1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xsave/xrstor support. 4 * 5 * Author: Suresh Siddha <suresh.b.siddha@intel.com> 6 */ 7 #include <linux/bitops.h> 8 #include <linux/compat.h> 9 #include <linux/cpu.h> 10 #include <linux/mman.h> 11 #include <linux/nospec.h> 12 #include <linux/pkeys.h> 13 #include <linux/seq_file.h> 14 #include <linux/proc_fs.h> 15 #include <linux/vmalloc.h> 16 17 #include <asm/fpu/api.h> 18 #include <asm/fpu/regset.h> 19 #include <asm/fpu/signal.h> 20 #include <asm/fpu/xcr.h> 21 22 #include <asm/tlbflush.h> 23 #include <asm/prctl.h> 24 #include <asm/elf.h> 25 26 #include "context.h" 27 #include "internal.h" 28 #include "legacy.h" 29 #include "xstate.h" 30 31 #define for_each_extended_xfeature(bit, mask) \ 32 (bit) = FIRST_EXTENDED_XFEATURE; \ 33 for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask)) 34 35 /* 36 * Although we spell it out in here, the Processor Trace 37 * xfeature is completely unused. We use other mechanisms 38 * to save/restore PT state in Linux. 39 */ 40 static const char *xfeature_names[] = 41 { 42 "x87 floating point registers" , 43 "SSE registers" , 44 "AVX registers" , 45 "MPX bounds registers" , 46 "MPX CSR" , 47 "AVX-512 opmask" , 48 "AVX-512 Hi256" , 49 "AVX-512 ZMM_Hi256" , 50 "Processor Trace (unused)" , 51 "Protection Keys User registers", 52 "PASID state", 53 "unknown xstate feature" , 54 "unknown xstate feature" , 55 "unknown xstate feature" , 56 "unknown xstate feature" , 57 "unknown xstate feature" , 58 "unknown xstate feature" , 59 "AMX Tile config" , 60 "AMX Tile data" , 61 "unknown xstate feature" , 62 }; 63 64 static unsigned short xsave_cpuid_features[] __initdata = { 65 [XFEATURE_FP] = X86_FEATURE_FPU, 66 [XFEATURE_SSE] = X86_FEATURE_XMM, 67 [XFEATURE_YMM] = X86_FEATURE_AVX, 68 [XFEATURE_BNDREGS] = X86_FEATURE_MPX, 69 [XFEATURE_BNDCSR] = X86_FEATURE_MPX, 70 [XFEATURE_OPMASK] = X86_FEATURE_AVX512F, 71 [XFEATURE_ZMM_Hi256] = X86_FEATURE_AVX512F, 72 [XFEATURE_Hi16_ZMM] = X86_FEATURE_AVX512F, 73 [XFEATURE_PT_UNIMPLEMENTED_SO_FAR] = X86_FEATURE_INTEL_PT, 74 [XFEATURE_PKRU] = X86_FEATURE_PKU, 75 [XFEATURE_PASID] = X86_FEATURE_ENQCMD, 76 [XFEATURE_XTILE_CFG] = X86_FEATURE_AMX_TILE, 77 [XFEATURE_XTILE_DATA] = X86_FEATURE_AMX_TILE, 78 }; 79 80 static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init = 81 { [ 0 ... XFEATURE_MAX - 1] = -1}; 82 static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init = 83 { [ 0 ... XFEATURE_MAX - 1] = -1}; 84 static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init; 85 86 #define XSTATE_FLAG_SUPERVISOR BIT(0) 87 #define XSTATE_FLAG_ALIGNED64 BIT(1) 88 89 /* 90 * Return whether the system supports a given xfeature. 91 * 92 * Also return the name of the (most advanced) feature that the caller requested: 93 */ 94 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name) 95 { 96 u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features; 97 98 if (unlikely(feature_name)) { 99 long xfeature_idx, max_idx; 100 u64 xfeatures_print; 101 /* 102 * So we use FLS here to be able to print the most advanced 103 * feature that was requested but is missing. So if a driver 104 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the 105 * missing AVX feature - this is the most informative message 106 * to users: 107 */ 108 if (xfeatures_missing) 109 xfeatures_print = xfeatures_missing; 110 else 111 xfeatures_print = xfeatures_needed; 112 113 xfeature_idx = fls64(xfeatures_print)-1; 114 max_idx = ARRAY_SIZE(xfeature_names)-1; 115 xfeature_idx = min(xfeature_idx, max_idx); 116 117 *feature_name = xfeature_names[xfeature_idx]; 118 } 119 120 if (xfeatures_missing) 121 return 0; 122 123 return 1; 124 } 125 EXPORT_SYMBOL_GPL(cpu_has_xfeatures); 126 127 static bool xfeature_is_aligned64(int xfeature_nr) 128 { 129 return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64; 130 } 131 132 static bool xfeature_is_supervisor(int xfeature_nr) 133 { 134 return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR; 135 } 136 137 static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature) 138 { 139 unsigned int offs, i; 140 141 /* 142 * Non-compacted format and legacy features use the cached fixed 143 * offsets. 144 */ 145 if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) || 146 xfeature <= XFEATURE_SSE) 147 return xstate_offsets[xfeature]; 148 149 /* 150 * Compacted format offsets depend on the actual content of the 151 * compacted xsave area which is determined by the xcomp_bv header 152 * field. 153 */ 154 offs = FXSAVE_SIZE + XSAVE_HDR_SIZE; 155 for_each_extended_xfeature(i, xcomp_bv) { 156 if (xfeature_is_aligned64(i)) 157 offs = ALIGN(offs, 64); 158 if (i == xfeature) 159 break; 160 offs += xstate_sizes[i]; 161 } 162 return offs; 163 } 164 165 /* 166 * Enable the extended processor state save/restore feature. 167 * Called once per CPU onlining. 168 */ 169 void fpu__init_cpu_xstate(void) 170 { 171 if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features) 172 return; 173 174 cr4_set_bits(X86_CR4_OSXSAVE); 175 176 /* 177 * Must happen after CR4 setup and before xsetbv() to allow KVM 178 * lazy passthrough. Write independent of the dynamic state static 179 * key as that does not work on the boot CPU. This also ensures 180 * that any stale state is wiped out from XFD. 181 */ 182 if (cpu_feature_enabled(X86_FEATURE_XFD)) 183 wrmsrl(MSR_IA32_XFD, init_fpstate.xfd); 184 185 /* 186 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features 187 * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user 188 * states can be set here. 189 */ 190 xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features); 191 192 /* 193 * MSR_IA32_XSS sets supervisor states managed by XSAVES. 194 */ 195 if (boot_cpu_has(X86_FEATURE_XSAVES)) { 196 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | 197 xfeatures_mask_independent()); 198 } 199 } 200 201 static bool xfeature_enabled(enum xfeature xfeature) 202 { 203 return fpu_kernel_cfg.max_features & BIT_ULL(xfeature); 204 } 205 206 /* 207 * Record the offsets and sizes of various xstates contained 208 * in the XSAVE state memory layout. 209 */ 210 static void __init setup_xstate_cache(void) 211 { 212 u32 eax, ebx, ecx, edx, i; 213 /* start at the beginning of the "extended state" */ 214 unsigned int last_good_offset = offsetof(struct xregs_state, 215 extended_state_area); 216 /* 217 * The FP xstates and SSE xstates are legacy states. They are always 218 * in the fixed offsets in the xsave area in either compacted form 219 * or standard form. 220 */ 221 xstate_offsets[XFEATURE_FP] = 0; 222 xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state, 223 xmm_space); 224 225 xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP]; 226 xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state, 227 xmm_space); 228 229 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { 230 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 231 232 xstate_sizes[i] = eax; 233 xstate_flags[i] = ecx; 234 235 /* 236 * If an xfeature is supervisor state, the offset in EBX is 237 * invalid, leave it to -1. 