xref: /linux/arch/x86/kernel/hpet.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13 
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17 
18 #define HPET_MASK			CLOCKSOURCE_MASK(32)
19 
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC			1000000L
23 
24 #define HPET_DEV_USED_BIT		2
25 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID			0x8
27 #define HPET_DEV_FSB_CAP		0x1000
28 #define HPET_DEV_PERI_CAP		0x2000
29 
30 #define HPET_MIN_CYCLES			128
31 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32 
33 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
34 
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long				hpet_address;
39 u8					hpet_blockid; /* OS timer block num */
40 u8					hpet_msi_disable;
41 
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long			hpet_num_timers;
44 #endif
45 static void __iomem			*hpet_virt_address;
46 
47 struct hpet_dev {
48 	struct clock_event_device	evt;
49 	unsigned int			num;
50 	int				cpu;
51 	unsigned int			irq;
52 	unsigned int			flags;
53 	char				name[10];
54 };
55 
56 inline unsigned int hpet_readl(unsigned int a)
57 {
58 	return readl(hpet_virt_address + a);
59 }
60 
61 static inline void hpet_writel(unsigned int d, unsigned int a)
62 {
63 	writel(d, hpet_virt_address + a);
64 }
65 
66 #ifdef CONFIG_X86_64
67 #include <asm/pgtable.h>
68 #endif
69 
70 static inline void hpet_set_mapping(void)
71 {
72 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
73 #ifdef CONFIG_X86_64
74 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
75 #endif
76 }
77 
78 static inline void hpet_clear_mapping(void)
79 {
80 	iounmap(hpet_virt_address);
81 	hpet_virt_address = NULL;
82 }
83 
84 /*
85  * HPET command line enable / disable
86  */
87 static int boot_hpet_disable;
88 int hpet_force_user;
89 static int hpet_verbose;
90 
91 static int __init hpet_setup(char *str)
92 {
93 	if (str) {
94 		if (!strncmp("disable", str, 7))
95 			boot_hpet_disable = 1;
96 		if (!strncmp("force", str, 5))
97 			hpet_force_user = 1;
98 		if (!strncmp("verbose", str, 7))
99 			hpet_verbose = 1;
100 	}
101 	return 1;
102 }
103 __setup("hpet=", hpet_setup);
104 
105 static int __init disable_hpet(char *str)
106 {
107 	boot_hpet_disable = 1;
108 	return 1;
109 }
110 __setup("nohpet", disable_hpet);
111 
112 static inline int is_hpet_capable(void)
113 {
114 	return !boot_hpet_disable && hpet_address;
115 }
116 
117 /*
118  * HPET timer interrupt enable / disable
119  */
120 static int hpet_legacy_int_enabled;
121 
122 /**
123  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
124  */
125 int is_hpet_enabled(void)
126 {
127 	return is_hpet_capable() && hpet_legacy_int_enabled;
128 }
129 EXPORT_SYMBOL_GPL(is_hpet_enabled);
130 
131 static void _hpet_print_config(const char *function, int line)
132 {
133 	u32 i, timers, l, h;
134 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
135 	l = hpet_readl(HPET_ID);
136 	h = hpet_readl(HPET_PERIOD);
137 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
139 	l = hpet_readl(HPET_CFG);
140 	h = hpet_readl(HPET_STATUS);
141 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
142 	l = hpet_readl(HPET_COUNTER);
143 	h = hpet_readl(HPET_COUNTER+4);
144 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
145 
146 	for (i = 0; i < timers; i++) {
147 		l = hpet_readl(HPET_Tn_CFG(i));
148 		h = hpet_readl(HPET_Tn_CFG(i)+4);
149 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
150 		       i, l, h);
151 		l = hpet_readl(HPET_Tn_CMP(i));
152 		h = hpet_readl(HPET_Tn_CMP(i)+4);
153 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
154 		       i, l, h);
155 		l = hpet_readl(HPET_Tn_ROUTE(i));
156 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
157 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
158 		       i, l, h);
159 	}
160 }
161 
162 #define hpet_print_config()					\
163 do {								\
164 	if (hpet_verbose)					\
165 		_hpet_print_config(__FUNCTION__, __LINE__);	\
166 } while (0)
167 
168 /*
169  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
170  * timer 0 and timer 1 in case of RTC emulation.
