCLOCK_HPET }, 756 }; 757 758 static int hpet_clocksource_register(void) 759 { 760 u64 start, now; 761 cycle_t t1; 762 763 /* Start the counter */ 764 hpet_restart_counter(); 765 766 /* Verify whether hpet counter works */ 767 t1 = hpet_readl(HPET_COUNTER); 768 rdtscll(start); 769 770 /* 771 * We don't know the TSC frequency yet, but waiting for 772 * 200000 TSC cycles is safe: 773 * 4 GHz == 50us 774 * 1 GHz == 200us 775 */ 776 do { 777 rep_nop(); 778 rdtscll(now); 779 } while ((now - start) < 200000UL); 780 781 if (t1 == hpet_readl(HPET_COUNTER)) { 782 printk(KERN_WARNING 783 "HPET counter not counting. HPET disabled\n"); 784 return -ENODEV; 785 } 786 787 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq); 788 return 0; 789 } 790 791 static u32 *hpet_boot_cfg; 792 793 /** 794 * hpet_enable - Try to setup the HPET timer. Returns 1 on success. 795 */ 796 int __init hpet_enable(void) 797 { 798 u32 hpet_period, cfg, id; 799 u64 freq; 800 unsigned int i, last; 801 802 if (!is_hpet_capable()) 803 return 0; 804 805 hpet_set_mapping(); 806 807 /* 808 * Read the period and check for a sane value: 809 */ 810 hpet_period = hpet_readl(HPET_PERIOD); 811 812 /* 813 * AMD SB700 based systems with spread spectrum enabled use a 814 * SMM based HPET emulation to provide proper frequency 815 * setting. The SMM code is initialized with the first HPET 816 * register access and takes some time to complete. During 817 * this time the config register reads 0xffffffff. We check 818 * for max. 1000 loops whether the config register reads a non 819 * 0xffffffff value to make sure that HPET is up and running 820 * before we go further. A counting loop is safe, as the HPET 821 * access takes thousands of CPU cycles. On non SB700 based 822 * machines this check is only done once and has no side 823 * effects. 824 */ 825 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) { 826 if (i == 1000) { 827 printk(KERN_WARNING 828 "HPET config register value = 0xFFFFFFFF. " 829 "Disabling HPET\n"); 830 goto out_nohpet; 831 } 832 } 833 834 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) 835 goto out_nohpet; 836 837 /* 838 * The period is a femto seconds value. Convert it to a 839 * frequency. 840 */ 841 freq = FSEC_PER_SEC; 842 do_div(freq, hpet_period); 843 hpet_freq = freq; 844 845 /* 846 * Read the HPET ID register to retrieve the IRQ routing 847 * information and the number of channels 848 */ 849 id = hpet_readl(HPET_ID); 850 hpet_print_config(); 851 852 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; 853 854 #ifdef CONFIG_HPET_EMULATE_RTC 855 /* 856 * The legacy routing mode needs at least two channels, tick timer 857 * and the rtc emulation channel. 858 */ 859 if (!last) 860 goto out_nohpet; 861 #endif 862 863 cfg = hpet_readl(HPET_CFG); 864 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg), 865 GFP_KERNEL); 866 if (hpet_boot_cfg) 867 *hpet_boot_cfg = cfg; 868 else 869 pr_warn("HPET initial state will not be saved\n"); 870 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); 871 hpet_writel(cfg, HPET_CFG); 872 if (cfg) 873 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n", 874 cfg); 875 876 for (i = 0; i <= last; ++i) { 877 cfg = hpet_readl(HPET_Tn_CFG(i)); 878 if (hpet_boot_cfg) 879 hpet_boot_cfg[i + 1] = cfg; 880 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB); 881 hpet_writel(cfg, HPET_Tn_CFG(i)); 882 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP 883 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE 884 | HPET_TN_FSB | HPET_TN_FSB_CAP); 885 if (cfg) 886 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n", 887 cfg, i); 888 } 889 hpet_print_config(); 890 891 if (hpet_clocksource_register()) 892 goto out_nohpet; 893 894 if (id & HPET_ID_LEGSUP) { 895 hpet_legacy_clockevent_register(); 896 return 1; 897 } 898 return 0; 899 900 out_nohpet: 901 hpet_clear_mapping(); 902 hpet_address = 0; 903 return 0; 904 } 905 906 /* 907 * Needs to be late, as the reserve_timer code calls kalloc ! 908 * 909 * Not a problem on i386 as hpet_enable is called from late_time_init, 910 * but on x86_64 it is necessary ! 