238 */ 239 if (xfeature_is_supervisor(i)) 240 continue; 241 242 xstate_offsets[i] = ebx; 243 244 /* 245 * In our xstate size checks, we assume that the highest-numbered 246 * xstate feature has the highest offset in the buffer. Ensure 247 * it does. 248 */ 249 WARN_ONCE(last_good_offset > xstate_offsets[i], 250 "x86/fpu: misordered xstate at %d\n", last_good_offset); 251 252 last_good_offset = xstate_offsets[i]; 253 } 254 } 255 256 static void __init print_xstate_feature(u64 xstate_mask) 257 { 258 const char *feature_name; 259 260 if (cpu_has_xfeatures(xstate_mask, &feature_name)) 261 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name); 262 } 263 264 /* 265 * Print out all the supported xstate features: 266 */ 267 static void __init print_xstate_features(void) 268 { 269 print_xstate_feature(XFEATURE_MASK_FP); 270 print_xstate_feature(XFEATURE_MASK_SSE); 271 print_xstate_feature(XFEATURE_MASK_YMM); 272 print_xstate_feature(XFEATURE_MASK_BNDREGS); 273 print_xstate_feature(XFEATURE_MASK_BNDCSR); 274 print_xstate_feature(XFEATURE_MASK_OPMASK); 275 print_xstate_feature(XFEATURE_MASK_ZMM_Hi256); 276 print_xstate_feature(XFEATURE_MASK_Hi16_ZMM); 277 print_xstate_feature(XFEATURE_MASK_PKRU); 278 print_xstate_feature(XFEATURE_MASK_PASID); 279 print_xstate_feature(XFEATURE_MASK_XTILE_CFG); 280 print_xstate_feature(XFEATURE_MASK_XTILE_DATA); 281 } 282 283 /* 284 * This check is important because it is easy to get XSTATE_* 285 * confused with XSTATE_BIT_*. 286 */ 287 #define CHECK_XFEATURE(nr) do { \ 288 WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \ 289 WARN_ON(nr >= XFEATURE_MAX); \ 290 } while (0) 291 292 /* 293 * Print out xstate component offsets and sizes 294 */ 295 static void __init print_xstate_offset_size(void) 296 { 297 int i; 298 299 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { 300 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", 301 i, xfeature_get_offset(fpu_kernel_cfg.max_features, i), 302 i, xstate_sizes[i]); 303 } 304 } 305 306 /* 307 * This function is called only during boot time when x86 caps are not set 308 * up and alternative can not be used yet. 309 */ 310 static __init void os_xrstor_booting(struct xregs_state *xstate) 311 { 312 u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE; 313 u32 lmask = mask; 314 u32 hmask = mask >> 32; 315 int err; 316 317 if (cpu_feature_enabled(X86_FEATURE_XSAVES)) 318 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); 319 else 320 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); 321 322 /* 323 * We should never fault when copying from a kernel buffer, and the FPU 324 * state we set at boot time should be valid. 325 */ 326 WARN_ON_FPU(err); 327 } 328 329 /* 330 * All supported features have either init state all zeros or are 331 * handled in setup_init_fpu() individually. This is an explicit 332 * feature list and does not use XFEATURE_MASK*SUPPORTED to catch 333 * newly added supported features at build time and make people 334 * actually look at the init state for the new feature. 335 */ 336 #define XFEATURES_INIT_FPSTATE_HANDLED \ 337 (XFEATURE_MASK_FP | \ 338 XFEATURE_MASK_SSE | \ 339 XFEATURE_MASK_YMM | \ 340 XFEATURE_MASK_OPMASK | \ 341 XFEATURE_MASK_ZMM_Hi256 | \ 342 XFEATURE_MASK_Hi16_ZMM | \ 343 XFEATURE_MASK_PKRU | \ 344 XFEATURE_MASK_BNDREGS | \ 345 XFEATURE_MASK_BNDCSR | \ 346 XFEATURE_MASK_PASID | \ 347 XFEATURE_MASK_XTILE) 348 349 /* 350 * setup the xstate image representing the init state 351 */ 352 static void __init setup_init_fpu_buf(void) 353 { 354 BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED | 355 XFEATURE_MASK_SUPERVISOR_SUPPORTED) != 356 XFEATURES_INIT_FPSTATE_HANDLED); 357 358 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 359 return; 360 361 print_xstate_features(); 362 363 xstate_init_xcomp_bv(&init_fpstate.regs.xsave, init_fpstate.xfeatures); 364 365 /* 366 * Init all the features state with header.xfeatures being 0x0 367 */ 368 os_xrstor_booting(&init_fpstate.regs.xsave); 369 370 /* 371 * All components are now in init state. Read the state back so 372 * that init_fpstate contains all non-zero init state. This only 373 * works with XSAVE, but not with XSAVEOPT and XSAVEC/S because 374 * those use the init optimization which skips writing data for 375 * components in init state. 376 * 377 * XSAVE could be used, but that would require to reshuffle the 378 * data when XSAVEC/S is available because XSAVEC/S uses xstate 379 * compaction. But doing so is a pointless exercise because most 380 * components have an all zeros init state except for the legacy 381 * ones (FP and SSE). Those can be saved with FXSAVE into the 382 * legacy area. Adding new features requires to ensure that init 383 * state is all zeroes or if not to add the necessary handling 384 * here. 385 */ 386 fxsave(&init_fpstate.regs.fxsave); 387 } 388 389 int xfeature_size(int xfeature_nr) 390 { 391 u32 eax, ebx, ecx, edx; 392 393 CHECK_XFEATURE(xfeature_nr); 394 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 395 return eax; 396 } 397 398 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ 399 static int validate_user_xstate_header(const struct xstate_header *hdr, 400 struct fpstate *fpstate) 401 { 402 /* No unknown or supervisor features may be set */ 403 if (hdr->xfeatures & ~fpstate->user_xfeatures) 404 return -EINVAL; 405 406 /* Userspace must use the uncompacted format */ 407 if (hdr->xcomp_bv) 408 return -EINVAL; 409 410 /* 411 * If 'reserved' is shrunken to add a new field, make sure to validate 412 * that new field here! 413 */ 414 BUILD_BUG_ON(sizeof(hdr->reserved) != 48); 415 416 /* No reserved bits may be set */ 417 if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved))) 418 return -EINVAL; 419 420 return 0; 421 } 422 423 static void __init __xstate_dump_leaves(void) 424 { 425 int i; 426 u32 eax, ebx, ecx, edx; 427 static int should_dump = 1; 428 429 if (!should_dump) 430 return; 431 should_dump = 0; 432 /* 433 * Dump out a few leaves past the ones that we support 434 * just in case there are some goodies up there 435 */ 436 for (i = 0; i < XFEATURE_MAX + 10; i++) { 437 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 438 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n", 439 XSTATE_CPUID, i, eax, ebx, ecx, edx); 440 } 441 } 442 443 #define XSTATE_WARN_ON(x, fmt, ...) do { \ 444 if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) { \ 445 __xstate_dump_leaves(); \ 446 } \ 447 } while (0) 448 449 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \ 450 if ((nr == nr_macro) && \ 451 WARN_ONCE(sz != sizeof(__struct), \ 452 "%s: struct is %zu bytes, cpu state %d bytes\n", \ 453 __stringify(nr_macro), sizeof(__struct), sz)) { \ 454 __xstate_dump_leaves(); \ 455 } \ 456 } while (0) 457 458 /** 459 * check_xtile_data_against_struct - Check tile data state size. 460 * 461 * Calculate the state size by multiplying the single tile size which is 462 * recorded in a C struct, and the number of tiles that the CPU informs. 463 * Compare the provided size with the calculation. 464 * 465 * @size: The tile data state size 466 * 467 * Returns: 0 on success, -EINVAL on mismatch. 