171  */
172 #ifdef CONFIG_HPET
173 
174 static void hpet_reserve_msi_timers(struct hpet_data *hd);
175 
176 static void hpet_reserve_platform_timers(unsigned int id)
177 {
178 	struct hpet __iomem *hpet = hpet_virt_address;
179 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
180 	unsigned int nrtimers, i;
181 	struct hpet_data hd;
182 
183 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
184 
185 	memset(&hd, 0, sizeof(hd));
186 	hd.hd_phys_address	= hpet_address;
187 	hd.hd_address		= hpet;
188 	hd.hd_nirqs		= nrtimers;
189 	hpet_reserve_timer(&hd, 0);
190 
191 #ifdef CONFIG_HPET_EMULATE_RTC
192 	hpet_reserve_timer(&hd, 1);
193 #endif
194 
195 	/*
196 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
197 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
198 	 * don't bother configuring *any* comparator interrupts.
199 	 */
200 	hd.hd_irq[0] = HPET_LEGACY_8254;
201 	hd.hd_irq[1] = HPET_LEGACY_RTC;
202 
203 	for (i = 2; i < nrtimers; timer++, i++) {
204 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
205 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
206 	}
207 
208 	hpet_reserve_msi_timers(&hd);
209 
210 	hpet_alloc(&hd);
211 
212 }
213 #else
214 static void hpet_reserve_platform_timers(unsigned int id) { }
215 #endif
216 
217 /*
218  * Common hpet info
219  */
220 static unsigned long hpet_freq;
221 
222 static void hpet_legacy_set_mode(enum clock_event_mode mode,
223 			  struct clock_event_device *evt);
224 static int hpet_legacy_next_event(unsigned long delta,
225 			   struct clock_event_device *evt);
226 
227 /*
228  * The hpet clock event device
229  */
230 static struct clock_event_device hpet_clockevent = {
231 	.name		= "hpet",
232 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233 	.set_mode	= hpet_legacy_set_mode,
234 	.set_next_event = hpet_legacy_next_event,
235 	.irq		= 0,
236 	.rating		= 50,
237 };
238 
239 static void hpet_stop_counter(void)
240 {
241 	unsigned long cfg = hpet_readl(HPET_CFG);
242 	cfg &= ~HPET_CFG_ENABLE;
243 	hpet_writel(cfg, HPET_CFG);
244 }
245 
246 static void hpet_reset_counter(void)
247 {
248 	hpet_writel(0, HPET_COUNTER);
249 	hpet_writel(0, HPET_COUNTER + 4);
250 }
251 
252 static void hpet_start_counter(void)
253 {
254 	unsigned int cfg = hpet_readl(HPET_CFG);
255 	cfg |= HPET_CFG_ENABLE;
256 	hpet_writel(cfg, HPET_CFG);
257 }
258 
259 static void hpet_restart_counter(void)
260 {
261 	hpet_stop_counter();
262 	hpet_reset_counter();
263 	hpet_start_counter();
264 }
265 
266 static void hpet_resume_device(void)
267 {
268 	force_hpet_resume();
269 }
270 
271 static void hpet_resume_counter(struct clocksource *cs)
272 {
273 	hpet_resume_device();
274 	hpet_restart_counter();
275 }
276 
277 static void hpet_enable_legacy_int(void)
278 {
279 	unsigned int cfg = hpet_readl(HPET_CFG);
280 
281 	cfg |= HPET_CFG_LEGACY;
282 	hpet_writel(cfg, HPET_CFG);
283 	hpet_legacy_int_enabled = 1;
284 }
285 
286 static void hpet_legacy_clockevent_register(void)
287 {
288 	/* Start HPET legacy interrupts */
289 	hpet_enable_legacy_int();
290 
291 	/*
292 	 * Start hpet with the boot cpu mask and make it
293 	 * global after the IO_APIC has been initialized.
