xref: /linux/arch/x86/kernel/hpet.c (revision 24ce659dcc02c21f8d6c0a7589c3320a4dfa8152)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
7 #include <linux/cpu.h>
8 #include <linux/irq.h>
9 
10 #include <asm/hpet.h>
11 #include <asm/time.h>
12 
13 #undef  pr_fmt
14 #define pr_fmt(fmt) "hpet: " fmt
15 
16 enum hpet_mode {
17 	HPET_MODE_UNUSED,
18 	HPET_MODE_LEGACY,
19 	HPET_MODE_CLOCKEVT,
20 	HPET_MODE_DEVICE,
21 };
22 
23 struct hpet_channel {
24 	struct clock_event_device	evt;
25 	unsigned int			num;
26 	unsigned int			cpu;
27 	unsigned int			irq;
28 	unsigned int			in_use;
29 	enum hpet_mode			mode;
30 	unsigned int			boot_cfg;
31 	char				name[10];
32 };
33 
34 struct hpet_base {
35 	unsigned int			nr_channels;
36 	unsigned int			nr_clockevents;
37 	unsigned int			boot_cfg;
38 	struct hpet_channel		*channels;
39 };
40 
41 #define HPET_MASK			CLOCKSOURCE_MASK(32)
42 
43 #define HPET_MIN_CYCLES			128
44 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
45 
46 /*
47  * HPET address is set in acpi/boot.c, when an ACPI entry exists
48  */
49 unsigned long				hpet_address;
50 u8					hpet_blockid; /* OS timer block num */
51 bool					hpet_msi_disable;
52 
53 #ifdef CONFIG_PCI_MSI
54 static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
55 static struct irq_domain		*hpet_domain;
56 #endif
57 
58 static void __iomem			*hpet_virt_address;
59 
60 static struct hpet_base			hpet_base;
61 
62 static bool				hpet_legacy_int_enabled;
63 static unsigned long			hpet_freq;
64 
65 bool					boot_hpet_disable;
66 bool					hpet_force_user;
67 static bool				hpet_verbose;
68 
69 static inline
70 struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
71 {
72 	return container_of(evt, struct hpet_channel, evt);
73 }
74 
75 inline unsigned int hpet_readl(unsigned int a)
76 {
77 	return readl(hpet_virt_address + a);
78 }
79 
80 static inline void hpet_writel(unsigned int d, unsigned int a)
81 {
82 	writel(d, hpet_virt_address + a);
83 }
84 
85 static inline void hpet_set_mapping(void)
86 {
87 	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
88 }
89 
90 static inline void hpet_clear_mapping(void)
91 {
92 	iounmap(hpet_virt_address);
93 	hpet_virt_address = NULL;
94 }
95 
96 /*
97  * HPET command line enable / disable
98  */
99 static int __init hpet_setup(char *str)
100 {
101 	while (str) {
102 		char *next = strchr(str, ',');
103 
104 		if (next)
105 			*next++ = 0;
106 		if (!strncmp("disable", str, 7))
107 			boot_hpet_disable = true;
108 		if (!strncmp("force", str, 5))
109 			hpet_force_user = true;
110 		if (!strncmp("verbose", str, 7))
111 			hpet_verbose = true;
112 		str = next;
113 	}
114 	return 1;
115 }
116 __setup("hpet=", hpet_setup);
117 
118 static int __init disable_hpet(char *str)
119 {
120 	boot_hpet_disable = true;
121 	return 1;
122 }
123 __setup("nohpet", disable_hpet);
124 
125 static inline int is_hpet_capable(void)
126 {
127 	return !boot_hpet_disable && hpet_address;
128 }
129 
130 /**
131  * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
132  */
133 int is_hpet_enabled(void)
134 {
135 	return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138 
139 static void _hpet_print_config(const char *function, int line)
140 {
141 	u32 i, id, period, cfg, status, channels, l, h;
142 
143 	pr_info("%s(%d):\n", function, line);
144 
145 	id = hpet_readl(HPET_ID);
146 	period = hpet_readl(HPET_PERIOD);
147 	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
148 
149 	cfg = hpet_readl(HPET_CFG);
150 	status = hpet_readl(HPET_STATUS);
151 	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
152 
153 	l = hpet_readl(HPET_COUNTER);
154 	h = hpet_readl(HPET_COUNTER+4);
155 	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
156 
157 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
158 
159 	for (i = 0; i < channels; i++) {
160 		l = hpet_readl(HPET_Tn_CFG(i));
161 		h = hpet_readl(HPET_Tn_CFG(i)+4);
162 		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
163 
164 		l = hpet_readl(HPET_Tn_CMP(i));
165 		h = hpet_readl(HPET_Tn_CMP(i)+4);
166 		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
167 
168 		l = hpet_readl(HPET_Tn_ROUTE(i));
169 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
170 		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
171 	}
172 }
173 
174 #define hpet_print_config()					\
175 do {								\
176 	if (hpet_verbose)					\
177 		_hpet_print_config(__func__, __LINE__);	\
178 } while (0)
179 
180 /*
181  * When the HPET driver (/dev/hpet) is enabled, we need to reserve
182  * timer 0 and timer 1 in case of RTC emulation.