468 */ 469 static int __init check_xtile_data_against_struct(int size) 470 { 471 u32 max_palid, palid, state_size; 472 u32 eax, ebx, ecx, edx; 473 u16 max_tile; 474 475 /* 476 * Check the maximum palette id: 477 * eax: the highest numbered palette subleaf. 478 */ 479 cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx); 480 481 /* 482 * Cross-check each tile size and find the maximum number of 483 * supported tiles. 484 */ 485 for (palid = 1, max_tile = 0; palid <= max_palid; palid++) { 486 u16 tile_size, max; 487 488 /* 489 * Check the tile size info: 490 * eax[31:16]: bytes per title 491 * ebx[31:16]: the max names (or max number of tiles) 492 */ 493 cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx); 494 tile_size = eax >> 16; 495 max = ebx >> 16; 496 497 if (tile_size != sizeof(struct xtile_data)) { 498 pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n", 499 __stringify(XFEATURE_XTILE_DATA), 500 sizeof(struct xtile_data), tile_size); 501 __xstate_dump_leaves(); 502 return -EINVAL; 503 } 504 505 if (max > max_tile) 506 max_tile = max; 507 } 508 509 state_size = sizeof(struct xtile_data) * max_tile; 510 if (size != state_size) { 511 pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n", 512 __stringify(XFEATURE_XTILE_DATA), state_size, size); 513 __xstate_dump_leaves(); 514 return -EINVAL; 515 } 516 return 0; 517 } 518 519 /* 520 * We have a C struct for each 'xstate'. We need to ensure 521 * that our software representation matches what the CPU 522 * tells us about the state's size. 523 */ 524 static bool __init check_xstate_against_struct(int nr) 525 { 526 /* 527 * Ask the CPU for the size of the state. 528 */ 529 int sz = xfeature_size(nr); 530 /* 531 * Match each CPU state with the corresponding software 532 * structure. 533 */ 534 XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct); 535 XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state); 536 XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state); 537 XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state); 538 XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state); 539 XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state); 540 XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state); 541 XCHECK_SZ(sz, nr, XFEATURE_PASID, struct ia32_pasid_state); 542 XCHECK_SZ(sz, nr, XFEATURE_XTILE_CFG, struct xtile_cfg); 543 544 /* The tile data size varies between implementations. */ 545 if (nr == XFEATURE_XTILE_DATA) 546 check_xtile_data_against_struct(sz); 547 548 /* 549 * Make *SURE* to add any feature numbers in below if 550 * there are "holes" in the xsave state component 551 * numbers. 552 */ 553 if ((nr < XFEATURE_YMM) || 554 (nr >= XFEATURE_MAX) || 555 (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) || 556 ((nr >= XFEATURE_RSRVD_COMP_11) && (nr <= XFEATURE_RSRVD_COMP_16))) { 557 XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr); 558 return false; 559 } 560 return true; 561 } 562 563 static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted) 564 { 565 unsigned int topmost = fls64(xfeatures) - 1; 566 unsigned int offset = xstate_offsets[topmost]; 567 568 if (topmost <= XFEATURE_SSE) 569 return sizeof(struct xregs_state); 570 571 if (compacted) 572 offset = xfeature_get_offset(xfeatures, topmost); 573 return offset + xstate_sizes[topmost]; 574 } 575 576 /* 577 * This essentially double-checks what the cpu told us about 578 * how large the XSAVE buffer needs to be. We are recalculating 579 * it to be safe. 580 * 581 * Independent XSAVE features allocate their own buffers and are not 582 * covered by these checks. Only the size of the buffer for task->fpu 583 * is checked here. 584 */ 585 static bool __init paranoid_xstate_size_valid(unsigned int kernel_size) 586 { 587 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); 588 bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES); 589 unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE; 590 int i; 591 592 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { 593 if (!check_xstate_against_struct(i)) 594 return false; 595 /* 596 * Supervisor state components can be managed only by 597 * XSAVES. 598 */ 599 if (!xsaves && xfeature_is_supervisor(i)) { 600 XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i); 601 return false; 602 } 603 } 604 size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted); 605 XSTATE_WARN_ON(size != kernel_size, 606 "size %u != kernel_size %u\n", size, kernel_size); 607 return size == kernel_size; 608 } 609 610 /* 611 * Get total size of enabled xstates in XCR0 | IA32_XSS. 612 * 613 * Note the SDM's wording here. "sub-function 0" only enumerates 614 * the size of the *user* states. If we use it to size a buffer 615 * that we use 'XSAVES' on, we could potentially overflow the 616 * buffer because 'XSAVES' saves system states too. 617 * 618 * This also takes compaction into account. So this works for 619 * XSAVEC as well. 620 */ 621 static unsigned int __init get_compacted_size(void) 622 { 623 unsigned int eax, ebx, ecx, edx; 624 /* 625 * - CPUID function 0DH, sub-function 1: 626 * EBX enumerates the size (in bytes) required by 627 * the XSAVES instruction for an XSAVE area 628 * containing all the state components 629 * corresponding to bits currently set in 630 * XCR0 | IA32_XSS. 631 * 632 * When XSAVES is not available but XSAVEC is (virt), then there 633 * are no supervisor states, but XSAVEC still uses compacted 634 * format. 635 */ 636 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 637 return ebx; 638 } 639 640 /* 641 * Get the total size of the enabled xstates without the independent supervisor 642 * features. 643 */ 644 static unsigned int __init get_xsave_compacted_size(void) 645 { 646 u64 mask = xfeatures_mask_independent(); 647 unsigned int size; 648 649 if (!mask) 650 return get_compacted_size(); 651 652 /* Disable independent features. */ 653 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()); 654 655 /* 656 * Ask the hardware what size is required of the buffer. 657 * This is the size required for the task->fpu buffer. 658 */ 659 size = get_compacted_size(); 660 661 /* Re-enable independent features so XSAVES will work on them again. */ 662 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask); 663 664 return size; 665 } 666 667 static unsigned int __init get_xsave_size_user(void) 668 { 669 unsigned int eax, ebx, ecx, edx; 670 /* 671 * - CPUID function 0DH, sub-function 0: 672 * EBX enumerates the size (in bytes) required by 673 * the XSAVE instruction for an XSAVE area 674 * containing all the *user* state components 675 * corresponding to bits currently set in XCR0. 676 */ 677 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 678 return ebx; 679 } 680 681 static int __init init_xstate_size(void) 682 { 683 /* Recompute the context size for enabled features: */ 684 unsigned int user_size, kernel_size, kernel_default_size; 685 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); 686 687 /* Uncompacted user space size */ 688 user_size = get_xsave_size_user(); 689 690 /* 691 * XSAVES kernel size includes supervisor states and uses compacted 692 * format. XSAVEC uses compacted format, but does not save 693 * supervisor states. 