294 	 */
295 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
296 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
297 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
298 	global_clock_event = &hpet_clockevent;
299 	printk(KERN_DEBUG "hpet clockevent registered\n");
300 }
301 
302 static int hpet_setup_msi_irq(unsigned int irq);
303 
304 static void hpet_set_mode(enum clock_event_mode mode,
305 			  struct clock_event_device *evt, int timer)
306 {
307 	unsigned int cfg, cmp, now;
308 	uint64_t delta;
309 
310 	switch (mode) {
311 	case CLOCK_EVT_MODE_PERIODIC:
312 		hpet_stop_counter();
313 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
314 		delta >>= evt->shift;
315 		now = hpet_readl(HPET_COUNTER);
316 		cmp = now + (unsigned int) delta;
317 		cfg = hpet_readl(HPET_Tn_CFG(timer));
318 		/* Make sure we use edge triggered interrupts */
319 		cfg &= ~HPET_TN_LEVEL;
320 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
321 		       HPET_TN_SETVAL | HPET_TN_32BIT;
322 		hpet_writel(cfg, HPET_Tn_CFG(timer));
323 		hpet_writel(cmp, HPET_Tn_CMP(timer));
324 		udelay(1);
325 		/*
326 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
327 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
328 		 * bit is automatically cleared after the first write.
329 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
330 		 * Publication # 24674)
331 		 */
332 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
333 		hpet_start_counter();
334 		hpet_print_config();
335 		break;
336 
337 	case CLOCK_EVT_MODE_ONESHOT:
338 		cfg = hpet_readl(HPET_Tn_CFG(timer));
339 		cfg &= ~HPET_TN_PERIODIC;
340 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
341 		hpet_writel(cfg, HPET_Tn_CFG(timer));
342 		break;
343 
344 	case CLOCK_EVT_MODE_UNUSED:
345 	case CLOCK_EVT_MODE_SHUTDOWN:
346 		cfg = hpet_readl(HPET_Tn_CFG(timer));
347 		cfg &= ~HPET_TN_ENABLE;
348 		hpet_writel(cfg, HPET_Tn_CFG(timer));
349 		break;
350 
351 	case CLOCK_EVT_MODE_RESUME:
352 		if (timer == 0) {
353 			hpet_enable_legacy_int();
354 		} else {
355 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
356 			hpet_setup_msi_irq(hdev->irq);
357 			disable_irq(hdev->irq);
358 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359 			enable_irq(hdev->irq);
360 		}
361 		hpet_print_config();
362 		break;
363 	}
364 }
365 
366 static int hpet_next_event(unsigned long delta,
367 			   struct clock_event_device *evt, int timer)
368 {
369 	u32 cnt;
370 	s32 res;
371 
372 	cnt = hpet_readl(HPET_COUNTER);
373 	cnt += (u32) delta;
374 	hpet_writel(cnt, HPET_Tn_CMP(timer));
375 
376 	/*
377 	 * HPETs are a complete disaster. The compare register is
378 	 * based on a equal comparison and neither provides a less
379 	 * than or equal functionality (which would require to take
380 	 * the wraparound into account) nor a simple count down event
381 	 * mode. Further the write to the comparator register is
382 	 * delayed internally up to two HPET clock cycles in certain
383 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384 	 * longer delays. We worked around that by reading back the
385 	 * compare register, but that required another workaround for
386 	 * ICH9,10 chips where the first readout after write can
387 	 * return the old stale value. We already had a minimum
388 	 * programming delta of 5us enforced, but a NMI or SMI hitting
389 	 * between the counter readout and the comparator write can
390 	 * move us behind that point easily. Now instead of reading
391 	 * the compare register back several times, we make the ETIME
392 	 * decision based on the following: Return ETIME if the
393 	 * counter value after the write is less than HPET_MIN_CYCLES
394 	 * away from the event or if the counter is already ahead of
395 	 * the event. The minimum programming delta for the generic
396 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397 	 */
398 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399 
400 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402 
403 static void hpet_legacy_set_mode(enum clock_event_mode mode,