183  */
184 #ifdef CONFIG_HPET
185 
186 static void __init hpet_reserve_platform_timers(void)
187 {
188 	struct hpet_data hd;
189 	unsigned int i;
190 
191 	memset(&hd, 0, sizeof(hd));
192 	hd.hd_phys_address	= hpet_address;
193 	hd.hd_address		= hpet_virt_address;
194 	hd.hd_nirqs		= hpet_base.nr_channels;
195 
196 	/*
197 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
198 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
199 	 * don't bother configuring *any* comparator interrupts.
200 	 */
201 	hd.hd_irq[0] = HPET_LEGACY_8254;
202 	hd.hd_irq[1] = HPET_LEGACY_RTC;
203 
204 	for (i = 0; i < hpet_base.nr_channels; i++) {
205 		struct hpet_channel *hc = hpet_base.channels + i;
206 
207 		if (i >= 2)
208 			hd.hd_irq[i] = hc->irq;
209 
210 		switch (hc->mode) {
211 		case HPET_MODE_UNUSED:
212 		case HPET_MODE_DEVICE:
213 			hc->mode = HPET_MODE_DEVICE;
214 			break;
215 		case HPET_MODE_CLOCKEVT:
216 		case HPET_MODE_LEGACY:
217 			hpet_reserve_timer(&hd, hc->num);
218 			break;
219 		}
220 	}
221 
222 	hpet_alloc(&hd);
223 }
224 
225 static void __init hpet_select_device_channel(void)
226 {
227 	int i;
228 
229 	for (i = 0; i < hpet_base.nr_channels; i++) {
230 		struct hpet_channel *hc = hpet_base.channels + i;
231 
232 		/* Associate the first unused channel to /dev/hpet */
233 		if (hc->mode == HPET_MODE_UNUSED) {
234 			hc->mode = HPET_MODE_DEVICE;
235 			return;
236 		}
237 	}
238 }
239 
240 #else
241 static inline void hpet_reserve_platform_timers(void) { }
242 static inline void hpet_select_device_channel(void) {}
243 #endif
244 
245 /* Common HPET functions */
246 static void hpet_stop_counter(void)
247 {
248 	u32 cfg = hpet_readl(HPET_CFG);
249 
250 	cfg &= ~HPET_CFG_ENABLE;
251 	hpet_writel(cfg, HPET_CFG);
252 }
253 
254 static void hpet_reset_counter(void)
255 {
256 	hpet_writel(0, HPET_COUNTER);
257 	hpet_writel(0, HPET_COUNTER + 4);
258 }
259 
260 static void hpet_start_counter(void)
261 {
262 	unsigned int cfg = hpet_readl(HPET_CFG);
263 
264 	cfg |= HPET_CFG_ENABLE;
265 	hpet_writel(cfg, HPET_CFG);
266 }
267 
268 static void hpet_restart_counter(void)
269 {
270 	hpet_stop_counter();
271 	hpet_reset_counter();
272 	hpet_start_counter();
273 }
274 
275 static void hpet_resume_device(void)
276 {
277 	force_hpet_resume();
278 }
279 
280 static void hpet_resume_counter(struct clocksource *cs)
281 {
282 	hpet_resume_device();
283 	hpet_restart_counter();
284 }
285 
286 static void hpet_enable_legacy_int(void)
287 {
288 	unsigned int cfg = hpet_readl(HPET_CFG);
289 
290 	cfg |= HPET_CFG_LEGACY;
291 	hpet_writel(cfg, HPET_CFG);
292 	hpet_legacy_int_enabled = true;
293 }
294 
295 static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
296 {
297 	unsigned int channel = clockevent_to_channel(evt)->num;
298 	unsigned int cfg, cmp, now;
299 	uint64_t delta;
300 
301 	hpet_stop_counter();
302 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
303 	delta >>= evt->shift;
304 	now = hpet_readl(HPET_COUNTER);
305 	cmp = now + (unsigned int)delta;
306 	cfg = hpet_readl(HPET_Tn_CFG(channel));
307 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
308 	       HPET_TN_32BIT;
309 	hpet_writel(cfg, HPET_Tn_CFG(channel));
310 	hpet_writel(cmp, HPET_Tn_CMP(channel));
311 	udelay(1);
312 	/*
313 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
314 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
315 	 * bit is automatically cleared after the first write.
