xref: /linux/arch/x86/kernel/ftrace.c (revision 47902f3611b392209e2a412bf7ec02dca95e666d)
1 /*
2  * Code for replacing ftrace calls with jumps.
3  *
4  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
5  *
6  * Thanks goes to Ingo Molnar, for suggesting the idea.
7  * Mathieu Desnoyers, for suggesting postponing the modifications.
8  * Arjan van de Ven, for keeping me straight, and explaining to me
9  * the dangers of modifying code on the run.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/spinlock.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <linux/ftrace.h>
18 #include <linux/percpu.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 
23 #include <trace/syscall.h>
24 
25 #include <asm/cacheflush.h>
26 #include <asm/ftrace.h>
27 #include <asm/nops.h>
28 #include <asm/nmi.h>
29 
30 
31 #ifdef CONFIG_DYNAMIC_FTRACE
32 
33 /*
34  * modifying_code is set to notify NMIs that they need to use
35  * memory barriers when entering or exiting. But we don't want
36  * to burden NMIs with unnecessary memory barriers when code
37  * modification is not being done (which is most of the time).
38  *
39  * A mutex is already held when ftrace_arch_code_modify_prepare
40  * and post_process are called. No locks need to be taken here.
41  *
42  * Stop machine will make sure currently running NMIs are done
43  * and new NMIs will see the updated variable before we need
44  * to worry about NMIs doing memory barriers.
45  */
46 static int modifying_code __read_mostly;
47 static DEFINE_PER_CPU(int, save_modifying_code);
48 
49 int ftrace_arch_code_modify_prepare(void)
50 {
51 	set_kernel_text_rw();
52 	modifying_code = 1;
53 	return 0;
54 }
55 
56 int ftrace_arch_code_modify_post_process(void)
57 {
58 	modifying_code = 0;
59 	set_kernel_text_ro();
60 	return 0;
61 }
62 
63 union ftrace_code_union {
64 	char code[MCOUNT_INSN_SIZE];
65 	struct {
66 		char e8;
67 		int offset;
68 	} __attribute__((packed));
69 };
70 
71 static int ftrace_calc_offset(long ip, long addr)
72 {
73 	return (int)(addr - ip);
74 }
75 
76 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
77 {
78 	static union ftrace_code_union calc;
79 
80 	calc.e8		= 0xe8;
81 	calc.offset	= ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
82 
83 	/*
84 	 * No locking needed, this must be called via kstop_machine
85 	 * which in essence is like running on a uniprocessor machine.
86 	 */
87 	return calc.code;
88 }
89 
90 /*
91  * Modifying code must take extra care. On an SMP machine, if
92  * the code being modified is also being executed on another CPU
93  * that CPU will have undefined results and possibly take a GPF.
94  * We use kstop_machine to stop other CPUS from exectuing code.
95  * But this does not stop NMIs from happening. We still need
96  * to protect against that. We separate out the modification of
97  * the code to take care of this.
98  *
99  * Two buffers are added: An IP buffer and a "code" buffer.
100  *
101  * 1) Put the instruction pointer into the IP buffer
102  *    and the new code into the "code" buffer.
103  * 2) Wait for any running NMIs to finish and set a flag that says
104  *    we are modifying code, it is done in an atomic operation.
105  * 3) Write the code
106  * 4) clear the flag.
107  * 5) Wait for any running NMIs to finish.
108  *
109  * If an NMI is executed, the first thing it does is to call
110  * "ftrace_nmi_enter". This will check if the flag is set to write
111  * and if it is, it will write what is in the IP and "code" buffers.
112  *
113  * The trick is, it does not matter if everyone is writing the same
114  * content to the code location. Also, if a CPU is executing code
115  * it is OK to write to that code location if the contents being written
116  * are the same as what exists.