911 */ 912 static __init int hpet_late_init(void) 913 { 914 int cpu; 915 916 if (boot_hpet_disable) 917 return -ENODEV; 918 919 if (!hpet_address) { 920 if (!force_hpet_address) 921 return -ENODEV; 922 923 hpet_address = force_hpet_address; 924 hpet_enable(); 925 } 926 927 if (!hpet_virt_address) 928 return -ENODEV; 929 930 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP) 931 hpet_msi_capability_lookup(2); 932 else 933 hpet_msi_capability_lookup(0); 934 935 hpet_reserve_platform_timers(hpet_readl(HPET_ID)); 936 hpet_print_config(); 937 938 if (hpet_msi_disable) 939 return 0; 940 941 if (boot_cpu_has(X86_FEATURE_ARAT)) 942 return 0; 943 944 cpu_notifier_register_begin(); 945 for_each_online_cpu(cpu) { 946 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu); 947 } 948 949 /* This notifier should be called after workqueue is ready */ 950 __hotcpu_notifier(hpet_cpuhp_notify, -20); 951 cpu_notifier_register_done(); 952 953 return 0; 954 } 955 fs_initcall(hpet_late_init); 956 957 void hpet_disable(void) 958 { 959 if (is_hpet_capable() && hpet_virt_address) { 960 unsigned int cfg = hpet_readl(HPET_CFG), id, last; 961 962 if (hpet_boot_cfg) 963 cfg = *hpet_boot_cfg; 964 else if (hpet_legacy_int_enabled) { 965 cfg &= ~HPET_CFG_LEGACY; 966 hpet_legacy_int_enabled = 0; 967 } 968 cfg &= ~HPET_CFG_ENABLE; 969 hpet_writel(cfg, HPET_CFG); 970 971 if (!hpet_boot_cfg) 972 return; 973 974 id = hpet_readl(HPET_ID); 975 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); 976 977 for (id = 0; id <= last; ++id) 978 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id)); 979 980 if (*hpet_boot_cfg & HPET_CFG_ENABLE) 981 hpet_writel(*hpet_boot_cfg, HPET_CFG); 982 } 983 } 984 985 #ifdef CONFIG_HPET_EMULATE_RTC 986 987 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET 988 * is enabled, we support RTC interrupt functionality in software. 989 * RTC has 3 kinds of interrupts: 990 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock 991 * is updated 992 * 2) Alarm Interrupt - generate an interrupt at a specific time of day 993 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies 994 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) 995 * (1) and (2) above are implemented using polling at a frequency of 996 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt 997 * overhead. (DEFAULT_RTC_INT_FREQ) 998 * For (3), we use interrupts at 64Hz or user specified periodic 999 * frequency, whichever is higher. 1000 */ 1001 #include <linux/mc146818rtc.h> 1002 #include <linux/rtc.h> 1003 #include <asm/rtc.h> 1004 1005 #define DEFAULT_RTC_INT_FREQ 64 1006 #define DEFAULT_RTC_SHIFT 6 1007 #define RTC_NUM_INTS 1 1008 1009 static unsigned long hpet_rtc_flags; 1010 static int hpet_prev_update_sec; 1011 static struct rtc_time hpet_alarm_time; 1012 static unsigned long hpet_pie_count; 1013 static u32 hpet_t1_cmp; 1014 static u32 hpet_default_delta; 1015 static u32 hpet_pie_delta; 1016 static unsigned long hpet_pie_limit; 1017 1018 static rtc_irq_handler irq_handler; 1019 1020 /* 1021 * Check that the hpet counter c1 is ahead of the c2 1022 */ 1023 static inline int hpet_cnt_ahead(u32 c1, u32 c2) 1024 { 1025 return (s32)(c2 - c1) < 0; 1026 } 1027 1028 /* 1029 * Registers a IRQ handler. 1030 */ 1031 int hpet_register_irq_handler(rtc_irq_handler handler) 1032 { 1033 if (!is_hpet_enabled()) 1034 return -ENODEV; 1035 if (irq_handler) 1036 return -EBUSY; 1037 1038 irq_handler = handler; 1039 1040 return 0; 1041 } 1042 EXPORT_SYMBOL_GPL(hpet_register_irq_handler); 1043 1044 /* 1045 * Deregisters the IRQ handler registered with hpet_register_irq_handler() 1046 * and does cleanup. 1047 */ 1048 void hpet_unregister_irq_handler(rtc_irq_handler handler) 1049 { 1050 if (!is_hpet_enabled()) 1051 return; 1052 1053 irq_handler = NULL; 1054 hpet_rtc_flags = 0; 1055 } 1056 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); 1057 1058 /* 1059 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode 1060 * is not supported by all HPET implementations for timer 1. 1061 * 1062 * hpet_rtc_timer_init() is called when the rtc is initialized. 1063 */ 1064 int hpet_rtc_timer_init(void) 1065 { 1066 unsigned int cfg, cnt, delta; 1067 unsigned long flags; 1068 1069 if (!is_hpet_enabled()) 1070 return 0; 1071 1072 if (!hpet_default_delta) { 1073 uint64_t clc; 1074 1075 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; 1076 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; 1077 hpet_default_delta = clc; 1078 } 1079 1080 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) 1081 delta = hpet_default_delta; 1082 else 1083 delta = hpet_pie_delta; 1084 1085 local_irq_save(flags); 1086 1087 cnt = delta + hpet_readl(HPET_COUNTER); 1088 hpet_writel(cnt, HPET_T1_CMP); 1089 hpet_t1_cmp = cnt; 1090 1091 cfg = hpet_readl(HPET_T1_CFG); 1092 cfg &= ~HPET_TN_PERIODIC; 1093 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; 1094 hpet_writel(cfg, HPET_T1_CFG); 1095 1096 local_irq_restore(flags); 1097 1098 return 1; 1099 } 1100 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); 1101 1102 static void hpet_disable_rtc_channel(void) 1103 { 1104 unsigned long cfg; 1105 cfg = hpet_readl(HPET_T1_CFG); 1106 cfg &= ~HPET_TN_ENABLE; 1107 hpet_writel(cfg, HPET_T1_CFG); 1108 } 1109 1110 /* 1111 * The functions below are called from rtc driver. 