316 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
317 	 * Publication # 24674)
318 	 */
319 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
320 	hpet_start_counter();
321 	hpet_print_config();
322 
323 	return 0;
324 }
325 
326 static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
327 {
328 	unsigned int channel = clockevent_to_channel(evt)->num;
329 	unsigned int cfg;
330 
331 	cfg = hpet_readl(HPET_Tn_CFG(channel));
332 	cfg &= ~HPET_TN_PERIODIC;
333 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
334 	hpet_writel(cfg, HPET_Tn_CFG(channel));
335 
336 	return 0;
337 }
338 
339 static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
340 {
341 	unsigned int channel = clockevent_to_channel(evt)->num;
342 	unsigned int cfg;
343 
344 	cfg = hpet_readl(HPET_Tn_CFG(channel));
345 	cfg &= ~HPET_TN_ENABLE;
346 	hpet_writel(cfg, HPET_Tn_CFG(channel));
347 
348 	return 0;
349 }
350 
351 static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
352 {
353 	hpet_enable_legacy_int();
354 	hpet_print_config();
355 	return 0;
356 }
357 
358 static int
359 hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
360 {
361 	unsigned int channel = clockevent_to_channel(evt)->num;
362 	u32 cnt;
363 	s32 res;
364 
365 	cnt = hpet_readl(HPET_COUNTER);
366 	cnt += (u32) delta;
367 	hpet_writel(cnt, HPET_Tn_CMP(channel));
368 
369 	/*
370 	 * HPETs are a complete disaster. The compare register is
371 	 * based on a equal comparison and neither provides a less
372 	 * than or equal functionality (which would require to take
373 	 * the wraparound into account) nor a simple count down event
374 	 * mode. Further the write to the comparator register is
375 	 * delayed internally up to two HPET clock cycles in certain
376 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
377 	 * longer delays. We worked around that by reading back the
378 	 * compare register, but that required another workaround for
379 	 * ICH9,10 chips where the first readout after write can
380 	 * return the old stale value. We already had a minimum
381 	 * programming delta of 5us enforced, but a NMI or SMI hitting
382 	 * between the counter readout and the comparator write can
383 	 * move us behind that point easily. Now instead of reading
384 	 * the compare register back several times, we make the ETIME
385 	 * decision based on the following: Return ETIME if the
386 	 * counter value after the write is less than HPET_MIN_CYCLES
387 	 * away from the event or if the counter is already ahead of
388 	 * the event. The minimum programming delta for the generic
389 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
390 	 */
391 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
392 
393 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
394 }
395 
396 static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
397 {
398 	struct clock_event_device *evt = &hc->evt;
399 
400 	evt->rating		= rating;
401 	evt->irq		= hc->irq;
402 	evt->name		= hc->name;
403 	evt->cpumask		= cpumask_of(hc->cpu);
404 	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
405 	evt->set_next_event	= hpet_clkevt_set_next_event;
406 	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
407 
408 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
409 	if (hc->boot_cfg & HPET_TN_PERIODIC) {
410 		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
411 		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
412 	}
413 }
414 
415 static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
416 {
417 	/*
418 	 * Start HPET with the boot CPU's cpumask and make it global after
419 	 * the IO_APIC has been initialized.
420 	 */
421 	hc->cpu = boot_cpu_data.cpu_index;
422 	strncpy(hc->name, "hpet", sizeof(hc->name));
423 	hpet_init_clockevent(hc, 50);
424 
425 	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
426 
427 	/*
428 	 * Legacy horrors and sins from the past. HPET used periodic mode
429 	 * unconditionally forever on the legacy channel 0. Removing the
430 	 * below hack and using the conditional in hpet_init_clockevent()
431 	 * makes at least Qemu and one hardware machine fail to boot.
432 	 * There are two issues which cause the boot failure:
433 	 *
434 	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
435 	 *    the next interrupt is not delivered despite the HPET channel
436 	 *    being programmed correctly. Reprogramming the HPET after
437 	 *    switching to IOAPIC makes it work again. After fixing this,
438 	 *    the next issue surfaces:
439 	 *
440 	 * #2 Due to the unconditional periodic mode availability the Local
441 	 *    APIC timer calibration can hijack the global clockevents
442 	 *    event handler without causing damage. Using oneshot at this
443 	 *    stage makes if hang because the HPET does not get
444 	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
445 	 *
446 	 * Both issues require major surgery and especially the kick HPET
447 	 * again after enabling IOAPIC results in really nasty hackery.