694 * 695 * XSAVE[OPT] do not support supervisor states so kernel and user 696 * size is identical. 697 */ 698 if (compacted) 699 kernel_size = get_xsave_compacted_size(); 700 else 701 kernel_size = user_size; 702 703 kernel_default_size = 704 xstate_calculate_size(fpu_kernel_cfg.default_features, compacted); 705 706 if (!paranoid_xstate_size_valid(kernel_size)) 707 return -EINVAL; 708 709 fpu_kernel_cfg.max_size = kernel_size; 710 fpu_user_cfg.max_size = user_size; 711 712 fpu_kernel_cfg.default_size = kernel_default_size; 713 fpu_user_cfg.default_size = 714 xstate_calculate_size(fpu_user_cfg.default_features, false); 715 716 return 0; 717 } 718 719 /* 720 * We enabled the XSAVE hardware, but something went wrong and 721 * we can not use it. Disable it. 722 */ 723 static void __init fpu__init_disable_system_xstate(unsigned int legacy_size) 724 { 725 fpu_kernel_cfg.max_features = 0; 726 cr4_clear_bits(X86_CR4_OSXSAVE); 727 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 728 729 /* Restore the legacy size.*/ 730 fpu_kernel_cfg.max_size = legacy_size; 731 fpu_kernel_cfg.default_size = legacy_size; 732 fpu_user_cfg.max_size = legacy_size; 733 fpu_user_cfg.default_size = legacy_size; 734 735 /* 736 * Prevent enabling the static branch which enables writes to the 737 * XFD MSR. 738 */ 739 init_fpstate.xfd = 0; 740 741 fpstate_reset(¤t->thread.fpu); 742 } 743 744 /* 745 * Enable and initialize the xsave feature. 746 * Called once per system bootup. 747 */ 748 void __init fpu__init_system_xstate(unsigned int legacy_size) 749 { 750 unsigned int eax, ebx, ecx, edx; 751 u64 xfeatures; 752 int err; 753 int i; 754 755 if (!boot_cpu_has(X86_FEATURE_FPU)) { 756 pr_info("x86/fpu: No FPU detected\n"); 757 return; 758 } 759 760 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 761 pr_info("x86/fpu: x87 FPU will use %s\n", 762 boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE"); 763 return; 764 } 765 766 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) { 767 WARN_ON_FPU(1); 768 return; 769 } 770 771 /* 772 * Find user xstates supported by the processor. 773 */ 774 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 775 fpu_kernel_cfg.max_features = eax + ((u64)edx << 32); 776 777 /* 778 * Find supervisor xstates supported by the processor. 779 */ 780 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 781 fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32); 782 783 if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { 784 /* 785 * This indicates that something really unexpected happened 786 * with the enumeration. Disable XSAVE and try to continue 787 * booting without it. This is too early to BUG(). 788 */ 789 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", 790 fpu_kernel_cfg.max_features); 791 goto out_disable; 792 } 793 794 /* 795 * Clear XSAVE features that are disabled in the normal CPUID. 796 */ 797 for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) { 798 unsigned short cid = xsave_cpuid_features[i]; 799 800 /* Careful: X86_FEATURE_FPU is 0! */ 801 if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid)) 802 fpu_kernel_cfg.max_features &= ~BIT_ULL(i); 803 } 804 805 if (!cpu_feature_enabled(X86_FEATURE_XFD)) 806 fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC; 807 808 if (!cpu_feature_enabled(X86_FEATURE_XSAVES)) 809 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED; 810 else 811 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED | 812 XFEATURE_MASK_SUPERVISOR_SUPPORTED; 813 814 fpu_user_cfg.max_features = fpu_kernel_cfg.max_features; 815 fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED; 816 817 /* Clean out dynamic features from default */ 818 fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features; 819 fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC; 820 821 fpu_user_cfg.default_features = fpu_user_cfg.max_features; 822 fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC; 823 824 /* Store it for paranoia check at the end */ 825 xfeatures = fpu_kernel_cfg.max_features; 826 827 /* 828 * Initialize the default XFD state in initfp_state and enable the 829 * dynamic sizing mechanism if dynamic states are available. The 830 * static key cannot be enabled here because this runs before 831 * jump_label_init(). This is delayed to an initcall. 832 */ 833 init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC; 834 835 /* Set up compaction feature bit */ 836 if (cpu_feature_enabled(X86_FEATURE_XSAVEC) || 837 cpu_feature_enabled(X86_FEATURE_XSAVES)) 838 setup_force_cpu_cap(X86_FEATURE_XCOMPACTED); 839 840 /* Enable xstate instructions to be able to continue with initialization: */ 841 fpu__init_cpu_xstate(); 842 843 /* Cache size, offset and flags for initialization */ 844 setup_xstate_cache(); 845 846 err = init_xstate_size(); 847 if (err) 848 goto out_disable; 849 850 /* Reset the state for the current task */ 851 fpstate_reset(¤t->thread.fpu); 852 853 /* 854 * Update info used for ptrace frames; use standard-format size and no 855 * supervisor xstates: 856 */ 857 update_regset_xstate_info(fpu_user_cfg.max_size, 858 fpu_user_cfg.max_features); 859 860 /* 861 * init_fpstate excludes dynamic states as they are large but init 862 * state is zero. 863 */ 864 init_fpstate.size = fpu_kernel_cfg.default_size; 865 init_fpstate.xfeatures = fpu_kernel_cfg.default_features; 866 867 if (init_fpstate.size > sizeof(init_fpstate.regs)) { 868 pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n", 869 sizeof(init_fpstate.regs), init_fpstate.size); 870 goto out_disable; 871 } 872 873 setup_init_fpu_buf(); 874 875 /* 876 * Paranoia check whether something in the setup modified the 877 * xfeatures mask. 878 */ 879 if (xfeatures != fpu_kernel_cfg.max_features) { 880 pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n", 881 xfeatures, fpu_kernel_cfg.max_features); 882 goto out_disable; 883 } 884 885 /* 886 * CPU capabilities initialization runs before FPU init. So 887 * X86_FEATURE_OSXSAVE is not set. Now that XSAVE is completely 888 * functional, set the feature bit so depending code works. 889 */ 890 setup_force_cpu_cap(X86_FEATURE_OSXSAVE); 891 892 print_xstate_offset_size(); 893 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n", 894 fpu_kernel_cfg.max_features, 895 fpu_kernel_cfg.max_size, 896 boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard"); 897 return; 898 899 out_disable: 900 /* something went wrong, try to boot without any XSAVE support */ 901 fpu__init_disable_system_xstate(legacy_size); 902 } 903 904 /* 905 * Restore minimal FPU state after suspend: 906 */ 907 void fpu__resume_cpu(void) 908 { 909 /* 910 * Restore XCR0 on xsave capable CPUs: 911 */ 912 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) 913 xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features); 914 915 /* 916 * Restore IA32_XSS. The same CPUID bit enumerates support 917 * of XSAVES and MSR_IA32_XSS. 918 */ 919 if (cpu_feature_enabled(X86_FEATURE_XSAVES)) { 920 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | 921 xfeatures_mask_independent()); 922 } 923 924 if (fpu_state_size_dynamic()) 925 wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd); 926 } 927 928 /* 929 * Given an xstate feature nr, calculate where in the xsave 930 * buffer the state is. Callers should ensure that the buffer 931 * is valid. 