1112 * Return 0 if HPET is not being used. 1113 * Otherwise do the necessary changes and return 1. 1114 */ 1115 int hpet_mask_rtc_irq_bit(unsigned long bit_mask) 1116 { 1117 if (!is_hpet_enabled()) 1118 return 0; 1119 1120 hpet_rtc_flags &= ~bit_mask; 1121 if (unlikely(!hpet_rtc_flags)) 1122 hpet_disable_rtc_channel(); 1123 1124 return 1; 1125 } 1126 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); 1127 1128 int hpet_set_rtc_irq_bit(unsigned long bit_mask) 1129 { 1130 unsigned long oldbits = hpet_rtc_flags; 1131 1132 if (!is_hpet_enabled()) 1133 return 0; 1134 1135 hpet_rtc_flags |= bit_mask; 1136 1137 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) 1138 hpet_prev_update_sec = -1; 1139 1140 if (!oldbits) 1141 hpet_rtc_timer_init(); 1142 1143 return 1; 1144 } 1145 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); 1146 1147 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, 1148 unsigned char sec) 1149 { 1150 if (!is_hpet_enabled()) 1151 return 0; 1152 1153 hpet_alarm_time.tm_hour = hrs; 1154 hpet_alarm_time.tm_min = min; 1155 hpet_alarm_time.tm_sec = sec; 1156 1157 return 1; 1158 } 1159 EXPORT_SYMBOL_GPL(hpet_set_alarm_time); 1160 1161 int hpet_set_periodic_freq(unsigned long freq) 1162 { 1163 uint64_t clc; 1164 1165 if (!is_hpet_enabled()) 1166 return 0; 1167 1168 if (freq <= DEFAULT_RTC_INT_FREQ) 1169 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; 1170 else { 1171 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; 1172 do_div(clc, freq); 1173 clc >>= hpet_clockevent.shift; 1174 hpet_pie_delta = clc; 1175 hpet_pie_limit = 0; 1176 } 1177 return 1; 1178 } 1179 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); 1180 1181 int hpet_rtc_dropped_irq(void) 1182 { 1183 return is_hpet_enabled(); 1184 } 1185 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); 1186 1187 static void hpet_rtc_timer_reinit(void) 1188 { 1189 unsigned int delta; 1190 int lost_ints = -1; 1191 1192 if (unlikely(!hpet_rtc_flags)) 1193 hpet_disable_rtc_channel(); 1194 1195 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) 1196 delta = hpet_default_delta; 1197 else 1198 delta = hpet_pie_delta; 1199 1200 /* 1201 * Increment the comparator value until we are ahead of the 1202 * current count. 1203 */ 1204 do { 1205 hpet_t1_cmp += delta; 1206 hpet_writel(hpet_t1_cmp, HPET_T1_CMP); 1207 lost_ints++; 1208 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); 1209 1210 if (lost_ints) { 1211 if (hpet_rtc_flags & RTC_PIE) 1212 hpet_pie_count += lost_ints; 1213 if (printk_ratelimit()) 1214 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n", 1215 lost_ints); 1216 } 1217 } 1218 1219 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) 1220 { 1221 struct rtc_time curr_time; 1222 unsigned long rtc_int_flag = 0; 1223 1224 hpet_rtc_timer_reinit(); 1225 memset(&curr_time, 0, sizeof(struct rtc_time)); 1226 1227 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) 1228 get_rtc_time(&curr_time); 1229 1230 if (hpet_rtc_flags & RTC_UIE && 1231 curr_time.tm_sec != hpet_prev_update_sec) { 1232 if (hpet_prev_update_sec >= 0) 1233 rtc_int_flag = RTC_UF; 1234 hpet_prev_update_sec = curr_time.tm_sec; 1235 } 1236 1237 if (hpet_rtc_flags & RTC_PIE && 1238 ++hpet_pie_count >= hpet_pie_limit) { 1239 rtc_int_flag |= RTC_PF; 1240 hpet_pie_count = 0; 1241 } 1242 1243 if (hpet_rtc_flags & RTC_AIE && 1244 (curr_time.tm_sec == hpet_alarm_time.tm_sec) && 1245 (curr_time.tm_min == hpet_alarm_time.tm_min) && 1246 (curr_time.tm_hour == hpet_alarm_time.tm_hour)) 1247 rtc_int_flag |= RTC_AF; 1248 1249 if (rtc_int_flag) { 1250 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); 1251 if (irq_handler) 1252 irq_handler(rtc_int_flag, dev_id); 1253 } 1254 return IRQ_HANDLED; 1255 } 1256 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); 1257 #endif 1258