xref: /linux/arch/x86/kernel/hpet.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13 
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17 
18 #define HPET_MASK			CLOCKSOURCE_MASK(32)
19 
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC			1000000L
23 
24 #define HPET_DEV_USED_BIT		2
25 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID			0x8
27 #define HPET_DEV_FSB_CAP		0x1000
28 #define HPET_DEV_PERI_CAP		0x2000
29 
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31 
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long				hpet_address;
36 u8					hpet_blockid; /* OS timer block num */
37 u8					hpet_msi_disable;
38 
39 #ifdef CONFIG_PCI_MSI
40 static unsigned long			hpet_num_timers;
41 #endif
42 static void __iomem			*hpet_virt_address;
43 
44 struct hpet_dev {
45 	struct clock_event_device	evt;
46 	unsigned int			num;
47 	int				cpu;
48 	unsigned int			irq;
49 	unsigned int			flags;
50 	char				name[10];
51 };
52 
53 inline unsigned int hpet_readl(unsigned int a)
54 {
55 	return readl(hpet_virt_address + a);
56 }
57 
58 static inline void hpet_writel(unsigned int d, unsigned int a)
59 {
60 	writel(d, hpet_virt_address + a);
61 }
62 
63 #ifdef CONFIG_X86_64
64 #include <asm/pgtable.h>
65 #endif
66 
67 static inline void hpet_set_mapping(void)
68 {
69 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
70 #ifdef CONFIG_X86_64
71 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72 #endif
73 }
74 
75 static inline void hpet_clear_mapping(void)
76 {
77 	iounmap(hpet_virt_address);
78 	hpet_virt_address = NULL;
79 }
80 
81 /*
82  * HPET command line enable / disable
83  */
84 static int boot_hpet_disable;
85 int hpet_force_user;
86 static int hpet_verbose;
87 
88 static int __init hpet_setup(char *str)
89 {
90 	if (str) {
91 		if (!strncmp("disable", str, 7))
92 			boot_hpet_disable = 1;
93 		if (!strncmp("force", str, 5))
94 			hpet_force_user = 1;
95 		if (!strncmp("verbose", str, 7))
96 			hpet_verbose = 1;
97 	}
98 	return 1;
99 }
100 __setup("hpet=", hpet_setup);
101 
102 static int __init disable_hpet(char *str)
103 {
104 	boot_hpet_disable = 1;
105 	return 1;
106 }
107 __setup("nohpet", disable_hpet);
108 
109 static inline int is_hpet_capable(void)
110 {
111 	return !boot_hpet_disable && hpet_address;
112 }
113 
114 /*
115  * HPET timer interrupt enable / disable
116  */
117 static int hpet_legacy_int_enabled;
118 
119 /**
120  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121  */
122 int is_hpet_enabled(void)
123 {
124 	return is_hpet_capable() && hpet_legacy_int_enabled;
125 }
126 EXPORT_SYMBOL_GPL(is_hpet_enabled);
127 
128 static void _hpet_print_config(const char *function, int line)
129 {
130 	u32 i, timers, l, h;
131 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132 	l = hpet_readl(HPET_ID);
133 	h = hpet_readl(HPET_PERIOD);
134 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136 	l = hpet_readl(HPET_CFG);
137 	h = hpet_readl(HPET_STATUS);
138 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139 	l = hpet_readl(HPET_COUNTER);
140 	h = hpet_readl(HPET_COUNTER+4);
141 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142 
143 	for (i = 0; i < timers; i++) {
144 		l = hpet_readl(HPET_Tn_CFG(i));
145 		h = hpet_readl(HPET_Tn_CFG(i)+4);
146 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147 		       i, l, h);
148 		l = hpet_readl(HPET_Tn_CMP(i));
149 		h = hpet_readl(HPET_Tn_CMP(i)+4);
150 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151 		       i, l, h);
152 		l = hpet_readl(HPET_Tn_ROUTE(i));
153 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155 		       i, l, h);
156 	}
157 }
158 
159 #define hpet_print_config()					\
160 do {								\
161 	if (hpet_verbose)					\
162 		_hpet_print_config(__FUNCTION__, __LINE__);	\
163 } while (0)
164 
165 /*
166  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167  * timer 0 and timer 1 in case of RTC emulation.