117  */
118 
119 #define MOD_CODE_WRITE_FLAG (1 << 31)	/* set when NMI should do the write */
120 static atomic_t nmi_running = ATOMIC_INIT(0);
121 static int mod_code_status;		/* holds return value of text write */
122 static void *mod_code_ip;		/* holds the IP to write to */
123 static void *mod_code_newcode;		/* holds the text to write to the IP */
124 
125 static unsigned nmi_wait_count;
126 static atomic_t nmi_update_count = ATOMIC_INIT(0);
127 
128 int ftrace_arch_read_dyn_info(char *buf, int size)
129 {
130 	int r;
131 
132 	r = snprintf(buf, size, "%u %u",
133 		     nmi_wait_count,
134 		     atomic_read(&nmi_update_count));
135 	return r;
136 }
137 
138 static void clear_mod_flag(void)
139 {
140 	int old = atomic_read(&nmi_running);
141 
142 	for (;;) {
143 		int new = old & ~MOD_CODE_WRITE_FLAG;
144 
145 		if (old == new)
146 			break;
147 
148 		old = atomic_cmpxchg(&nmi_running, old, new);
149 	}
150 }
151 
152 static void ftrace_mod_code(void)
153 {
154 	/*
155 	 * Yes, more than one CPU process can be writing to mod_code_status.
156 	 *    (and the code itself)
157 	 * But if one were to fail, then they all should, and if one were
158 	 * to succeed, then they all should.
159 	 */
160 	mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
161 					     MCOUNT_INSN_SIZE);
162 
163 	/* if we fail, then kill any new writers */
164 	if (mod_code_status)
165 		clear_mod_flag();
166 }
167 
168 void ftrace_nmi_enter(void)
169 {
170 	__get_cpu_var(save_modifying_code) = modifying_code;
171 
172 	if (!__get_cpu_var(save_modifying_code))
173 		return;
174 
175 	if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
176 		smp_rmb();
177 		ftrace_mod_code();
178 		atomic_inc(&nmi_update_count);
179 	}
180 	/* Must have previous changes seen before executions */
181 	smp_mb();
182 }
183 
184 void ftrace_nmi_exit(void)
185 {
186 	if (!__get_cpu_var(save_modifying_code))
187 		return;
188 
189 	/* Finish all executions before clearing nmi_running */
190 	smp_mb();
191 	atomic_dec(&nmi_running);
192 }
193 
194 static void wait_for_nmi_and_set_mod_flag(void)
195 {
196 	if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
197 		return;
198 
199 	do {
200 		cpu_relax();
201 	} while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
202 
203 	nmi_wait_count++;
204 }
205 
206 static void wait_for_nmi(void)
207 {
208 	if (!atomic_read(&nmi_running))
209 		return;
210 
211 	do {
212 		cpu_relax();
213 	} while (atomic_read(&nmi_running));
214 
215 	nmi_wait_count++;
216 }
217 
218 static inline int
219 within(unsigned long addr, unsigned long start, unsigned long end)
220 {
221 	return addr >= start && addr < end;
222 }
223 
224 static int
225 do_ftrace_mod_code(unsigned long ip, void *new_code)
226 {
227 	/*
228 	 * On x86_64, kernel text mappings are mapped read-only with
229 	 * CONFIG_DEBUG_RODATA. So we use the kernel identity mapping instead
230 	 * of the kernel text mapping to modify the kernel text.
231 	 *
232 	 * For 32bit kernels, these mappings are same and we can use
233 	 * kernel identity mapping to modify code.
234 	 */
235 	if (within(ip, (unsigned long)_text, (unsigned long)_etext))
236 		ip = (unsigned long)__va(__pa(ip));
237 
238 	mod_code_ip = (void *)ip;
239 	mod_code_newcode = new_code;
240 
241 	/* The buffers need to be visible before we let NMIs write them */
242 	smp_mb();
243 
244 	wait_for_nmi_and_set_mod_flag();
245 
246 	/* Make sure all running NMIs have finished before we write the code */
247 	smp_mb();
248 
249 	ftrace_mod_code();
250 
251 	/* Make sure the write happens before clearing the bit */
252 	smp_mb();
253 
254 	clear_mod_flag();
255 	wait_for_nmi();
256 
257 	return mod_code_status;
258 }
259 
260 
261 
262 
263 static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
264 
265 static unsigned char *ftrace_nop_replace(void)
266 {
267 	return ftrace_nop;
268 }
269 
270 static int
271 ftrace_modify_code(unsigned long ip, unsigned char *old_code,
272 		   unsigned char *new_code)
273 {
274 	unsigned char replaced[MCOUNT_INSN_SIZE];
275 
276 	/*
277 	 * Note: Due to modules and __init, code can
278 	 *  disappear and change, we need to protect against faulting
279 	 *  as well as code changing. We do this by using the
280 	 *  probe_kernel_* functions.