404 			struct clock_event_device *evt)
405 {
406 	hpet_set_mode(mode, evt, 0);
407 }
408 
409 static int hpet_legacy_next_event(unsigned long delta,
410 			struct clock_event_device *evt)
411 {
412 	return hpet_next_event(delta, evt, 0);
413 }
414 
415 /*
416  * HPET MSI Support
417  */
418 #ifdef CONFIG_PCI_MSI
419 
420 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
421 static struct hpet_dev	*hpet_devs;
422 
423 void hpet_msi_unmask(struct irq_data *data)
424 {
425 	struct hpet_dev *hdev = data->handler_data;
426 	unsigned int cfg;
427 
428 	/* unmask it */
429 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
430 	cfg |= HPET_TN_FSB;
431 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
432 }
433 
434 void hpet_msi_mask(struct irq_data *data)
435 {
436 	struct hpet_dev *hdev = data->handler_data;
437 	unsigned int cfg;
438 
439 	/* mask it */
440 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
441 	cfg &= ~HPET_TN_FSB;
442 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
443 }
444 
445 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
446 {
447 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
448 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
449 }
450 
451 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
452 {
453 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
454 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
455 	msg->address_hi = 0;
456 }
457 
458 static void hpet_msi_set_mode(enum clock_event_mode mode,
459 				struct clock_event_device *evt)
460 {
461 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
462 	hpet_set_mode(mode, evt, hdev->num);
463 }
464 
465 static int hpet_msi_next_event(unsigned long delta,
466 				struct clock_event_device *evt)
467 {
468 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
469 	return hpet_next_event(delta, evt, hdev->num);
470 }
471 
472 static int hpet_setup_msi_irq(unsigned int irq)
473 {
474 	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
475 		destroy_irq(irq);
476 		return -EINVAL;
477 	}
478 	return 0;
479 }
480 
481 static int hpet_assign_irq(struct hpet_dev *dev)
482 {
483 	unsigned int irq;
484 
485 	irq = create_irq_nr(0, -1);
486 	if (!irq)
487 		return -EINVAL;
488 
489 	irq_set_handler_data(irq, dev);
490 
491 	if (hpet_setup_msi_irq(irq))
492 		return -EINVAL;
493 
494 	dev->irq = irq;
495 	return 0;
496 }
497 
498 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
499 {
500 	struct hpet_dev *dev = (struct hpet_dev *)data;
501 	struct clock_event_device *hevt = &dev->evt;
502 
503 	if (!hevt->event_handler) {
504 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
505 				dev->num);
506 		return IRQ_HANDLED;
507 	}
508 
509 	hevt->event_handler(hevt);
510 	return IRQ_HANDLED;
511 }
512 
513 static int hpet_setup_irq(struct hpet_dev *dev)
514 {
515 
516 	if (request_irq(dev->irq, hpet_interrupt_handler,
517 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
518 			dev->name, dev))
519 		return -1;
520 
521 	disable_irq(dev->irq);
522 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
523 	enable_irq(dev->irq);
524 
525 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
526 			 dev->name, dev->irq);
527 
528 	return 0;
529 }
530 
531 /* This should be called in specific @cpu */
532 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
533 {
534 	struct clock_event_device *evt = &hdev->evt;
535 
536 	WARN_ON(cpu != smp_processor_id());
537 	if (!(hdev->flags & HPET_DEV_VALID))
538 		return;
539 
540 	if (hpet_setup_msi_irq(hdev->irq))
541 		return;
542 
543 	hdev->cpu = cpu;
544 	per_cpu(cpu_hpet_dev, cpu) = hdev;
545 	evt->name = hdev->name;
546 	hpet_setup_irq(hdev);
547 	evt->irq = hdev->irq;
548 
549 	evt->rating = 110;
550 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
551 	if (hdev->flags & HPET_DEV_PERI_CAP)
552 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
553 
554 	evt->set_mode = hpet_msi_set_mode;
555 	evt->set_next_event = hpet_msi_next_event;
556 	evt->cpumask = cpumask_of(hdev->cpu);
557 