168  */
169 #ifdef CONFIG_HPET
170 
171 static void hpet_reserve_msi_timers(struct hpet_data *hd);
172 
173 static void hpet_reserve_platform_timers(unsigned int id)
174 {
175 	struct hpet __iomem *hpet = hpet_virt_address;
176 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177 	unsigned int nrtimers, i;
178 	struct hpet_data hd;
179 
180 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181 
182 	memset(&hd, 0, sizeof(hd));
183 	hd.hd_phys_address	= hpet_address;
184 	hd.hd_address		= hpet;
185 	hd.hd_nirqs		= nrtimers;
186 	hpet_reserve_timer(&hd, 0);
187 
188 #ifdef CONFIG_HPET_EMULATE_RTC
189 	hpet_reserve_timer(&hd, 1);
190 #endif
191 
192 	/*
193 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
195 	 * don't bother configuring *any* comparator interrupts.
196 	 */
197 	hd.hd_irq[0] = HPET_LEGACY_8254;
198 	hd.hd_irq[1] = HPET_LEGACY_RTC;
199 
200 	for (i = 2; i < nrtimers; timer++, i++) {
201 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
202 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
203 	}
204 
205 	hpet_reserve_msi_timers(&hd);
206 
207 	hpet_alloc(&hd);
208 
209 }
210 #else
211 static void hpet_reserve_platform_timers(unsigned int id) { }
212 #endif
213 
214 /*
215  * Common hpet info
216  */
217 static unsigned long hpet_period;
218 
219 static void hpet_legacy_set_mode(enum clock_event_mode mode,
220 			  struct clock_event_device *evt);
221 static int hpet_legacy_next_event(unsigned long delta,
222 			   struct clock_event_device *evt);
223 
224 /*
225  * The hpet clock event device
226  */
227 static struct clock_event_device hpet_clockevent = {
228 	.name		= "hpet",
229 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
230 	.set_mode	= hpet_legacy_set_mode,
231 	.set_next_event = hpet_legacy_next_event,
232 	.shift		= 32,
233 	.irq		= 0,
234 	.rating		= 50,
235 };
236 
237 static void hpet_stop_counter(void)
238 {
239 	unsigned long cfg = hpet_readl(HPET_CFG);
240 	cfg &= ~HPET_CFG_ENABLE;
241 	hpet_writel(cfg, HPET_CFG);
242 }
243 
244 static void hpet_reset_counter(void)
245 {
246 	hpet_writel(0, HPET_COUNTER);
247 	hpet_writel(0, HPET_COUNTER + 4);
248 }
249 
250 static void hpet_start_counter(void)
251 {
252 	unsigned int cfg = hpet_readl(HPET_CFG);
253 	cfg |= HPET_CFG_ENABLE;
254 	hpet_writel(cfg, HPET_CFG);
255 }
256 
257 static void hpet_restart_counter(void)
258 {
259 	hpet_stop_counter();
260 	hpet_reset_counter();
261 	hpet_start_counter();
262 }
263 
264 static void hpet_resume_device(void)
265 {
266 	force_hpet_resume();
267 }
268 
269 static void hpet_resume_counter(struct clocksource *cs)
270 {
271 	hpet_resume_device();
272 	hpet_restart_counter();
273 }
274 
275 static void hpet_enable_legacy_int(void)
276 {
277 	unsigned int cfg = hpet_readl(HPET_CFG);
278 
279 	cfg |= HPET_CFG_LEGACY;
280 	hpet_writel(cfg, HPET_CFG);
281 	hpet_legacy_int_enabled = 1;
282 }
283 
284 static void hpet_legacy_clockevent_register(void)
285 {
286 	/* Start HPET legacy interrupts */
287 	hpet_enable_legacy_int();
288 
289 	/*
290 	 * The mult factor is defined as (include/linux/clockchips.h)
291 	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292 	 * hpet_period is in units of femtoseconds (per cycle), so
293 	 *  mult/2^shift = cyc/ns = 10^6/hpet_period
294 	 *  mult = (10^6 * 2^shift)/hpet_period
295 	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
296 	 */
297 	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298 				      hpet_period, hpet_clockevent.shift);
299 	/* Calculate the min / max delta */
300 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301 							   &hpet_clockevent);
302 	/* 5 usec minimum reprogramming delta. */
303 	hpet_clockevent.min_delta_ns = 5000;
304 
305 	/*
306 	 * Start hpet with the boot cpu mask and make it
307 	 * global after the IO_APIC has been initialized.