932 */ 933 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 934 { 935 u64 xcomp_bv = xsave->header.xcomp_bv; 936 937 if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr))) 938 return NULL; 939 940 if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) { 941 if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr)))) 942 return NULL; 943 } 944 945 return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr); 946 } 947 948 /* 949 * Given the xsave area and a state inside, this function returns the 950 * address of the state. 951 * 952 * This is the API that is called to get xstate address in either 953 * standard format or compacted format of xsave area. 954 * 955 * Note that if there is no data for the field in the xsave buffer 956 * this will return NULL. 957 * 958 * Inputs: 959 * xstate: the thread's storage area for all FPU data 960 * xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, 961 * XFEATURE_SSE, etc...) 962 * Output: 963 * address of the state in the xsave area, or NULL if the 964 * field is not present in the xsave buffer. 965 */ 966 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 967 { 968 /* 969 * Do we even *have* xsave state? 970 */ 971 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 972 return NULL; 973 974 /* 975 * We should not ever be requesting features that we 976 * have not enabled. 977 */ 978 if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr))) 979 return NULL; 980 981 /* 982 * This assumes the last 'xsave*' instruction to 983 * have requested that 'xfeature_nr' be saved. 984 * If it did not, we might be seeing and old value 985 * of the field in the buffer. 986 * 987 * This can happen because the last 'xsave' did not 988 * request that this feature be saved (unlikely) 989 * or because the "init optimization" caused it 990 * to not be saved. 991 */ 992 if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr))) 993 return NULL; 994 995 return __raw_xsave_addr(xsave, xfeature_nr); 996 } 997 998 #ifdef CONFIG_ARCH_HAS_PKEYS 999 1000 /* 1001 * This will go out and modify PKRU register to set the access 1002 * rights for @pkey to @init_val. 1003 */ 1004 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, 1005 unsigned long init_val) 1006 { 1007 u32 old_pkru, new_pkru_bits = 0; 1008 int pkey_shift; 1009 1010 /* 1011 * This check implies XSAVE support. OSPKE only gets 1012 * set if we enable XSAVE and we enable PKU in XCR0. 1013 */ 1014 if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) 1015 return -EINVAL; 1016 1017 /* 1018 * This code should only be called with valid 'pkey' 1019 * values originating from in-kernel users. Complain 1020 * if a bad value is observed. 1021 */ 1022 if (WARN_ON_ONCE(pkey >= arch_max_pkey())) 1023 return -EINVAL; 1024 1025 /* Set the bits we need in PKRU: */ 1026 if (init_val & PKEY_DISABLE_ACCESS) 1027 new_pkru_bits |= PKRU_AD_BIT; 1028 if (init_val & PKEY_DISABLE_WRITE) 1029 new_pkru_bits |= PKRU_WD_BIT; 1030 1031 /* Shift the bits in to the correct place in PKRU for pkey: */ 1032 pkey_shift = pkey * PKRU_BITS_PER_PKEY; 1033 new_pkru_bits <<= pkey_shift; 1034 1035 /* Get old PKRU and mask off any old bits in place: */ 1036 old_pkru = read_pkru(); 1037 old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift); 1038 1039 /* Write old part along with new part: */ 1040 write_pkru(old_pkru | new_pkru_bits); 1041 1042 return 0; 1043 } 1044 #endif /* ! CONFIG_ARCH_HAS_PKEYS */ 1045 1046 static void copy_feature(bool from_xstate, struct membuf *to, void *xstate, 1047 void *init_xstate, unsigned int size) 1048 { 1049 membuf_write(to, from_xstate ? xstate : init_xstate, size); 1050 } 1051 1052 /** 1053 * __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer 1054 * @to: membuf descriptor 1055 * @fpstate: The fpstate buffer from which to copy 1056 * @pkru_val: The PKRU value to store in the PKRU component 1057 * @copy_mode: The requested copy mode 1058 * 1059 * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming 1060 * format, i.e. from the kernel internal hardware dependent storage format 1061 * to the requested @mode. UABI XSTATE is always uncompacted! 1062 * 1063 * It supports partial copy but @to.pos always starts from zero. 1064 */ 1065 void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate, 1066 u32 pkru_val, enum xstate_copy_mode copy_mode) 1067 { 1068 const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr); 1069 struct xregs_state *xinit = &init_fpstate.regs.xsave; 1070 struct xregs_state *xsave = &fpstate->regs.xsave; 1071 struct xstate_header header; 1072 unsigned int zerofrom; 1073 u64 mask; 1074 int i; 1075 1076 memset(&header, 0, sizeof(header)); 1077 header.xfeatures = xsave->header.xfeatures; 1078 1079 /* Mask out the feature bits depending on copy mode */ 1080 switch (copy_mode) { 1081 case XSTATE_COPY_FP: 1082 header.xfeatures &= XFEATURE_MASK_FP; 1083 break; 1084 1085 case XSTATE_COPY_FX: 1086 header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE; 1087 break; 1088 1089 case XSTATE_COPY_XSAVE: 1090 header.xfeatures &= fpstate->user_xfeatures; 1091 break; 1092 } 1093 1094 /* Copy FP state up to MXCSR */ 1095 copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387, 1096 &xinit->i387, off_mxcsr); 1097 1098 /* Copy MXCSR when SSE or YMM are set in the feature mask */ 1099 copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM), 1100 &to, &xsave->i387.mxcsr, &xinit->i387.mxcsr, 1101 MXCSR_AND_FLAGS_SIZE); 1102 1103 /* Copy the remaining FP state */ 1104 copy_feature(header.xfeatures & XFEATURE_MASK_FP, 1105 &to, &xsave->i387.st_space, &xinit->i387.st_space, 1106 sizeof(xsave->i387.st_space)); 1107 1108 /* Copy the SSE state - shared with YMM, but independently managed */ 1109 copy_feature(header.xfeatures & XFEATURE_MASK_SSE, 1110 &to, &xsave->i387.xmm_space, &xinit->i387.xmm_space, 1111 sizeof(xsave->i387.xmm_space)); 1112 1113 if (copy_mode != XSTATE_COPY_XSAVE) 1114 goto out; 1115 1116 /* Zero the padding area */ 1117 membuf_zero(&to, sizeof(xsave->i387.padding)); 1118 1119 /* Copy xsave->i387.sw_reserved */ 1120 membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved)); 1121 1122 /* Copy the user space relevant state of @xsave->header */ 1123 membuf_write(&to, &header, sizeof(header)); 1124 1125 zerofrom = offsetof(struct xregs_state, extended_state_area); 1126 1127 /* 1128 * This 'mask' indicates which states to copy from fpstate. 1129 * Those extended states that are not present in fpstate are 1130 * either disabled or initialized: 1131 * 1132 * In non-compacted format, disabled features still occupy 1133 * state space but there is no state to copy from in the 1134 * compacted init_fpstate. The gap tracking will zero these 1135 * states. 1136 * 1137 * The extended features have an all zeroes init state. Thus, 1138 * remove them from 'mask' to zero those features in the user 1139 * buffer instead of retrieving them from init_fpstate. 