558 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
559 					0x7FFFFFFF);
560 }
561 
562 #ifdef CONFIG_HPET
563 /* Reserve at least one timer for userspace (/dev/hpet) */
564 #define RESERVE_TIMERS 1
565 #else
566 #define RESERVE_TIMERS 0
567 #endif
568 
569 static void hpet_msi_capability_lookup(unsigned int start_timer)
570 {
571 	unsigned int id;
572 	unsigned int num_timers;
573 	unsigned int num_timers_used = 0;
574 	int i;
575 
576 	if (hpet_msi_disable)
577 		return;
578 
579 	if (boot_cpu_has(X86_FEATURE_ARAT))
580 		return;
581 	id = hpet_readl(HPET_ID);
582 
583 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
584 	num_timers++; /* Value read out starts from 0 */
585 	hpet_print_config();
586 
587 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
588 	if (!hpet_devs)
589 		return;
590 
591 	hpet_num_timers = num_timers;
592 
593 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
594 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
595 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
596 
597 		/* Only consider HPET timer with MSI support */
598 		if (!(cfg & HPET_TN_FSB_CAP))
599 			continue;
600 
601 		hdev->flags = 0;
602 		if (cfg & HPET_TN_PERIODIC_CAP)
603 			hdev->flags |= HPET_DEV_PERI_CAP;
604 		hdev->num = i;
605 
606 		sprintf(hdev->name, "hpet%d", i);
607 		if (hpet_assign_irq(hdev))
608 			continue;
609 
610 		hdev->flags |= HPET_DEV_FSB_CAP;
611 		hdev->flags |= HPET_DEV_VALID;
612 		num_timers_used++;
613 		if (num_timers_used == num_possible_cpus())
614 			break;
615 	}
616 
617 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
618 		num_timers, num_timers_used);
619 }
620 
621 #ifdef CONFIG_HPET
622 static void hpet_reserve_msi_timers(struct hpet_data *hd)
623 {
624 	int i;
625 
626 	if (!hpet_devs)
627 		return;
628 
629 	for (i = 0; i < hpet_num_timers; i++) {
630 		struct hpet_dev *hdev = &hpet_devs[i];
631 
632 		if (!(hdev->flags & HPET_DEV_VALID))
633 			continue;
634 
635 		hd->hd_irq[hdev->num] = hdev->irq;
636 		hpet_reserve_timer(hd, hdev->num);
637 	}
638 }
639 #endif
640 
641 static struct hpet_dev *hpet_get_unused_timer(void)
642 {
643 	int i;
644 
645 	if (!hpet_devs)
646 		return NULL;
647 
648 	for (i = 0; i < hpet_num_timers; i++) {
649 		struct hpet_dev *hdev = &hpet_devs[i];
650 
651 		if (!(hdev->flags & HPET_DEV_VALID))
652 			continue;
653 		if (test_and_set_bit(HPET_DEV_USED_BIT,
654 			(unsigned long *)&hdev->flags))
655 			continue;
656 		return hdev;
657 	}
658 	return NULL;
659 }
660 
661 struct hpet_work_struct {
662 	struct delayed_work work;
663 	struct completion complete;
664 };
665 
666 static void hpet_work(struct work_struct *w)
667 {
668 	struct hpet_dev *hdev;
669 	int cpu = smp_processor_id();
670 	struct hpet_work_struct *hpet_work;
671 
672 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
673 
674 	hdev = hpet_get_unused_timer();
675 	if (hdev)
676 		init_one_hpet_msi_clockevent(hdev, cpu);
677 
678 	complete(&hpet_work->complete);
679 }
680 
681 static int hpet_cpuhp_notify(struct notifier_block *n,
682 		unsigned long action, void *hcpu)
683 {
684 	unsigned long cpu = (unsigned long)hcpu;
685 	struct hpet_work_struct work;
686 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
687 
688 	switch (action & 0xf) {
689 	case CPU_ONLINE:
690 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
691 		init_completion(&work.complete);
692 		/* FIXME: add schedule_work_on() */
693 		schedule_delayed_work_on(cpu, &work.work, 0);
694 		wait_for_completion(&work.complete);
695 		destroy_timer_on_stack(&work.work.timer);
696 		break;
697 	case CPU_DEAD:
698 		if (hdev) {
699 			free_irq(hdev->irq, hdev);
700 			hdev->flags &= ~HPET_DEV_USED;
701 			per_cpu(cpu_hpet_dev, cpu) = NULL;
702 		}
703 		break;
704 	}
705 	return NOTIFY_OK;
706 }
707 #else
708 
709 static int hpet_setup_msi_irq(unsigned int irq)
710 {
711 	return 0;
712 }
713 static void hpet_msi_capability_lookup(unsigned int start_timer)
714 {
715 	return;
716 }
717 
718 #ifdef CONFIG_HPET
719 static void hpet_reserve_msi_timers(struct hpet_data *hd)
720 {
721 	return;