308 	 */
309 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
310 	clockevents_register_device(&hpet_clockevent);
311 	global_clock_event = &hpet_clockevent;
312 	printk(KERN_DEBUG "hpet clockevent registered\n");
313 }
314 
315 static int hpet_setup_msi_irq(unsigned int irq);
316 
317 static void hpet_set_mode(enum clock_event_mode mode,
318 			  struct clock_event_device *evt, int timer)
319 {
320 	unsigned int cfg, cmp, now;
321 	uint64_t delta;
322 
323 	switch (mode) {
324 	case CLOCK_EVT_MODE_PERIODIC:
325 		hpet_stop_counter();
326 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327 		delta >>= evt->shift;
328 		now = hpet_readl(HPET_COUNTER);
329 		cmp = now + (unsigned int) delta;
330 		cfg = hpet_readl(HPET_Tn_CFG(timer));
331 		/* Make sure we use edge triggered interrupts */
332 		cfg &= ~HPET_TN_LEVEL;
333 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334 		       HPET_TN_SETVAL | HPET_TN_32BIT;
335 		hpet_writel(cfg, HPET_Tn_CFG(timer));
336 		hpet_writel(cmp, HPET_Tn_CMP(timer));
337 		udelay(1);
338 		/*
339 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341 		 * bit is automatically cleared after the first write.
342 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343 		 * Publication # 24674)
344 		 */
345 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
346 		hpet_start_counter();
347 		hpet_print_config();
348 		break;
349 
350 	case CLOCK_EVT_MODE_ONESHOT:
351 		cfg = hpet_readl(HPET_Tn_CFG(timer));
352 		cfg &= ~HPET_TN_PERIODIC;
353 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
354 		hpet_writel(cfg, HPET_Tn_CFG(timer));
355 		break;
356 
357 	case CLOCK_EVT_MODE_UNUSED:
358 	case CLOCK_EVT_MODE_SHUTDOWN:
359 		cfg = hpet_readl(HPET_Tn_CFG(timer));
360 		cfg &= ~HPET_TN_ENABLE;
361 		hpet_writel(cfg, HPET_Tn_CFG(timer));
362 		break;
363 
364 	case CLOCK_EVT_MODE_RESUME:
365 		if (timer == 0) {
366 			hpet_enable_legacy_int();
367 		} else {
368 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369 			hpet_setup_msi_irq(hdev->irq);
370 			disable_irq(hdev->irq);
371 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
372 			enable_irq(hdev->irq);
373 		}
374 		hpet_print_config();
375 		break;
376 	}
377 }
378 
379 static int hpet_next_event(unsigned long delta,
380 			   struct clock_event_device *evt, int timer)
381 {
382 	u32 cnt;
383 	s32 res;
384 
385 	cnt = hpet_readl(HPET_COUNTER);
386 	cnt += (u32) delta;
387 	hpet_writel(cnt, HPET_Tn_CMP(timer));
388 
389 	/*
390 	 * HPETs are a complete disaster. The compare register is
391 	 * based on a equal comparison and neither provides a less
392 	 * than or equal functionality (which would require to take
393 	 * the wraparound into account) nor a simple count down event
394 	 * mode. Further the write to the comparator register is
395 	 * delayed internally up to two HPET clock cycles in certain
396 	 * chipsets (ATI, ICH9,10). We worked around that by reading
397 	 * back the compare register, but that required another
398 	 * workaround for ICH9,10 chips where the first readout after
399 	 * write can return the old stale value. We already have a
400 	 * minimum delta of 5us enforced, but a NMI or SMI hitting
401 	 * between the counter readout and the comparator write can
402 	 * move us behind that point easily. Now instead of reading
403 	 * the compare register back several times, we make the ETIME
404 	 * decision based on the following: Return ETIME if the
405 	 * counter value after the write is less than 8 HPET cycles
406 	 * away from the event or if the counter is already ahead of
407 	 * the event.