1140 */ 1141 mask = header.xfeatures; 1142 1143 for_each_extended_xfeature(i, mask) { 1144 /* 1145 * If there was a feature or alignment gap, zero the space 1146 * in the destination buffer. 1147 */ 1148 if (zerofrom < xstate_offsets[i]) 1149 membuf_zero(&to, xstate_offsets[i] - zerofrom); 1150 1151 if (i == XFEATURE_PKRU) { 1152 struct pkru_state pkru = {0}; 1153 /* 1154 * PKRU is not necessarily up to date in the 1155 * XSAVE buffer. Use the provided value. 1156 */ 1157 pkru.pkru = pkru_val; 1158 membuf_write(&to, &pkru, sizeof(pkru)); 1159 } else { 1160 membuf_write(&to, 1161 __raw_xsave_addr(xsave, i), 1162 xstate_sizes[i]); 1163 } 1164 /* 1165 * Keep track of the last copied state in the non-compacted 1166 * target buffer for gap zeroing. 1167 */ 1168 zerofrom = xstate_offsets[i] + xstate_sizes[i]; 1169 } 1170 1171 out: 1172 if (to.left) 1173 membuf_zero(&to, to.left); 1174 } 1175 1176 /** 1177 * copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer 1178 * @to: membuf descriptor 1179 * @tsk: The task from which to copy the saved xstate 1180 * @copy_mode: The requested copy mode 1181 * 1182 * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming 1183 * format, i.e. from the kernel internal hardware dependent storage format 1184 * to the requested @mode. UABI XSTATE is always uncompacted! 1185 * 1186 * It supports partial copy but @to.pos always starts from zero. 1187 */ 1188 void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk, 1189 enum xstate_copy_mode copy_mode) 1190 { 1191 __copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate, 1192 tsk->thread.pkru, copy_mode); 1193 } 1194 1195 static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size, 1196 const void *kbuf, const void __user *ubuf) 1197 { 1198 if (kbuf) { 1199 memcpy(dst, kbuf + offset, size); 1200 } else { 1201 if (copy_from_user(dst, ubuf + offset, size)) 1202 return -EFAULT; 1203 } 1204 return 0; 1205 } 1206 1207 1208 /** 1209 * copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate 1210 * @fpstate: The fpstate buffer to copy to 1211 * @kbuf: The UABI format buffer, if it comes from the kernel 1212 * @ubuf: The UABI format buffer, if it comes from userspace 1213 * @pkru: The location to write the PKRU value to 1214 * 1215 * Converts from the UABI format into the kernel internal hardware 1216 * dependent format. 1217 * 1218 * This function ultimately has three different callers with distinct PKRU 1219 * behavior. 1220 * 1. When called from sigreturn the PKRU register will be restored from 1221 * @fpstate via an XRSTOR. Correctly copying the UABI format buffer to 1222 * @fpstate is sufficient to cover this case, but the caller will also 1223 * pass a pointer to the thread_struct's pkru field in @pkru and updating 1224 * it is harmless. 1225 * 2. When called from ptrace the PKRU register will be restored from the 1226 * thread_struct's pkru field. A pointer to that is passed in @pkru. 1227 * The kernel will restore it manually, so the XRSTOR behavior that resets 1228 * the PKRU register to the hardware init value (0) if the corresponding 1229 * xfeatures bit is not set is emulated here. 1230 * 3. When called from KVM the PKRU register will be restored from the vcpu's 1231 * pkru field. A pointer to that is passed in @pkru. KVM hasn't used 1232 * XRSTOR and hasn't had the PKRU resetting behavior described above. To 1233 * preserve that KVM behavior, it passes NULL for @pkru if the xfeatures 1234 * bit is not set. 1235 */ 1236 static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf, 1237 const void __user *ubuf, u32 *pkru) 1238 { 1239 struct xregs_state *xsave = &fpstate->regs.xsave; 1240 unsigned int offset, size; 1241 struct xstate_header hdr; 1242 u64 mask; 1243 int i; 1244 1245 offset = offsetof(struct xregs_state, header); 1246 if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf)) 1247 return -EFAULT; 1248 1249 if (validate_user_xstate_header(&hdr, fpstate)) 1250 return -EINVAL; 1251 1252 /* Validate MXCSR when any of the related features is in use */ 1253 mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM; 1254 if (hdr.xfeatures & mask) { 1255 u32 mxcsr[2]; 1256 1257 offset = offsetof(struct fxregs_state, mxcsr); 1258 if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf)) 1259 return -EFAULT; 1260 1261 /* Reserved bits in MXCSR must be zero. */ 1262 if (mxcsr[0] & ~mxcsr_feature_mask) 1263 return -EINVAL; 1264 1265 /* SSE and YMM require MXCSR even when FP is not in use. */ 1266 if (!(hdr.xfeatures & XFEATURE_MASK_FP)) { 1267 xsave->i387.mxcsr = mxcsr[0]; 1268 xsave->i387.mxcsr_mask = mxcsr[1]; 1269 } 1270 } 1271 1272 for (i = 0; i < XFEATURE_MAX; i++) { 1273 mask = BIT_ULL(i); 1274 1275 if (hdr.xfeatures & mask) { 1276 void *dst = __raw_xsave_addr(xsave, i); 1277 1278 offset = xstate_offsets[i]; 1279 size = xstate_sizes[i]; 1280 1281 if (copy_from_buffer(dst, offset, size, kbuf, ubuf)) 1282 return -EFAULT; 1283 } 1284 } 1285 1286 if (hdr.xfeatures & XFEATURE_MASK_PKRU) { 1287 struct pkru_state *xpkru; 1288 1289 xpkru = __raw_xsave_addr(xsave, XFEATURE_PKRU); 1290 *pkru = xpkru->pkru; 1291 } else { 1292 /* 1293 * KVM may pass NULL here to indicate that it does not need 1294 * PKRU updated. 1295 */ 1296 if (pkru) 1297 *pkru = 0; 1298 } 1299 1300 /* 1301 * The state that came in from userspace was user-state only. 1302 * Mask all the user states out of 'xfeatures': 1303 */ 1304 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; 1305 1306 /* 1307 * Add back in the features that came in from userspace: 1308 */ 1309 xsave->header.xfeatures |= hdr.xfeatures; 1310 1311 return 0; 1312 } 1313 1314 /* 1315 * Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S] 1316 * format and copy to the target thread. Used by ptrace and KVM. 1317 */ 1318 int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru) 1319 { 1320 return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru); 1321 } 1322 1323 /* 1324 * Convert from a sigreturn standard-format user-space buffer to kernel 1325 * XSAVE[S] format and copy to the target thread. This is called from the 1326 * sigreturn() and rt_sigreturn() system calls. 1327 */ 1328 int copy_sigframe_from_user_to_xstate(struct task_struct *tsk, 1329 const void __user *ubuf) 1330 { 1331 return copy_uabi_to_xstate(tsk->thread.fpu.fpstate, NULL, ubuf, &tsk->thread.pkru); 1332 } 1333 1334 static bool validate_independent_components(u64 mask) 1335 { 1336 u64 xchk; 1337 1338 if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES))) 1339 return false; 1340 1341 xchk = ~xfeatures_mask_independent(); 1342 1343 if (WARN_ON_ONCE(!mask || mask & xchk)) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 /** 1350 * xsaves - Save selected components to a kernel xstate buffer 1351 * @xstate: Pointer to the buffer 1352 * @mask: Feature mask to select the components to save 1353 * 1354 * The @xstate buffer must be 64 byte aligned and correctly initialized as 1355 * XSAVES does not write the full xstate header. Before first use the 1356 * buffer should be zeroed otherwise a consecutive XRSTORS from that buffer 1357 * can #GP. 1358 * 1359 * The feature mask must be a subset of the independent features. 