448 	 * This 'assume periodic works' magic has survived since HPET
449 	 * support got added, so it's questionable whether this should be
450 	 * fixed. Both Qemu and the failing hardware machine support
451 	 * periodic mode despite the fact that both don't advertise it in
452 	 * the configuration register and both need that extra kick after
453 	 * switching to IOAPIC. Seems to be a feature...
454 	 */
455 	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
456 	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
457 
458 	/* Start HPET legacy interrupts */
459 	hpet_enable_legacy_int();
460 
461 	clockevents_config_and_register(&hc->evt, hpet_freq,
462 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
463 	global_clock_event = &hc->evt;
464 	pr_debug("Clockevent registered\n");
465 }
466 
467 /*
468  * HPET MSI Support
469  */
470 #ifdef CONFIG_PCI_MSI
471 
472 void hpet_msi_unmask(struct irq_data *data)
473 {
474 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
475 	unsigned int cfg;
476 
477 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
478 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
479 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
480 }
481 
482 void hpet_msi_mask(struct irq_data *data)
483 {
484 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
485 	unsigned int cfg;
486 
487 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
488 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
489 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
490 }
491 
492 void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
493 {
494 	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
495 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
496 }
497 
498 static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
499 {
500 	struct hpet_channel *hc = clockevent_to_channel(evt);
501 	struct irq_data *data = irq_get_irq_data(hc->irq);
502 	struct msi_msg msg;
503 
504 	/* Restore the MSI msg and unmask the interrupt */
505 	irq_chip_compose_msi_msg(data, &msg);
506 	hpet_msi_write(hc, &msg);
507 	hpet_msi_unmask(data);
508 	return 0;
509 }
510 
511 static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
512 {
513 	struct hpet_channel *hc = data;
514 	struct clock_event_device *evt = &hc->evt;
515 
516 	if (!evt->event_handler) {
517 		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
518 		return IRQ_HANDLED;
519 	}
520 
521 	evt->event_handler(evt);
522 	return IRQ_HANDLED;
523 }
524 
525 static int hpet_setup_msi_irq(struct hpet_channel *hc)
526 {
527 	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
528 			IRQF_TIMER | IRQF_NOBALANCING,
529 			hc->name, hc))
530 		return -1;
531 
532 	disable_irq(hc->irq);
533 	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
534 	enable_irq(hc->irq);
535 
536 	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
537 
538 	return 0;
539 }
540 
541 /* Invoked from the hotplug callback on @cpu */
542 static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
543 {
544 	struct clock_event_device *evt = &hc->evt;
545 
546 	hc->cpu = cpu;
547 	per_cpu(cpu_hpet_channel, cpu) = hc;
548 	hpet_setup_msi_irq(hc);
549 
550 	hpet_init_clockevent(hc, 110);
551 	evt->tick_resume = hpet_clkevt_msi_resume;
552 
553 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
554 					0x7FFFFFFF);
555 }
556 
557 static struct hpet_channel *hpet_get_unused_clockevent(void)
558 {
559 	int i;
560 
561 	for (i = 0; i < hpet_base.nr_channels; i++) {
562 		struct hpet_channel *hc = hpet_base.channels + i;
563 
564 		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
565 			continue;
566 		hc->in_use = 1;
567 		return hc;
568 	}
569 	return NULL;
570 }
571 
572 static int hpet_cpuhp_online(unsigned int cpu)
573 {
574 	struct hpet_channel *hc = hpet_get_unused_clockevent();
575 
576 	if (hc)
577 		init_one_hpet_msi_clockevent(hc, cpu);
578 	return 0;
579 }
580 
581 static int hpet_cpuhp_dead(unsigned int cpu)
582 {
583 	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
584 
585 	if (!hc)
586 		return 0;
587 	free_irq(hc->irq, hc);
588 	hc->in_use = 0;
589 	per_cpu(cpu_hpet_channel, cpu) = NULL;
590 	return 0;
591 }
592 
593 static void __init hpet_select_clockevents(void)
594 {
595 	unsigned int i;
596 
597 	hpet_base.nr_clockevents = 0;
598 
599 	/* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
600 	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
601 		return;
602 
603 	hpet_print_config();
604 
605 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
606 	if (!hpet_domain)
607 		return;
608 
609 	for (i = 0; i < hpet_base.nr_channels; i++) {
610 		struct hpet_channel *hc = hpet_base.channels + i;
611 		int irq;
612 
613 		if (hc->mode != HPET_MODE_UNUSED)
614 			continue;
615 
616 		/* Only consider HPET channel with MSI support */
617 		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
618 			continue;
619 
620 		sprintf(hc->name, "hpet%d", i);
621 
622 		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
623 		if (irq <= 0)
624 			continue;
625 
626 		hc->irq = irq;
627 		hc->mode = HPET_MODE_CLOCKEVT;
628 
629 		if (++hpet_base.nr_clockevents == num_possible_cpus())
630 			break;
631 	}
632 
633 	pr_info("%d channels of %d reserved for per-cpu timers\n",
634 		hpet_base.nr_channels, hpet_base.nr_clockevents);
635 }
636 
637 #else
638 
639 static inline void hpet_select_clockevents(void) { }
640 
641 #define hpet_cpuhp_online	NULL
642 #define hpet_cpuhp_dead		NULL
643 
644 #endif
645 
646 /*
647  * Clock source related code
648  */
649 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
650 /*
651  * Reading the HPET counter is a very slow operation. If a large number of
652  * CPUs are trying to access the HPET counter simultaneously, it can cause
653  * massive delays and slow down system performance dramatically. This may
654  * happen when HPET is the default clock source instead of TSC. For a
655  * really large system with hundreds of CPUs, the slowdown may be so
656  * severe, that it can actually crash the system because of a NMI watchdog
657  * soft lockup, for example.