408 	 */
409 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
410 
411 	return res < 8 ? -ETIME : 0;
412 }
413 
414 static void hpet_legacy_set_mode(enum clock_event_mode mode,
415 			struct clock_event_device *evt)
416 {
417 	hpet_set_mode(mode, evt, 0);
418 }
419 
420 static int hpet_legacy_next_event(unsigned long delta,
421 			struct clock_event_device *evt)
422 {
423 	return hpet_next_event(delta, evt, 0);
424 }
425 
426 /*
427  * HPET MSI Support
428  */
429 #ifdef CONFIG_PCI_MSI
430 
431 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
432 static struct hpet_dev	*hpet_devs;
433 
434 void hpet_msi_unmask(struct irq_data *data)
435 {
436 	struct hpet_dev *hdev = data->handler_data;
437 	unsigned int cfg;
438 
439 	/* unmask it */
440 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
441 	cfg |= HPET_TN_FSB;
442 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
443 }
444 
445 void hpet_msi_mask(struct irq_data *data)
446 {
447 	struct hpet_dev *hdev = data->handler_data;
448 	unsigned int cfg;
449 
450 	/* mask it */
451 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
452 	cfg &= ~HPET_TN_FSB;
453 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
454 }
455 
456 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
457 {
458 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
459 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
460 }
461 
462 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
463 {
464 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
465 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
466 	msg->address_hi = 0;
467 }
468 
469 static void hpet_msi_set_mode(enum clock_event_mode mode,
470 				struct clock_event_device *evt)
471 {
472 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473 	hpet_set_mode(mode, evt, hdev->num);
474 }
475 
476 static int hpet_msi_next_event(unsigned long delta,
477 				struct clock_event_device *evt)
478 {
479 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
480 	return hpet_next_event(delta, evt, hdev->num);
481 }
482 
483 static int hpet_setup_msi_irq(unsigned int irq)
484 {
485 	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
486 		destroy_irq(irq);
487 		return -EINVAL;
488 	}
489 	return 0;
490 }
491 
492 static int hpet_assign_irq(struct hpet_dev *dev)
493 {
494 	unsigned int irq;
495 
496 	irq = create_irq_nr(0, -1);
497 	if (!irq)
498 		return -EINVAL;
499 
500 	set_irq_data(irq, dev);
501 
502 	if (hpet_setup_msi_irq(irq))
503 		return -EINVAL;
504 
505 	dev->irq = irq;
506 	return 0;
507 }
508 
509 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
510 {
511 	struct hpet_dev *dev = (struct hpet_dev *)data;
512 	struct clock_event_device *hevt = &dev->evt;
513 
514 	if (!hevt->event_handler) {
515 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
516 				dev->num);
517 		return IRQ_HANDLED;
518 	}
519 
520 	hevt->event_handler(hevt);
521 	return IRQ_HANDLED;
522 }
523 
524 static int hpet_setup_irq(struct hpet_dev *dev)
525 {
526 
527 	if (request_irq(dev->irq, hpet_interrupt_handler,
528 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
529 			dev->name, dev))
530 		return -1;
531 
532 	disable_irq(dev->irq);
533 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
534 	enable_irq(dev->irq);
535 
536 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
537 			 dev->name, dev->irq);
538 
539 	return 0;
540 }
541 
542 /* This should be called in specific @cpu */
543 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
544 {
545 	struct clock_event_device *evt = &hdev->evt;
546 	uint64_t hpet_freq;
547 
548 	WARN_ON(cpu != smp_processor_id());
549 	if (!(hdev->flags & HPET_DEV_VALID))
550 		return;
551 
552 	if (hpet_setup_msi_irq(hdev->irq))
553 		return;
554 
555 	hdev->cpu = cpu;
556 	per_cpu(cpu_hpet_dev, cpu) = hdev;
557 	evt->name = hdev->name;
558 	hpet_setup_irq(hdev);
559 	evt->irq = hdev->irq;
560 
561 	evt->rating = 110;
562 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
563 	if (hdev->flags & HPET_DEV_PERI_CAP)
564 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
565 
566 	evt->set_mode = hpet_msi_set_mode;
567 	evt->set_next_event = hpet_msi_next_event;
568 	evt->shift = 32;
569 
570 	/*
571 	 * The period is a femto seconds value. We need to calculate the
572 	 * scaled math multiplication factor for nanosecond to hpet tick
573 	 * conversion.
574 	 */
575 	hpet_freq = FSEC_PER_SEC;
576 	do_div(hpet_freq, hpet_period);