1360 */ 1361 void xsaves(struct xregs_state *xstate, u64 mask) 1362 { 1363 int err; 1364 1365 if (!validate_independent_components(mask)) 1366 return; 1367 1368 XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err); 1369 WARN_ON_ONCE(err); 1370 } 1371 1372 /** 1373 * xrstors - Restore selected components from a kernel xstate buffer 1374 * @xstate: Pointer to the buffer 1375 * @mask: Feature mask to select the components to restore 1376 * 1377 * The @xstate buffer must be 64 byte aligned and correctly initialized 1378 * otherwise XRSTORS from that buffer can #GP. 1379 * 1380 * Proper usage is to restore the state which was saved with 1381 * xsaves() into @xstate. 1382 * 1383 * The feature mask must be a subset of the independent features. 1384 */ 1385 void xrstors(struct xregs_state *xstate, u64 mask) 1386 { 1387 int err; 1388 1389 if (!validate_independent_components(mask)) 1390 return; 1391 1392 XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err); 1393 WARN_ON_ONCE(err); 1394 } 1395 1396 #if IS_ENABLED(CONFIG_KVM) 1397 void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature) 1398 { 1399 void *addr = get_xsave_addr(&fps->regs.xsave, xfeature); 1400 1401 if (addr) 1402 memset(addr, 0, xstate_sizes[xfeature]); 1403 } 1404 EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component); 1405 #endif 1406 1407 #ifdef CONFIG_X86_64 1408 1409 #ifdef CONFIG_X86_DEBUG_FPU 1410 /* 1411 * Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask 1412 * can safely operate on the @fpstate buffer. 1413 */ 1414 static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor) 1415 { 1416 u64 xfd = __this_cpu_read(xfd_state); 1417 1418 if (fpstate->xfd == xfd) 1419 return true; 1420 1421 /* 1422 * The XFD MSR does not match fpstate->xfd. That's invalid when 1423 * the passed in fpstate is current's fpstate. 1424 */ 1425 if (fpstate->xfd == current->thread.fpu.fpstate->xfd) 1426 return false; 1427 1428 /* 1429 * XRSTOR(S) from init_fpstate are always correct as it will just 1430 * bring all components into init state and not read from the 1431 * buffer. XSAVE(S) raises #PF after init. 1432 */ 1433 if (fpstate == &init_fpstate) 1434 return rstor; 1435 1436 /* 1437 * XSAVE(S): clone(), fpu_swap_kvm_fpu() 1438 * XRSTORS(S): fpu_swap_kvm_fpu() 1439 */ 1440 1441 /* 1442 * No XSAVE/XRSTOR instructions (except XSAVE itself) touch 1443 * the buffer area for XFD-disabled state components. 1444 */ 1445 mask &= ~xfd; 1446 1447 /* 1448 * Remove features which are valid in fpstate. They 1449 * have space allocated in fpstate. 1450 */ 1451 mask &= ~fpstate->xfeatures; 1452 1453 /* 1454 * Any remaining state components in 'mask' might be written 1455 * by XSAVE/XRSTOR. Fail validation it found. 1456 */ 1457 return !mask; 1458 } 1459 1460 void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor) 1461 { 1462 WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor)); 1463 } 1464 #endif /* CONFIG_X86_DEBUG_FPU */ 1465 1466 static int __init xfd_update_static_branch(void) 1467 { 1468 /* 1469 * If init_fpstate.xfd has bits set then dynamic features are 1470 * available and the dynamic sizing must be enabled. 1471 */ 1472 if (init_fpstate.xfd) 1473 static_branch_enable(&__fpu_state_size_dynamic); 1474 return 0; 1475 } 1476 arch_initcall(xfd_update_static_branch) 1477 1478 void fpstate_free(struct fpu *fpu) 1479 { 1480 if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate) 1481 vfree(fpu->fpstate); 1482 } 1483 1484 /** 1485 * fpstate_realloc - Reallocate struct fpstate for the requested new features 1486 * 1487 * @xfeatures: A bitmap of xstate features which extend the enabled features 1488 * of that task 1489 * @ksize: The required size for the kernel buffer 1490 * @usize: The required size for user space buffers 1491 * @guest_fpu: Pointer to a guest FPU container. NULL for host allocations 1492 * 1493 * Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer 1494 * terminates quickly, vfree()-induced IPIs may be a concern, but tasks 1495 * with large states are likely to live longer. 1496 * 1497 * Returns: 0 on success, -ENOMEM on allocation error. 1498 */ 1499 static int fpstate_realloc(u64 xfeatures, unsigned int ksize, 1500 unsigned int usize, struct fpu_guest *guest_fpu) 1501 { 1502 struct fpu *fpu = ¤t->thread.fpu; 1503 struct fpstate *curfps, *newfps = NULL; 1504 unsigned int fpsize; 1505 bool in_use; 1506 1507 fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64); 1508 1509 newfps = vzalloc(fpsize); 1510 if (!newfps) 1511 return -ENOMEM; 1512 newfps->size = ksize; 1513 newfps->user_size = usize; 1514 newfps->is_valloc = true; 1515 1516 /* 1517 * When a guest FPU is supplied, use @guest_fpu->fpstate 1518 * as reference independent whether it is in use or not. 1519 */ 1520 curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate; 1521 1522 /* Determine whether @curfps is the active fpstate */ 1523 in_use = fpu->fpstate == curfps; 1524 1525 if (guest_fpu) { 1526 newfps->is_guest = true; 1527 newfps->is_confidential = curfps->is_confidential; 1528 newfps->in_use = curfps->in_use; 1529 guest_fpu->xfeatures |= xfeatures; 1530 guest_fpu->uabi_size = usize; 1531 } 1532 1533 fpregs_lock(); 1534 /* 1535 * If @curfps is in use, ensure that the current state is in the 1536 * registers before swapping fpstate as that might invalidate it 1537 * due to layout changes. 1538 */ 1539 if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD)) 1540 fpregs_restore_userregs(); 1541 1542 newfps->xfeatures = curfps->xfeatures | xfeatures; 1543 1544 if (!guest_fpu) 1545 newfps->user_xfeatures = curfps->user_xfeatures | xfeatures; 1546 1547 newfps->xfd = curfps->xfd & ~xfeatures; 1548 1549 /* Do the final updates within the locked region */ 1550 xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures); 1551 1552 if (guest_fpu) { 1553 guest_fpu->fpstate = newfps; 1554 /* If curfps is active, update the FPU fpstate pointer */ 1555 if (in_use) 1556 fpu->fpstate = newfps; 1557 } else { 1558 fpu->fpstate = newfps; 1559 } 1560 1561 if (in_use) 1562 xfd_update_state(fpu->fpstate); 1563 fpregs_unlock(); 1564 1565 /* Only free valloc'ed state */ 1566 if (curfps && curfps->is_valloc) 1567 vfree(curfps); 1568 1569 return 0; 1570 } 1571 1572 static int validate_sigaltstack(unsigned int usize) 1573 { 1574 struct task_struct *thread, *leader = current->group_leader; 1575 unsigned long framesize = get_sigframe_size(); 1576 1577 lockdep_assert_held(¤t->sighand->siglock); 1578 1579 /* get_sigframe_size() is based on fpu_user_cfg.max_size */ 1580 framesize -= fpu_user_cfg.max_size; 1581 framesize += usize; 1582 for_each_thread(leader, thread) { 1583 if (thread->sas_ss_size && thread->sas_ss_size < framesize) 1584 return -ENOSPC; 1585 } 1586 return 0; 1587 } 1588 1589 static int __xstate_request_perm(u64 permitted, u64 requested, bool guest) 1590 { 1591 /* 1592 * This deliberately does not exclude !XSAVES as we still might 1593 * decide to optionally context switch XCR0 or talk the silicon 1594 * vendors into extending XFD for the pre AMX states, especially 1595 * AVX512. 