722 }
723 #endif
724 
725 static int hpet_cpuhp_notify(struct notifier_block *n,
726 		unsigned long action, void *hcpu)
727 {
728 	return NOTIFY_OK;
729 }
730 
731 #endif
732 
733 /*
734  * Clock source related code
735  */
736 static cycle_t read_hpet(struct clocksource *cs)
737 {
738 	return (cycle_t)hpet_readl(HPET_COUNTER);
739 }
740 
741 #ifdef CONFIG_X86_64
742 static cycle_t __vsyscall_fn vread_hpet(void)
743 {
744 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
745 }
746 #endif
747 
748 static struct clocksource clocksource_hpet = {
749 	.name		= "hpet",
750 	.rating		= 250,
751 	.read		= read_hpet,
752 	.mask		= HPET_MASK,
753 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
754 	.resume		= hpet_resume_counter,
755 #ifdef CONFIG_X86_64
756 	.vread		= vread_hpet,
757 #endif
758 };
759 
760 static int hpet_clocksource_register(void)
761 {
762 	u64 start, now;
763 	cycle_t t1;
764 
765 	/* Start the counter */
766 	hpet_restart_counter();
767 
768 	/* Verify whether hpet counter works */
769 	t1 = hpet_readl(HPET_COUNTER);
770 	rdtscll(start);
771 
772 	/*
773 	 * We don't know the TSC frequency yet, but waiting for
774 	 * 200000 TSC cycles is safe:
775 	 * 4 GHz == 50us
776 	 * 1 GHz == 200us
777 	 */
778 	do {
779 		rep_nop();
780 		rdtscll(now);
781 	} while ((now - start) < 200000UL);
782 
783 	if (t1 == hpet_readl(HPET_COUNTER)) {
784 		printk(KERN_WARNING
785 		       "HPET counter not counting. HPET disabled\n");
786 		return -ENODEV;
787 	}
788 
789 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
790 	return 0;
791 }
792 
793 /**
794  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
795  */
796 int __init hpet_enable(void)
797 {
798 	unsigned long hpet_period;
799 	unsigned int id;
800 	u64 freq;
801 	int i;
802 
803 	if (!is_hpet_capable())
804 		return 0;
805 
806 	hpet_set_mapping();
807 
808 	/*
809 	 * Read the period and check for a sane value:
810 	 */
811 	hpet_period = hpet_readl(HPET_PERIOD);
812 
813 	/*
814 	 * AMD SB700 based systems with spread spectrum enabled use a
815 	 * SMM based HPET emulation to provide proper frequency
816 	 * setting. The SMM code is initialized with the first HPET
817 	 * register access and takes some time to complete. During
818 	 * this time the config register reads 0xffffffff. We check
819 	 * for max. 1000 loops whether the config register reads a non
820 	 * 0xffffffff value to make sure that HPET is up and running
821 	 * before we go further. A counting loop is safe, as the HPET
822 	 * access takes thousands of CPU cycles. On non SB700 based
823 	 * machines this check is only done once and has no side
824 	 * effects.
825 	 */
826 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
827 		if (i == 1000) {
828 			printk(KERN_WARNING
829 			       "HPET config register value = 0xFFFFFFFF. "
830 			       "Disabling HPET\n");
831 			goto out_nohpet;
832 		}
833 	}
834 
835 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
836 		goto out_nohpet;
837 
838 	/*
839 	 * The period is a femto seconds value. Convert it to a
840 	 * frequency.
841 	 */
842 	freq = FSEC_PER_SEC;
843 	do_div(freq, hpet_period);
844 	hpet_freq = freq;
845 
846 	/*
847 	 * Read the HPET ID register to retrieve the IRQ routing
848 	 * information and the number of channels
849 	 */
850 	id = hpet_readl(HPET_ID);
851 	hpet_print_config();
852 
853 #ifdef CONFIG_HPET_EMULATE_RTC
854 	/*
855 	 * The legacy routing mode needs at least two channels, tick timer
856 	 * and the rtc emulation channel.
857 	 */
858 	if (!(id & HPET_ID_NUMBER))
859 		goto out_nohpet;
860 #endif
861 
862 	if (hpet_clocksource_register())
863 		goto out_nohpet;
864 
865 	if (id & HPET_ID_LEGSUP) {
866 		hpet_legacy_clockevent_register();
867 		return 1;
868 	}
869 	return 0;
870 
871 out_nohpet:
872 	hpet_clear_mapping();
873 	hpet_address = 0;
874 	return 0;
875 }
876 
877 /*
878  * Needs to be late, as the reserve_timer code calls kalloc !
879  *
880  * Not a problem on i386 as hpet_enable is called from late_time_init,
881  * but on x86_64 it is necessary !