577 	evt->mult = div_sc((unsigned long) hpet_freq,
578 				      NSEC_PER_SEC, evt->shift);
579 	/* Calculate the max delta */
580 	evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
581 	/* 5 usec minimum reprogramming delta. */
582 	evt->min_delta_ns = 5000;
583 
584 	evt->cpumask = cpumask_of(hdev->cpu);
585 	clockevents_register_device(evt);
586 }
587 
588 #ifdef CONFIG_HPET
589 /* Reserve at least one timer for userspace (/dev/hpet) */
590 #define RESERVE_TIMERS 1
591 #else
592 #define RESERVE_TIMERS 0
593 #endif
594 
595 static void hpet_msi_capability_lookup(unsigned int start_timer)
596 {
597 	unsigned int id;
598 	unsigned int num_timers;
599 	unsigned int num_timers_used = 0;
600 	int i;
601 
602 	if (hpet_msi_disable)
603 		return;
604 
605 	if (boot_cpu_has(X86_FEATURE_ARAT))
606 		return;
607 	id = hpet_readl(HPET_ID);
608 
609 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
610 	num_timers++; /* Value read out starts from 0 */
611 	hpet_print_config();
612 
613 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
614 	if (!hpet_devs)
615 		return;
616 
617 	hpet_num_timers = num_timers;
618 
619 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
620 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
621 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
622 
623 		/* Only consider HPET timer with MSI support */
624 		if (!(cfg & HPET_TN_FSB_CAP))
625 			continue;
626 
627 		hdev->flags = 0;
628 		if (cfg & HPET_TN_PERIODIC_CAP)
629 			hdev->flags |= HPET_DEV_PERI_CAP;
630 		hdev->num = i;
631 
632 		sprintf(hdev->name, "hpet%d", i);
633 		if (hpet_assign_irq(hdev))
634 			continue;
635 
636 		hdev->flags |= HPET_DEV_FSB_CAP;
637 		hdev->flags |= HPET_DEV_VALID;
638 		num_timers_used++;
639 		if (num_timers_used == num_possible_cpus())
640 			break;
641 	}
642 
643 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
644 		num_timers, num_timers_used);
645 }
646 
647 #ifdef CONFIG_HPET
648 static void hpet_reserve_msi_timers(struct hpet_data *hd)
649 {
650 	int i;
651 
652 	if (!hpet_devs)
653 		return;
654 
655 	for (i = 0; i < hpet_num_timers; i++) {
656 		struct hpet_dev *hdev = &hpet_devs[i];
657 
658 		if (!(hdev->flags & HPET_DEV_VALID))
659 			continue;
660 
661 		hd->hd_irq[hdev->num] = hdev->irq;
662 		hpet_reserve_timer(hd, hdev->num);
663 	}
664 }
665 #endif
666 
667 static struct hpet_dev *hpet_get_unused_timer(void)
668 {
669 	int i;
670 
671 	if (!hpet_devs)
672 		return NULL;
673 
674 	for (i = 0; i < hpet_num_timers; i++) {
675 		struct hpet_dev *hdev = &hpet_devs[i];
676 
677 		if (!(hdev->flags & HPET_DEV_VALID))
678 			continue;
679 		if (test_and_set_bit(HPET_DEV_USED_BIT,
680 			(unsigned long *)&hdev->flags))
681 			continue;
682 		return hdev;
683 	}
684 	return NULL;
685 }
686 
687 struct hpet_work_struct {
688 	struct delayed_work work;
689 	struct completion complete;
690 };
691 
692 static void hpet_work(struct work_struct *w)
693 {
694 	struct hpet_dev *hdev;
695 	int cpu = smp_processor_id();
696 	struct hpet_work_struct *hpet_work;
697 
698 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
699 
700 	hdev = hpet_get_unused_timer();
701 	if (hdev)
702 		init_one_hpet_msi_clockevent(hdev, cpu);
703 
704 	complete(&hpet_work->complete);
705 }
706 
707 static int hpet_cpuhp_notify(struct notifier_block *n,
708 		unsigned long action, void *hcpu)
709 {
710 	unsigned long cpu = (unsigned long)hcpu;
711 	struct hpet_work_struct work;
712 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
713 
714 	switch (action & 0xf) {
715 	case CPU_ONLINE:
716 		INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
717 		init_completion(&work.complete);
718 		/* FIXME: add schedule_work_on() */
719 		schedule_delayed_work_on(cpu, &work.work, 0);
720 		wait_for_completion(&work.complete);
721 		destroy_timer_on_stack(&work.work.timer);
722 		break;
723 	case CPU_DEAD:
724 		if (hdev) {
725 			free_irq(hdev->irq, hdev);
726 			hdev->flags &= ~HPET_DEV_USED;
727 			per_cpu(cpu_hpet_dev, cpu) = NULL;
728 		}
729 		break;
730 	}
731 	return NOTIFY_OK;
732 }
733 #else
734 
735 static int hpet_setup_msi_irq(unsigned int irq)
736 {
737 	return 0;
738 }
739 static void hpet_msi_capability_lookup(unsigned int start_timer)
740 {
741 	return;
742 }
743 
744 #ifdef CONFIG_HPET
745 static void hpet_reserve_msi_timers(struct hpet_data *hd)
746 {
747 	return;
748 }
749 #endif
750 