1596 */ 1597 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); 1598 struct fpu *fpu = ¤t->group_leader->thread.fpu; 1599 struct fpu_state_perm *perm; 1600 unsigned int ksize, usize; 1601 u64 mask; 1602 int ret = 0; 1603 1604 /* Check whether fully enabled */ 1605 if ((permitted & requested) == requested) 1606 return 0; 1607 1608 /* Calculate the resulting kernel state size */ 1609 mask = permitted | requested; 1610 /* Take supervisor states into account on the host */ 1611 if (!guest) 1612 mask |= xfeatures_mask_supervisor(); 1613 ksize = xstate_calculate_size(mask, compacted); 1614 1615 /* Calculate the resulting user state size */ 1616 mask &= XFEATURE_MASK_USER_SUPPORTED; 1617 usize = xstate_calculate_size(mask, false); 1618 1619 if (!guest) { 1620 ret = validate_sigaltstack(usize); 1621 if (ret) 1622 return ret; 1623 } 1624 1625 perm = guest ? &fpu->guest_perm : &fpu->perm; 1626 /* Pairs with the READ_ONCE() in xstate_get_group_perm() */ 1627 WRITE_ONCE(perm->__state_perm, mask); 1628 /* Protected by sighand lock */ 1629 perm->__state_size = ksize; 1630 perm->__user_state_size = usize; 1631 return ret; 1632 } 1633 1634 /* 1635 * Permissions array to map facilities with more than one component 1636 */ 1637 static const u64 xstate_prctl_req[XFEATURE_MAX] = { 1638 [XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA, 1639 }; 1640 1641 static int xstate_request_perm(unsigned long idx, bool guest) 1642 { 1643 u64 permitted, requested; 1644 int ret; 1645 1646 if (idx >= XFEATURE_MAX) 1647 return -EINVAL; 1648 1649 /* 1650 * Look up the facility mask which can require more than 1651 * one xstate component. 1652 */ 1653 idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req)); 1654 requested = xstate_prctl_req[idx]; 1655 if (!requested) 1656 return -EOPNOTSUPP; 1657 1658 if ((fpu_user_cfg.max_features & requested) != requested) 1659 return -EOPNOTSUPP; 1660 1661 /* Lockless quick check */ 1662 permitted = xstate_get_group_perm(guest); 1663 if ((permitted & requested) == requested) 1664 return 0; 1665 1666 /* Protect against concurrent modifications */ 1667 spin_lock_irq(¤t->sighand->siglock); 1668 permitted = xstate_get_group_perm(guest); 1669 1670 /* First vCPU allocation locks the permissions. */ 1671 if (guest && (permitted & FPU_GUEST_PERM_LOCKED)) 1672 ret = -EBUSY; 1673 else 1674 ret = __xstate_request_perm(permitted, requested, guest); 1675 spin_unlock_irq(¤t->sighand->siglock); 1676 return ret; 1677 } 1678 1679 int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu) 1680 { 1681 u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC; 1682 struct fpu_state_perm *perm; 1683 unsigned int ksize, usize; 1684 struct fpu *fpu; 1685 1686 if (!xfd_event) { 1687 if (!guest_fpu) 1688 pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err); 1689 return 0; 1690 } 1691 1692 /* Protect against concurrent modifications */ 1693 spin_lock_irq(¤t->sighand->siglock); 1694 1695 /* If not permitted let it die */ 1696 if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) { 1697 spin_unlock_irq(¤t->sighand->siglock); 1698 return -EPERM; 1699 } 1700 1701 fpu = ¤t->group_leader->thread.fpu; 1702 perm = guest_fpu ? &fpu->guest_perm : &fpu->perm; 1703 ksize = perm->__state_size; 1704 usize = perm->__user_state_size; 1705 1706 /* 1707 * The feature is permitted. State size is sufficient. Dropping 1708 * the lock is safe here even if more features are added from 1709 * another task, the retrieved buffer sizes are valid for the 1710 * currently requested feature(s). 1711 */ 1712 spin_unlock_irq(¤t->sighand->siglock); 1713 1714 /* 1715 * Try to allocate a new fpstate. If that fails there is no way 1716 * out. 1717 */ 1718 if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu)) 1719 return -EFAULT; 1720 return 0; 1721 } 1722 1723 int xfd_enable_feature(u64 xfd_err) 1724 { 1725 return __xfd_enable_feature(xfd_err, NULL); 1726 } 1727 1728 #else /* CONFIG_X86_64 */ 1729 static inline int xstate_request_perm(unsigned long idx, bool guest) 1730 { 1731 return -EPERM; 1732 } 1733 #endif /* !CONFIG_X86_64 */ 1734 1735 u64 xstate_get_guest_group_perm(void) 1736 { 1737 return xstate_get_group_perm(true); 1738 } 1739 EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm); 1740 1741 /** 1742 * fpu_xstate_prctl - xstate permission operations 1743 * @tsk: Redundant pointer to current 1744 * @option: A subfunction of arch_prctl() 1745 * @arg2: option argument 1746 * Return: 0 if successful; otherwise, an error code 1747 * 1748 * Option arguments: 1749 * 1750 * ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info 1751 * ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info 1752 * ARCH_REQ_XCOMP_PERM: Facility number requested 1753 * 1754 * For facilities which require more than one XSTATE component, the request 1755 * must be the highest state component number related to that facility, 1756 * e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and 1757 * XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18). 1758 */ 1759 long fpu_xstate_prctl(int option, unsigned long arg2) 1760 { 1761 u64 __user *uptr = (u64 __user *)arg2; 1762 u64 permitted, supported; 1763 unsigned long idx = arg2; 1764 bool guest = false; 1765 1766 switch (option) { 1767 case ARCH_GET_XCOMP_SUPP: 1768 supported = fpu_user_cfg.max_features | fpu_user_cfg.legacy_features; 1769 return put_user(supported, uptr); 1770 1771 case ARCH_GET_XCOMP_PERM: 1772 /* 1773 * Lockless snapshot as it can also change right after the 1774 * dropping the lock. 1775 */ 1776 permitted = xstate_get_host_group_perm(); 1777 permitted &= XFEATURE_MASK_USER_SUPPORTED; 1778 return put_user(permitted, uptr); 1779 1780 case ARCH_GET_XCOMP_GUEST_PERM: 1781 permitted = xstate_get_guest_group_perm(); 1782 permitted &= XFEATURE_MASK_USER_SUPPORTED; 1783 return put_user(permitted, uptr); 1784 1785 case ARCH_REQ_XCOMP_GUEST_PERM: 1786 guest = true; 1787 fallthrough; 1788 1789 case ARCH_REQ_XCOMP_PERM: 1790 if (!IS_ENABLED(CONFIG_X86_64)) 1791 return -EOPNOTSUPP; 1792 1793 return xstate_request_perm(idx, guest); 1794 1795 default: 1796 return -EINVAL; 1797 } 1798 } 1799 1800 #ifdef CONFIG_PROC_PID_ARCH_STATUS 1801 /* 1802 * Report the amount of time elapsed in millisecond since last AVX512 1803 * use in the task. 1804 */ 1805 static void avx512_status(struct seq_file *m, struct task_struct *task) 1806 { 1807 unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp); 1808 long delta; 1809 1810 if (!timestamp) { 1811 /* 1812 * Report -1 if no AVX512 usage 1813 */ 1814 delta = -1; 1815 } else { 1816 delta = (long)(jiffies - timestamp); 1817 /* 1818 * Cap to LONG_MAX if time difference > LONG_MAX 1819 */ 1820 if (delta < 0) 1821 delta = LONG_MAX; 1822 delta = jiffies_to_msecs(delta); 1823 } 1824 1825 seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta); 1826 seq_putc(m, '\n'); 1827 } 1828 1829 /* 1830 * Report architecture specific information 1831 */ 1832 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, 1833 struct pid *pid, struct task_struct *task) 1834 { 1835 /* 1836 * Report AVX512 state if the processor and build option supported. 1837 */ 1838 if (cpu_feature_enabled(X86_FEATURE_AVX512F)) 1839 avx512_status(m, task); 1840 1841 return 0; 1842 } 1843 #endif /* CONFIG_PROC_PID_ARCH_STATUS */ 1844