658  *
659  * If multiple CPUs are trying to access the HPET counter at the same time,
660  * we don't actually need to read the counter multiple times. Instead, the
661  * other CPUs can use the counter value read by the first CPU in the group.
662  *
663  * This special feature is only enabled on x86-64 systems. It is unlikely
664  * that 32-bit x86 systems will have enough CPUs to require this feature
665  * with its associated locking overhead. We also need 64-bit atomic read.
666  *
667  * The lock and the HPET value are stored together and can be read in a
668  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
669  * is 32 bits in size.
670  */
671 union hpet_lock {
672 	struct {
673 		arch_spinlock_t lock;
674 		u32 value;
675 	};
676 	u64 lockval;
677 };
678 
679 static union hpet_lock hpet __cacheline_aligned = {
680 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
681 };
682 
683 static u64 read_hpet(struct clocksource *cs)
684 {
685 	unsigned long flags;
686 	union hpet_lock old, new;
687 
688 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
689 
690 	/*
691 	 * Read HPET directly if in NMI.
692 	 */
693 	if (in_nmi())
694 		return (u64)hpet_readl(HPET_COUNTER);
695 
696 	/*
697 	 * Read the current state of the lock and HPET value atomically.
698 	 */
699 	old.lockval = READ_ONCE(hpet.lockval);
700 
701 	if (arch_spin_is_locked(&old.lock))
702 		goto contended;
703 
704 	local_irq_save(flags);
705 	if (arch_spin_trylock(&hpet.lock)) {
706 		new.value = hpet_readl(HPET_COUNTER);
707 		/*
708 		 * Use WRITE_ONCE() to prevent store tearing.
709 		 */
710 		WRITE_ONCE(hpet.value, new.value);
711 		arch_spin_unlock(&hpet.lock);
712 		local_irq_restore(flags);
713 		return (u64)new.value;
714 	}
715 	local_irq_restore(flags);
716 
717 contended:
718 	/*
719 	 * Contended case
720 	 * --------------
721 	 * Wait until the HPET value change or the lock is free to indicate
722 	 * its value is up-to-date.
723 	 *
724 	 * It is possible that old.value has already contained the latest
725 	 * HPET value while the lock holder was in the process of releasing
726 	 * the lock. Checking for lock state change will enable us to return
727 	 * the value immediately instead of waiting for the next HPET reader
728 	 * to come along.
729 	 */
730 	do {
731 		cpu_relax();
732 		new.lockval = READ_ONCE(hpet.lockval);
733 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
734 
735 	return (u64)new.value;
736 }
737 #else
738 /*
739  * For UP or 32-bit.
740  */
741 static u64 read_hpet(struct clocksource *cs)
742 {
743 	return (u64)hpet_readl(HPET_COUNTER);
744 }
745 #endif
746 
747 static struct clocksource clocksource_hpet = {
748 	.name		= "hpet",
749 	.rating		= 250,
750 	.read		= read_hpet,
751 	.mask		= HPET_MASK,
752 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
753 	.resume		= hpet_resume_counter,
754 };
755 
756 /*
757  * AMD SB700 based systems with spread spectrum enabled use a SMM based
758  * HPET emulation to provide proper frequency setting.
759  *
760  * On such systems the SMM code is initialized with the first HPET register
761  * access and takes some time to complete. During this time the config
762  * register reads 0xffffffff. We check for max 1000 loops whether the
763  * config register reads a non-0xffffffff value to make sure that the
764  * HPET is up and running before we proceed any further.
765  *
766  * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
767  *
768  * On non-SB700 based machines this check is only done once and has no
769  * side effects.