751 static int hpet_cpuhp_notify(struct notifier_block *n,
752 		unsigned long action, void *hcpu)
753 {
754 	return NOTIFY_OK;
755 }
756 
757 #endif
758 
759 /*
760  * Clock source related code
761  */
762 static cycle_t read_hpet(struct clocksource *cs)
763 {
764 	return (cycle_t)hpet_readl(HPET_COUNTER);
765 }
766 
767 #ifdef CONFIG_X86_64
768 static cycle_t __vsyscall_fn vread_hpet(void)
769 {
770 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
771 }
772 #endif
773 
774 static struct clocksource clocksource_hpet = {
775 	.name		= "hpet",
776 	.rating		= 250,
777 	.read		= read_hpet,
778 	.mask		= HPET_MASK,
779 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
780 	.resume		= hpet_resume_counter,
781 #ifdef CONFIG_X86_64
782 	.vread		= vread_hpet,
783 #endif
784 };
785 
786 static int hpet_clocksource_register(void)
787 {
788 	u64 start, now;
789 	u64 hpet_freq;
790 	cycle_t t1;
791 
792 	/* Start the counter */
793 	hpet_restart_counter();
794 
795 	/* Verify whether hpet counter works */
796 	t1 = hpet_readl(HPET_COUNTER);
797 	rdtscll(start);
798 
799 	/*
800 	 * We don't know the TSC frequency yet, but waiting for
801 	 * 200000 TSC cycles is safe:
802 	 * 4 GHz == 50us
803 	 * 1 GHz == 200us
804 	 */
805 	do {
806 		rep_nop();
807 		rdtscll(now);
808 	} while ((now - start) < 200000UL);
809 
810 	if (t1 == hpet_readl(HPET_COUNTER)) {
811 		printk(KERN_WARNING
812 		       "HPET counter not counting. HPET disabled\n");
813 		return -ENODEV;
814 	}
815 
816 	/*
817 	 * The definition of mult is (include/linux/clocksource.h)
818 	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
819 	 * so we first need to convert hpet_period to ns/cyc units:
820 	 *  mult/2^shift = ns/cyc = hpet_period/10^6
821 	 *  mult = (hpet_period * 2^shift)/10^6
822 	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC
823 	 */
824 
825 	/* Need to convert hpet_period (fsec/cyc) to cyc/sec:
826 	 *
827 	 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
828 	 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
829 	 */
830 	hpet_freq = FSEC_PER_SEC;
831 	do_div(hpet_freq, hpet_period);
832 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
833 
834 	return 0;
835 }
836 
837 /**
838  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
839  */
840 int __init hpet_enable(void)
841 {
842 	unsigned int id;
843 	int i;
844 
845 	if (!is_hpet_capable())
846 		return 0;
847 
848 	hpet_set_mapping();
849 
850 	/*
851 	 * Read the period and check for a sane value:
852 	 */
853 	hpet_period = hpet_readl(HPET_PERIOD);
854 
855 	/*
856 	 * AMD SB700 based systems with spread spectrum enabled use a
857 	 * SMM based HPET emulation to provide proper frequency
858 	 * setting. The SMM code is initialized with the first HPET
859 	 * register access and takes some time to complete. During
860 	 * this time the config register reads 0xffffffff. We check
861 	 * for max. 1000 loops whether the config register reads a non
862 	 * 0xffffffff value to make sure that HPET is up and running
863 	 * before we go further. A counting loop is safe, as the HPET
864 	 * access takes thousands of CPU cycles. On non SB700 based
865 	 * machines this check is only done once and has no side
866 	 * effects.
867 	 */
868 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
869 		if (i == 1000) {
870 			printk(KERN_WARNING
871 			       "HPET config register value = 0xFFFFFFFF. "
872 			       "Disabling HPET\n");
873 			goto out_nohpet;
874 		}
875 	}
876 
877 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
878 		goto out_nohpet;
879 
880 	/*
881 	 * Read the HPET ID register to retrieve the IRQ routing
882 	 * information and the number of channels
883 	 */
884 	id = hpet_readl(HPET_ID);
885 	hpet_print_config();
886 
887 #ifdef CONFIG_HPET_EMULATE_RTC
888 	/*
889 	 * The legacy routing mode needs at least two channels, tick timer
890 	 * and the rtc emulation channel.
891 	 */
892 	if (!(id & HPET_ID_NUMBER))
893 		goto out_nohpet;
894 #endif
895 
896 	if (hpet_clocksource_register())
897 		goto out_nohpet;
898 
899 	if (id & HPET_ID_LEGSUP) {
900 		hpet_legacy_clockevent_register();
901 		return 1;
902 	}
903 	return 0;
904 
905 out_nohpet:
906 	hpet_clear_mapping();
907 	hpet_address = 0;
908 	return 0;
909 }
910 
911 /*
912  * Needs to be late, as the reserve_timer code calls kalloc !
913  *
914  * Not a problem on i386 as hpet_enable is called from late_time_init,
915  * but on x86_64 it is necessary !