281 	 *
282 	 * No real locking needed, this code is run through
283 	 * kstop_machine, or before SMP starts.
284 	 */
285 
286 	/* read the text we want to modify */
287 	if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
288 		return -EFAULT;
289 
290 	/* Make sure it is what we expect it to be */
291 	if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
292 		return -EINVAL;
293 
294 	/* replace the text with the new text */
295 	if (do_ftrace_mod_code(ip, new_code))
296 		return -EPERM;
297 
298 	sync_core();
299 
300 	return 0;
301 }
302 
303 int ftrace_make_nop(struct module *mod,
304 		    struct dyn_ftrace *rec, unsigned long addr)
305 {
306 	unsigned char *new, *old;
307 	unsigned long ip = rec->ip;
308 
309 	old = ftrace_call_replace(ip, addr);
310 	new = ftrace_nop_replace();
311 
312 	return ftrace_modify_code(rec->ip, old, new);
313 }
314 
315 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
316 {
317 	unsigned char *new, *old;
318 	unsigned long ip = rec->ip;
319 
320 	old = ftrace_nop_replace();
321 	new = ftrace_call_replace(ip, addr);
322 
323 	return ftrace_modify_code(rec->ip, old, new);
324 }
325 
326 int ftrace_update_ftrace_func(ftrace_func_t func)
327 {
328 	unsigned long ip = (unsigned long)(&ftrace_call);
329 	unsigned char old[MCOUNT_INSN_SIZE], *new;
330 	int ret;
331 
332 	memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
333 	new = ftrace_call_replace(ip, (unsigned long)func);
334 	ret = ftrace_modify_code(ip, old, new);
335 
336 	return ret;
337 }
338 
339 int __init ftrace_dyn_arch_init(void *data)
340 {
341 	extern const unsigned char ftrace_test_p6nop[];
342 	extern const unsigned char ftrace_test_nop5[];
343 	extern const unsigned char ftrace_test_jmp[];
344 	int faulted = 0;
345 
346 	/*
347 	 * There is no good nop for all x86 archs.
348 	 * We will default to using the P6_NOP5, but first we
349 	 * will test to make sure that the nop will actually
350 	 * work on this CPU. If it faults, we will then
351 	 * go to a lesser efficient 5 byte nop. If that fails
352 	 * we then just use a jmp as our nop. This isn't the most
353 	 * efficient nop, but we can not use a multi part nop
354 	 * since we would then risk being preempted in the middle
355 	 * of that nop, and if we enabled tracing then, it might
356 	 * cause a system crash.
357 	 *
358 	 * TODO: check the cpuid to determine the best nop.