770  */
771 static bool __init hpet_cfg_working(void)
772 {
773 	int i;
774 
775 	for (i = 0; i < 1000; i++) {
776 		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
777 			return true;
778 	}
779 
780 	pr_warn("Config register invalid. Disabling HPET\n");
781 	return false;
782 }
783 
784 static bool __init hpet_counting(void)
785 {
786 	u64 start, now, t1;
787 
788 	hpet_restart_counter();
789 
790 	t1 = hpet_readl(HPET_COUNTER);
791 	start = rdtsc();
792 
793 	/*
794 	 * We don't know the TSC frequency yet, but waiting for
795 	 * 200000 TSC cycles is safe:
796 	 * 4 GHz == 50us
797 	 * 1 GHz == 200us
798 	 */
799 	do {
800 		if (t1 != hpet_readl(HPET_COUNTER))
801 			return true;
802 		now = rdtsc();
803 	} while ((now - start) < 200000UL);
804 
805 	pr_warn("Counter not counting. HPET disabled\n");
806 	return false;
807 }
808 
809 /**
810  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
811  */
812 int __init hpet_enable(void)
813 {
814 	u32 hpet_period, cfg, id, irq;
815 	unsigned int i, channels;
816 	struct hpet_channel *hc;
817 	u64 freq;
818 
819 	if (!is_hpet_capable())
820 		return 0;
821 
822 	hpet_set_mapping();
823 	if (!hpet_virt_address)
824 		return 0;
825 
826 	/* Validate that the config register is working */
827 	if (!hpet_cfg_working())
828 		goto out_nohpet;
829 
830 	/*
831 	 * Read the period and check for a sane value:
832 	 */
833 	hpet_period = hpet_readl(HPET_PERIOD);
834 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
835 		goto out_nohpet;
836 
837 	/* The period is a femtoseconds value. Convert it to a frequency. */
838 	freq = FSEC_PER_SEC;
839 	do_div(freq, hpet_period);
840 	hpet_freq = freq;
841 
842 	/*
843 	 * Read the HPET ID register to retrieve the IRQ routing
844 	 * information and the number of channels
845 	 */
846 	id = hpet_readl(HPET_ID);
847 	hpet_print_config();
848 
849 	/* This is the HPET channel number which is zero based */
850 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
851 
852 	/*
853 	 * The legacy routing mode needs at least two channels, tick timer
854 	 * and the rtc emulation channel.
855 	 */
856 	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
857 		goto out_nohpet;
858 
859 	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
860 	if (!hc) {
861 		pr_warn("Disabling HPET.\n");
862 		goto out_nohpet;
863 	}
864 	hpet_base.channels = hc;
865 	hpet_base.nr_channels = channels;
866 
867 	/* Read, store and sanitize the global configuration */
868 	cfg = hpet_readl(HPET_CFG);
869 	hpet_base.boot_cfg = cfg;
870 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
871 	hpet_writel(cfg, HPET_CFG);
872 	if (cfg)
873 		pr_warn("Global config: Unknown bits %#x\n", cfg);
874 
875 	/* Read, store and sanitize the per channel configuration */
876 	for (i = 0; i < channels; i++, hc++) {
877 		hc->num = i;
878 
879 		cfg = hpet_readl(HPET_Tn_CFG(i));
880 		hc->boot_cfg = cfg;
881 		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
882 		hc->irq = irq;
883 
884 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
885 		hpet_writel(cfg, HPET_Tn_CFG(i));
886 
887 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
888 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
889 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
890 		if (cfg)
891 			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
892 	}
893 	hpet_print_config();
894 
895 	/*
896 	 * Validate that the counter is counting. This needs to be done
897 	 * after sanitizing the config registers to properly deal with
898 	 * force enabled HPETs.
899 	 */
900 	if (!hpet_counting())
901 		goto out_nohpet;
902 
903 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
904 
905 	if (id & HPET_ID_LEGSUP) {
906 		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
907 		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
908 		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
909 			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
910 		return 1;
911 	}
912 	return 0;
913 
914 out_nohpet:
915 	kfree(hpet_base.channels);
916 	hpet_base.channels = NULL;
917 	hpet_base.nr_channels = 0;
918 	hpet_clear_mapping();
919 	hpet_address = 0;
920 	return 0;
921 }
922 
923 /*
924  * The late initialization runs after the PCI quirks have been invoked
925  * which might have detected a system on which the HPET can be enforced.
926  *
927  * Also, the MSI machinery is not working yet when the HPET is initialized
928  * early.