916  */
917 static __init int hpet_late_init(void)
918 {
919 	int cpu;
920 
921 	if (boot_hpet_disable)
922 		return -ENODEV;
923 
924 	if (!hpet_address) {
925 		if (!force_hpet_address)
926 			return -ENODEV;
927 
928 		hpet_address = force_hpet_address;
929 		hpet_enable();
930 	}
931 
932 	if (!hpet_virt_address)
933 		return -ENODEV;
934 
935 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
936 		hpet_msi_capability_lookup(2);
937 	else
938 		hpet_msi_capability_lookup(0);
939 
940 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
941 	hpet_print_config();
942 
943 	if (hpet_msi_disable)
944 		return 0;
945 
946 	if (boot_cpu_has(X86_FEATURE_ARAT))
947 		return 0;
948 
949 	for_each_online_cpu(cpu) {
950 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
951 	}
952 
953 	/* This notifier should be called after workqueue is ready */
954 	hotcpu_notifier(hpet_cpuhp_notify, -20);
955 
956 	return 0;
957 }
958 fs_initcall(hpet_late_init);
959 
960 void hpet_disable(void)
961 {
962 	if (is_hpet_capable() && hpet_virt_address) {
963 		unsigned int cfg = hpet_readl(HPET_CFG);
964 
965 		if (hpet_legacy_int_enabled) {
966 			cfg &= ~HPET_CFG_LEGACY;
967 			hpet_legacy_int_enabled = 0;
968 		}
969 		cfg &= ~HPET_CFG_ENABLE;
970 		hpet_writel(cfg, HPET_CFG);
971 	}
972 }
973 
974 #ifdef CONFIG_HPET_EMULATE_RTC
975 
976 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
977  * is enabled, we support RTC interrupt functionality in software.
978  * RTC has 3 kinds of interrupts:
979  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
980  *    is updated
981  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
982  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
983  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
984  * (1) and (2) above are implemented using polling at a frequency of
985  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
986  * overhead. (DEFAULT_RTC_INT_FREQ)
987  * For (3), we use interrupts at 64Hz or user specified periodic
988  * frequency, whichever is higher.
989  */
990 #include <linux/mc146818rtc.h>
991 #include <linux/rtc.h>
992 #include <asm/rtc.h>
993 
994 #define DEFAULT_RTC_INT_FREQ	64
995 #define DEFAULT_RTC_SHIFT	6
996 #define RTC_NUM_INTS		1
997 
998 static unsigned long hpet_rtc_flags;
999 static int hpet_prev_update_sec;
1000 static struct rtc_time hpet_alarm_time;
1001 static unsigned long hpet_pie_count;
1002 static u32 hpet_t1_cmp;
1003 static u32 hpet_default_delta;
1004 static u32 hpet_pie_delta;
1005 static unsigned long hpet_pie_limit;
1006 
1007 static rtc_irq_handler irq_handler;
1008 
1009 /*
1010  * Check that the hpet counter c1 is ahead of the c2
1011  */
1012 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1013 {
1014 	return (s32)(c2 - c1) < 0;
1015 }
1016 
1017 /*
1018  * Registers a IRQ handler.
1019  */
1020 int hpet_register_irq_handler(rtc_irq_handler handler)
1021 {
1022 	if (!is_hpet_enabled())
1023 		return -ENODEV;
1024 	if (irq_handler)
1025 		return -EBUSY;
1026 
1027 	irq_handler = handler;
1028 
1029 	return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1032 
1033 /*
1034  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1035  * and does cleanup.
1036  */
1037 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1038 {
1039 	if (!is_hpet_enabled())
1040 		return;
1041 
1042 	irq_handler = NULL;
1043 	hpet_rtc_flags = 0;
1044 }
1045 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1046 
1047 /*
1048  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1049  * is not supported by all HPET implementations for timer 1.
1050  *
1051  * hpet_rtc_timer_init() is called when the rtc is initialized.
1052  */
1053 int hpet_rtc_timer_init(void)
1054 {
1055 	unsigned int cfg, cnt, delta;
1056 	unsigned long flags;
1057 
1058 	if (!is_hpet_enabled())
1059 		return 0;
1060 
1061 	if (!hpet_default_delta) {
1062 		uint64_t clc;
1063 
1064 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1065 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1066 		hpet_default_delta = clc;
1067 	}
1068 
1069 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1070 		delta = hpet_default_delta;
1071 	else
1072 		delta = hpet_pie_delta;
1073 
1074 	local_irq_save(flags);
1075 
1076 	cnt = delta + hpet_readl(HPET_COUNTER);
1077 	hpet_writel(cnt, HPET_T1_CMP);
1078 	hpet_t1_cmp = cnt;
1079 
1080 	cfg = hpet_readl(HPET_T1_CFG);
1081 	cfg &= ~HPET_TN_PERIODIC;
1082 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1083 	hpet_writel(cfg, HPET_T1_CFG);
1084 
1085 	local_irq_restore(flags);
1086 
1087 	return 1;
1088 }
1089 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1090 
1091 /*
1092  * The functions below are called from rtc driver.