882  */
883 static __init int hpet_late_init(void)
884 {
885 	int cpu;
886 
887 	if (boot_hpet_disable)
888 		return -ENODEV;
889 
890 	if (!hpet_address) {
891 		if (!force_hpet_address)
892 			return -ENODEV;
893 
894 		hpet_address = force_hpet_address;
895 		hpet_enable();
896 	}
897 
898 	if (!hpet_virt_address)
899 		return -ENODEV;
900 
901 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
902 		hpet_msi_capability_lookup(2);
903 	else
904 		hpet_msi_capability_lookup(0);
905 
906 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
907 	hpet_print_config();
908 
909 	if (hpet_msi_disable)
910 		return 0;
911 
912 	if (boot_cpu_has(X86_FEATURE_ARAT))
913 		return 0;
914 
915 	for_each_online_cpu(cpu) {
916 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
917 	}
918 
919 	/* This notifier should be called after workqueue is ready */
920 	hotcpu_notifier(hpet_cpuhp_notify, -20);
921 
922 	return 0;
923 }
924 fs_initcall(hpet_late_init);
925 
926 void hpet_disable(void)
927 {
928 	if (is_hpet_capable() && hpet_virt_address) {
929 		unsigned int cfg = hpet_readl(HPET_CFG);
930 
931 		if (hpet_legacy_int_enabled) {
932 			cfg &= ~HPET_CFG_LEGACY;
933 			hpet_legacy_int_enabled = 0;
934 		}
935 		cfg &= ~HPET_CFG_ENABLE;
936 		hpet_writel(cfg, HPET_CFG);
937 	}
938 }
939 
940 #ifdef CONFIG_HPET_EMULATE_RTC
941 
942 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
943  * is enabled, we support RTC interrupt functionality in software.
944  * RTC has 3 kinds of interrupts:
945  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
946  *    is updated
947  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
948  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
949  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
950  * (1) and (2) above are implemented using polling at a frequency of
951  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
952  * overhead. (DEFAULT_RTC_INT_FREQ)
953  * For (3), we use interrupts at 64Hz or user specified periodic
954  * frequency, whichever is higher.
955  */
956 #include <linux/mc146818rtc.h>
957 #include <linux/rtc.h>
958 #include <asm/rtc.h>
959 
960 #define DEFAULT_RTC_INT_FREQ	64
961 #define DEFAULT_RTC_SHIFT	6
962 #define RTC_NUM_INTS		1
963 
964 static unsigned long hpet_rtc_flags;
965 static int hpet_prev_update_sec;
966 static struct rtc_time hpet_alarm_time;
967 static unsigned long hpet_pie_count;
968 static u32 hpet_t1_cmp;
969 static u32 hpet_default_delta;
970 static u32 hpet_pie_delta;
971 static unsigned long hpet_pie_limit;
972 
973 static rtc_irq_handler irq_handler;
974 
975 /*
976  * Check that the hpet counter c1 is ahead of the c2
977  */
978 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
979 {
980 	return (s32)(c2 - c1) < 0;
981 }
982 
983 /*
984  * Registers a IRQ handler.
985  */
986 int hpet_register_irq_handler(rtc_irq_handler handler)
987 {
988 	if (!is_hpet_enabled())
989 		return -ENODEV;
990 	if (irq_handler)
991 		return -EBUSY;
992 
993 	irq_handler = handler;
994 
995 	return 0;
996 }
997 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
998 
999 /*
1000  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1001  * and does cleanup.
1002  */
1003 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1004 {
1005 	if (!is_hpet_enabled())
1006 		return;
1007 
1008 	irq_handler = NULL;
1009 	hpet_rtc_flags = 0;
1010 }
1011 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1012 
1013 /*
1014  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1015  * is not supported by all HPET implementations for timer 1.
1016  *
1017  * hpet_rtc_timer_init() is called when the rtc is initialized.
1018  */
1019 int hpet_rtc_timer_init(void)
1020 {
1021 	unsigned int cfg, cnt, delta;
1022 	unsigned long flags;
1023 
1024 	if (!is_hpet_enabled())
1025 		return 0;
1026 
1027 	if (!hpet_default_delta) {
1028 		uint64_t clc;
1029 
1030 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1031 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1032 		hpet_default_delta = clc;
1033 	}
1034 
1035 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1036 		delta = hpet_default_delta;
1037 	else
1038 		delta = hpet_pie_delta;
1039 
1040 	local_irq_save(flags);
1041 
1042 	cnt = delta + hpet_readl(HPET_COUNTER);
1043 	hpet_writel(cnt, HPET_T1_CMP);
1044 	hpet_t1_cmp = cnt;
1045 
1046 	cfg = hpet_readl(HPET_T1_CFG);
1047 	cfg &= ~HPET_TN_PERIODIC;
1048 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1049 	hpet_writel(cfg, HPET_T1_CFG);
1050 
1051 	local_irq_restore(flags);
1052 
1053 	return 1;
1054 }
1055 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1056 
1057 /*
1058  * The functions below are called from rtc driver.