929  *
930  * If the HPET is enabled, then:
931  *
932  *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
933  *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
934  *  3) Setup /dev/hpet if CONFIG_HPET=y
935  *  4) Register hotplug callbacks when clockevents are available
936  */
937 static __init int hpet_late_init(void)
938 {
939 	int ret;
940 
941 	if (!hpet_address) {
942 		if (!force_hpet_address)
943 			return -ENODEV;
944 
945 		hpet_address = force_hpet_address;
946 		hpet_enable();
947 	}
948 
949 	if (!hpet_virt_address)
950 		return -ENODEV;
951 
952 	hpet_select_device_channel();
953 	hpet_select_clockevents();
954 	hpet_reserve_platform_timers();
955 	hpet_print_config();
956 
957 	if (!hpet_base.nr_clockevents)
958 		return 0;
959 
960 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
961 				hpet_cpuhp_online, NULL);
962 	if (ret)
963 		return ret;
964 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
965 				hpet_cpuhp_dead);
966 	if (ret)
967 		goto err_cpuhp;
968 	return 0;
969 
970 err_cpuhp:
971 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
972 	return ret;
973 }
974 fs_initcall(hpet_late_init);
975 
976 void hpet_disable(void)
977 {
978 	unsigned int i;
979 	u32 cfg;
980 
981 	if (!is_hpet_capable() || !hpet_virt_address)
982 		return;
983 
984 	/* Restore boot configuration with the enable bit cleared */
985 	cfg = hpet_base.boot_cfg;
986 	cfg &= ~HPET_CFG_ENABLE;
987 	hpet_writel(cfg, HPET_CFG);
988 
989 	/* Restore the channel boot configuration */
990 	for (i = 0; i < hpet_base.nr_channels; i++)
991 		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
992 
993 	/* If the HPET was enabled at boot time, reenable it */
994 	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
995 		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
996 }
997 
998 #ifdef CONFIG_HPET_EMULATE_RTC
999 
1000 /*
1001  * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1002  * is enabled, we support RTC interrupt functionality in software.
1003  *
1004  * RTC has 3 kinds of interrupts:
1005  *
1006  *  1) Update Interrupt - generate an interrupt, every second, when the
1007  *     RTC clock is updated
1008  *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1009  *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1010  *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1011  *
1012  * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1013  * DEFAULT_RTC_INT_FREQ.
1014  *
1015  * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1016  *
1017  * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1018  * if it's higher.
1019  */
1020 #include <linux/mc146818rtc.h>
1021 #include <linux/rtc.h>
1022 
1023 #define DEFAULT_RTC_INT_FREQ	64
1024 #define DEFAULT_RTC_SHIFT	6
1025 #define RTC_NUM_INTS		1
1026 
1027 static unsigned long hpet_rtc_flags;
1028 static int hpet_prev_update_sec;
1029 static struct rtc_time hpet_alarm_time;
1030 static unsigned long hpet_pie_count;
1031 static u32 hpet_t1_cmp;
1032 static u32 hpet_default_delta;
1033 static u32 hpet_pie_delta;
1034 static unsigned long hpet_pie_limit;
1035 
1036 static rtc_irq_handler irq_handler;
1037 
1038 /*
1039  * Check that the HPET counter c1 is ahead of c2
1040  */
1041 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1042 {
1043 	return (s32)(c2 - c1) < 0;
1044 }
1045 
1046 /*
1047  * Registers a IRQ handler.
1048  */
1049 int hpet_register_irq_handler(rtc_irq_handler handler)
1050 {
1051 	if (!is_hpet_enabled())
1052 		return -ENODEV;
1053 	if (irq_handler)
1054 		return -EBUSY;
1055 
1056 	irq_handler = handler;
1057 
1058 	return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1061 
1062 /*
1063  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1064  * and does cleanup.
1065  */
1066 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1067 {
1068 	if (!is_hpet_enabled())
1069 		return;
1070 
1071 	irq_handler = NULL;
1072 	hpet_rtc_flags = 0;
1073 }
1074 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1075 
1076 /*
1077  * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1078  * is not supported by all HPET implementations for channel 1.
1079  *
1080  * hpet_rtc_timer_init() is called when the rtc is initialized.
1081  */
1082 int hpet_rtc_timer_init(void)
1083 {
1084 	unsigned int cfg, cnt, delta;
1085 	unsigned long flags;
1086 
1087 	if (!is_hpet_enabled())
1088 		return 0;
1089 
1090 	if (!hpet_default_delta) {
1091 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1092 		uint64_t clc;
1093 
1094 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1095 		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1096 		hpet_default_delta = clc;
1097 	}
1098 
1099 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1100 		delta = hpet_default_delta;
1101 	else
1102 		delta = hpet_pie_delta;
1103 
1104 	local_irq_save(flags);
1105 
1106 	cnt = delta + hpet_readl(HPET_COUNTER);
1107 	hpet_writel(cnt, HPET_T1_CMP);
1108 	hpet_t1_cmp = cnt;
1109 
1110 	cfg = hpet_readl(HPET_T1_CFG);
1111 	cfg &= ~HPET_TN_PERIODIC;
1112 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1113 	hpet_writel(cfg, HPET_T1_CFG);
1114 
1115 	local_irq_restore(flags);
1116 
1117 	return 1;
1118 }
1119 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1120 
1121 static void hpet_disable_rtc_channel(void)
1122 {
1123 	u32 cfg = hpet_readl(HPET_T1_CFG);
1124 
1125 	cfg &= ~HPET_TN_ENABLE;
1126 	hpet_writel(cfg, HPET_T1_CFG);
1127 }
1128 
1129 /*
1130  * The functions below are called from rtc driver.