1093  * Return 0 if HPET is not being used.
1094  * Otherwise do the necessary changes and return 1.
1095  */
1096 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1097 {
1098 	if (!is_hpet_enabled())
1099 		return 0;
1100 
1101 	hpet_rtc_flags &= ~bit_mask;
1102 	return 1;
1103 }
1104 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1105 
1106 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1107 {
1108 	unsigned long oldbits = hpet_rtc_flags;
1109 
1110 	if (!is_hpet_enabled())
1111 		return 0;
1112 
1113 	hpet_rtc_flags |= bit_mask;
1114 
1115 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1116 		hpet_prev_update_sec = -1;
1117 
1118 	if (!oldbits)
1119 		hpet_rtc_timer_init();
1120 
1121 	return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1124 
1125 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1126 			unsigned char sec)
1127 {
1128 	if (!is_hpet_enabled())
1129 		return 0;
1130 
1131 	hpet_alarm_time.tm_hour = hrs;
1132 	hpet_alarm_time.tm_min = min;
1133 	hpet_alarm_time.tm_sec = sec;
1134 
1135 	return 1;
1136 }
1137 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1138 
1139 int hpet_set_periodic_freq(unsigned long freq)
1140 {
1141 	uint64_t clc;
1142 
1143 	if (!is_hpet_enabled())
1144 		return 0;
1145 
1146 	if (freq <= DEFAULT_RTC_INT_FREQ)
1147 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1148 	else {
1149 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1150 		do_div(clc, freq);
1151 		clc >>= hpet_clockevent.shift;
1152 		hpet_pie_delta = clc;
1153 		hpet_pie_limit = 0;
1154 	}
1155 	return 1;
1156 }
1157 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1158 
1159 int hpet_rtc_dropped_irq(void)
1160 {
1161 	return is_hpet_enabled();
1162 }
1163 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1164 
1165 static void hpet_rtc_timer_reinit(void)
1166 {
1167 	unsigned int cfg, delta;
1168 	int lost_ints = -1;
1169 
1170 	if (unlikely(!hpet_rtc_flags)) {
1171 		cfg = hpet_readl(HPET_T1_CFG);
1172 		cfg &= ~HPET_TN_ENABLE;
1173 		hpet_writel(cfg, HPET_T1_CFG);
1174 		return;
1175 	}
1176 
1177 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1178 		delta = hpet_default_delta;
1179 	else
1180 		delta = hpet_pie_delta;
1181 
1182 	/*
1183 	 * Increment the comparator value until we are ahead of the
1184 	 * current count.
1185 	 */
1186 	do {
1187 		hpet_t1_cmp += delta;
1188 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1189 		lost_ints++;
1190 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1191 
1192 	if (lost_ints) {
1193 		if (hpet_rtc_flags & RTC_PIE)
1194 			hpet_pie_count += lost_ints;
1195 		if (printk_ratelimit())
1196 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1197 				lost_ints);
1198 	}
1199 }
1200 
1201 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1202 {
1203 	struct rtc_time curr_time;
1204 	unsigned long rtc_int_flag = 0;
1205 
1206 	hpet_rtc_timer_reinit();
1207 	memset(&curr_time, 0, sizeof(struct rtc_time));
1208 
1209 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1210 		get_rtc_time(&curr_time);
1211 
1212 	if (hpet_rtc_flags & RTC_UIE &&
1213 	    curr_time.tm_sec != hpet_prev_update_sec) {
1214 		if (hpet_prev_update_sec >= 0)
1215 			rtc_int_flag = RTC_UF;
1216 		hpet_prev_update_sec = curr_time.tm_sec;
1217 	}
1218 
1219 	if (hpet_rtc_flags & RTC_PIE &&
1220 	    ++hpet_pie_count >= hpet_pie_limit) {
1221 		rtc_int_flag |= RTC_PF;
1222 		hpet_pie_count = 0;
1223 	}
1224 
1225 	if (hpet_rtc_flags & RTC_AIE &&
1226 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1227 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1228 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1229 			rtc_int_flag |= RTC_AF;
1230 
1231 	if (rtc_int_flag) {
1232 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1233 		if (irq_handler)
1234 			irq_handler(rtc_int_flag, dev_id);
1235 	}
1236 	return IRQ_HANDLED;
1237 }
1238 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1239 #endif
1240