1059  * Return 0 if HPET is not being used.
1060  * Otherwise do the necessary changes and return 1.
1061  */
1062 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1063 {
1064 	if (!is_hpet_enabled())
1065 		return 0;
1066 
1067 	hpet_rtc_flags &= ~bit_mask;
1068 	return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1071 
1072 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1073 {
1074 	unsigned long oldbits = hpet_rtc_flags;
1075 
1076 	if (!is_hpet_enabled())
1077 		return 0;
1078 
1079 	hpet_rtc_flags |= bit_mask;
1080 
1081 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1082 		hpet_prev_update_sec = -1;
1083 
1084 	if (!oldbits)
1085 		hpet_rtc_timer_init();
1086 
1087 	return 1;
1088 }
1089 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1090 
1091 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1092 			unsigned char sec)
1093 {
1094 	if (!is_hpet_enabled())
1095 		return 0;
1096 
1097 	hpet_alarm_time.tm_hour = hrs;
1098 	hpet_alarm_time.tm_min = min;
1099 	hpet_alarm_time.tm_sec = sec;
1100 
1101 	return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1104 
1105 int hpet_set_periodic_freq(unsigned long freq)
1106 {
1107 	uint64_t clc;
1108 
1109 	if (!is_hpet_enabled())
1110 		return 0;
1111 
1112 	if (freq <= DEFAULT_RTC_INT_FREQ)
1113 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1114 	else {
1115 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1116 		do_div(clc, freq);
1117 		clc >>= hpet_clockevent.shift;
1118 		hpet_pie_delta = clc;
1119 		hpet_pie_limit = 0;
1120 	}
1121 	return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1124 
1125 int hpet_rtc_dropped_irq(void)
1126 {
1127 	return is_hpet_enabled();
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1130 
1131 static void hpet_rtc_timer_reinit(void)
1132 {
1133 	unsigned int cfg, delta;
1134 	int lost_ints = -1;
1135 
1136 	if (unlikely(!hpet_rtc_flags)) {
1137 		cfg = hpet_readl(HPET_T1_CFG);
1138 		cfg &= ~HPET_TN_ENABLE;
1139 		hpet_writel(cfg, HPET_T1_CFG);
1140 		return;
1141 	}
1142 
1143 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1144 		delta = hpet_default_delta;
1145 	else
1146 		delta = hpet_pie_delta;
1147 
1148 	/*
1149 	 * Increment the comparator value until we are ahead of the
1150 	 * current count.
1151 	 */
1152 	do {
1153 		hpet_t1_cmp += delta;
1154 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1155 		lost_ints++;
1156 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1157 
1158 	if (lost_ints) {
1159 		if (hpet_rtc_flags & RTC_PIE)
1160 			hpet_pie_count += lost_ints;
1161 		if (printk_ratelimit())
1162 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1163 				lost_ints);
1164 	}
1165 }
1166 
1167 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1168 {
1169 	struct rtc_time curr_time;
1170 	unsigned long rtc_int_flag = 0;
1171 
1172 	hpet_rtc_timer_reinit();
1173 	memset(&curr_time, 0, sizeof(struct rtc_time));
1174 
1175 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1176 		get_rtc_time(&curr_time);
1177 
1178 	if (hpet_rtc_flags & RTC_UIE &&
1179 	    curr_time.tm_sec != hpet_prev_update_sec) {
1180 		if (hpet_prev_update_sec >= 0)
1181 			rtc_int_flag = RTC_UF;
1182 		hpet_prev_update_sec = curr_time.tm_sec;
1183 	}
1184 
1185 	if (hpet_rtc_flags & RTC_PIE &&
1186 	    ++hpet_pie_count >= hpet_pie_limit) {
1187 		rtc_int_flag |= RTC_PF;
1188 		hpet_pie_count = 0;
1189 	}
1190 
1191 	if (hpet_rtc_flags & RTC_AIE &&
1192 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1193 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1194 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1195 			rtc_int_flag |= RTC_AF;
1196 
1197 	if (rtc_int_flag) {
1198 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1199 		if (irq_handler)
1200 			irq_handler(rtc_int_flag, dev_id);
1201 	}
1202 	return IRQ_HANDLED;
1203 }
1204 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1205 #endif
1206