1131  * Return 0 if HPET is not being used.
1132  * Otherwise do the necessary changes and return 1.
1133  */
1134 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135 {
1136 	if (!is_hpet_enabled())
1137 		return 0;
1138 
1139 	hpet_rtc_flags &= ~bit_mask;
1140 	if (unlikely(!hpet_rtc_flags))
1141 		hpet_disable_rtc_channel();
1142 
1143 	return 1;
1144 }
1145 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1146 
1147 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148 {
1149 	unsigned long oldbits = hpet_rtc_flags;
1150 
1151 	if (!is_hpet_enabled())
1152 		return 0;
1153 
1154 	hpet_rtc_flags |= bit_mask;
1155 
1156 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157 		hpet_prev_update_sec = -1;
1158 
1159 	if (!oldbits)
1160 		hpet_rtc_timer_init();
1161 
1162 	return 1;
1163 }
1164 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1165 
1166 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1167 {
1168 	if (!is_hpet_enabled())
1169 		return 0;
1170 
1171 	hpet_alarm_time.tm_hour = hrs;
1172 	hpet_alarm_time.tm_min = min;
1173 	hpet_alarm_time.tm_sec = sec;
1174 
1175 	return 1;
1176 }
1177 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1178 
1179 int hpet_set_periodic_freq(unsigned long freq)
1180 {
1181 	uint64_t clc;
1182 
1183 	if (!is_hpet_enabled())
1184 		return 0;
1185 
1186 	if (freq <= DEFAULT_RTC_INT_FREQ) {
1187 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1188 	} else {
1189 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1190 
1191 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1192 		do_div(clc, freq);
1193 		clc >>= evt->shift;
1194 		hpet_pie_delta = clc;
1195 		hpet_pie_limit = 0;
1196 	}
1197 
1198 	return 1;
1199 }
1200 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1201 
1202 int hpet_rtc_dropped_irq(void)
1203 {
1204 	return is_hpet_enabled();
1205 }
1206 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1207 
1208 static void hpet_rtc_timer_reinit(void)
1209 {
1210 	unsigned int delta;
1211 	int lost_ints = -1;
1212 
1213 	if (unlikely(!hpet_rtc_flags))
1214 		hpet_disable_rtc_channel();
1215 
1216 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1217 		delta = hpet_default_delta;
1218 	else
1219 		delta = hpet_pie_delta;
1220 
1221 	/*
1222 	 * Increment the comparator value until we are ahead of the
1223 	 * current count.
1224 	 */
1225 	do {
1226 		hpet_t1_cmp += delta;
1227 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1228 		lost_ints++;
1229 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1230 
1231 	if (lost_ints) {
1232 		if (hpet_rtc_flags & RTC_PIE)
1233 			hpet_pie_count += lost_ints;
1234 		if (printk_ratelimit())
1235 			pr_warn("Lost %d RTC interrupts\n", lost_ints);
1236 	}
1237 }
1238 
1239 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1240 {
1241 	struct rtc_time curr_time;
1242 	unsigned long rtc_int_flag = 0;
1243 
1244 	hpet_rtc_timer_reinit();
1245 	memset(&curr_time, 0, sizeof(struct rtc_time));
1246 
1247 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1248 		mc146818_get_time(&curr_time);
1249 
1250 	if (hpet_rtc_flags & RTC_UIE &&
1251 	    curr_time.tm_sec != hpet_prev_update_sec) {
1252 		if (hpet_prev_update_sec >= 0)
1253 			rtc_int_flag = RTC_UF;
1254 		hpet_prev_update_sec = curr_time.tm_sec;
1255 	}
1256 
1257 	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1258 		rtc_int_flag |= RTC_PF;
1259 		hpet_pie_count = 0;
1260 	}
1261 
1262 	if (hpet_rtc_flags & RTC_AIE &&
1263 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266 		rtc_int_flag |= RTC_AF;
1267 
1268 	if (rtc_int_flag) {
1269 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1270 		if (irq_handler)
1271 			irq_handler(rtc_int_flag, dev_id);
1272 	}
1273 	return IRQ_HANDLED;
1274 }
1275 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1276 #endif
1277