359 	 */
360 	asm volatile (
361 		"ftrace_test_jmp:"
362 		"jmp ftrace_test_p6nop\n"
363 		"nop\n"
364 		"nop\n"
365 		"nop\n"  /* 2 byte jmp + 3 bytes */
366 		"ftrace_test_p6nop:"
367 		P6_NOP5
368 		"jmp 1f\n"
369 		"ftrace_test_nop5:"
370 		".byte 0x66,0x66,0x66,0x66,0x90\n"
371 		"1:"
372 		".section .fixup, \"ax\"\n"
373 		"2:	movl $1, %0\n"
374 		"	jmp ftrace_test_nop5\n"
375 		"3:	movl $2, %0\n"
376 		"	jmp 1b\n"
377 		".previous\n"
378 		_ASM_EXTABLE(ftrace_test_p6nop, 2b)
379 		_ASM_EXTABLE(ftrace_test_nop5, 3b)
380 		: "=r"(faulted) : "0" (faulted));
381 
382 	switch (faulted) {
383 	case 0:
384 		pr_info("converting mcount calls to 0f 1f 44 00 00\n");
385 		memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
386 		break;
387 	case 1:
388 		pr_info("converting mcount calls to 66 66 66 66 90\n");
389 		memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
390 		break;
391 	case 2:
392 		pr_info("converting mcount calls to jmp . + 5\n");
393 		memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
394 		break;
395 	}
396 
397 	/* The return code is retured via data */
398 	*(unsigned long *)data = 0;
399 
400 	return 0;
401 }
402 #endif
403 
404 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
405 
406 #ifdef CONFIG_DYNAMIC_FTRACE
407 extern void ftrace_graph_call(void);
408 
409 static int ftrace_mod_jmp(unsigned long ip,
410 			  int old_offset, int new_offset)
411 {
412 	unsigned char code[MCOUNT_INSN_SIZE];
413 
414 	if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
415 		return -EFAULT;
416 
417 	if (code[0] != 0xe9 || old_offset != *(int *)(&code[1]))
418 		return -EINVAL;
419 
420 	*(int *)(&code[1]) = new_offset;
421 
422 	if (do_ftrace_mod_code(ip, &code))
423 		return -EPERM;
424 
425 	return 0;
426 }
427 
428 int ftrace_enable_ftrace_graph_caller(void)
429 {
430 	unsigned long ip = (unsigned long)(&ftrace_graph_call);
431 	int old_offset, new_offset;
432 
433 	old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
434 	new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
435 
436 	return ftrace_mod_jmp(ip, old_offset, new_offset);
437 }
438 
439 int ftrace_disable_ftrace_graph_caller(void)
440 {
441 	unsigned long ip = (unsigned long)(&ftrace_graph_call);
442 	int old_offset, new_offset;
443 
444 	old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
445 	new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
446 
447 	return ftrace_mod_jmp(ip, old_offset, new_offset);
448 }
449 
450 #endif /* !CONFIG_DYNAMIC_FTRACE */
451 
452 /*
453  * Hook the return address and push it in the stack of return addrs
454  * in current thread info.
455  */
456 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr,
457 			   unsigned long frame_pointer)
458 {
459 	unsigned long old;
460 	int faulted;
461 	struct ftrace_graph_ent trace;
462 	unsigned long return_hooker = (unsigned long)
463 				&return_to_handler;
464 
465 	if (unlikely(atomic_read(&current->tracing_graph_pause)))
466 		return;
467 
468 	/*
469 	 * Protect against fault, even if it shouldn't
470 	 * happen. This tool is too much intrusive to
471 	 * ignore such a protection.
472 	 */
473 	asm volatile(
474 		"1: " _ASM_MOV " (%[parent]), %[old]\n"
475 		"2: " _ASM_MOV " %[return_hooker], (%[parent])\n"
476 		"   movl $0, %[faulted]\n"
477 		"3:\n"
478 
479 		".section .fixup, \"ax\"\n"
480 		"4: movl $1, %[faulted]\n"
481 		"   jmp 3b\n"
482 		".previous\n"
483 
484 		_ASM_EXTABLE(1b, 4b)
485 		_ASM_EXTABLE(2b, 4b)
486 
487 		: [old] "=&r" (old), [faulted] "=r" (faulted)
488 		: [parent] "r" (parent), [return_hooker] "r" (return_hooker)
489 		: "memory"
490 	);
491 
492 	if (unlikely(faulted)) {
493 		ftrace_graph_stop();
494 		WARN_ON(1);
495 		return;
496 	}
497 
498 	if (ftrace_push_return_trace(old, self_addr, &trace.depth,
499 		    frame_pointer) == -EBUSY) {
500 		*parent = old;
501 		return;
502 	}
503 
504 	trace.func = self_addr;
505 
506 	/* Only trace if the calling function expects to */
507 	if (!ftrace_graph_entry(&trace)) {
508 		current->curr_ret_stack--;
509 		*parent = old;
510 	}
511 }
512 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
513