xref: /linux/arch/x86/kernel/fpu/init.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * x86 FPU boot time init code:
3  */
4 #include <asm/fpu/internal.h>
5 #include <asm/tlbflush.h>
6 #include <asm/setup.h>
7 #include <asm/cmdline.h>
8 
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 
12 /*
13  * Initialize the TS bit in CR0 according to the style of context-switches
14  * we are using:
15  */
16 static void fpu__init_cpu_ctx_switch(void)
17 {
18 	if (!boot_cpu_has(X86_FEATURE_EAGER_FPU))
19 		stts();
20 	else
21 		clts();
22 }
23 
24 /*
25  * Initialize the registers found in all CPUs, CR0 and CR4:
26  */
27 static void fpu__init_cpu_generic(void)
28 {
29 	unsigned long cr0;
30 	unsigned long cr4_mask = 0;
31 
32 	if (boot_cpu_has(X86_FEATURE_FXSR))
33 		cr4_mask |= X86_CR4_OSFXSR;
34 	if (boot_cpu_has(X86_FEATURE_XMM))
35 		cr4_mask |= X86_CR4_OSXMMEXCPT;
36 	if (cr4_mask)
37 		cr4_set_bits(cr4_mask);
38 
39 	cr0 = read_cr0();
40 	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
41 	if (!boot_cpu_has(X86_FEATURE_FPU))
42 		cr0 |= X86_CR0_EM;
43 	write_cr0(cr0);
44 
45 	/* Flush out any pending x87 state: */
46 #ifdef CONFIG_MATH_EMULATION
47 	if (!boot_cpu_has(X86_FEATURE_FPU))
48 		fpstate_init_soft(&current->thread.fpu.state.soft);
49 	else
50 #endif
51 		asm volatile ("fninit");
52 }
53 
54 /*
55  * Enable all supported FPU features. Called when a CPU is brought online:
56  */
57 void fpu__init_cpu(void)
58 {
59 	fpu__init_cpu_generic();
60 	fpu__init_cpu_xstate();
61 	fpu__init_cpu_ctx_switch();
62 }
63 
64 /*
65  * The earliest FPU detection code.
66  *
67  * Set the X86_FEATURE_FPU CPU-capability bit based on
68  * trying to execute an actual sequence of FPU instructions:
69  */
70 static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
71 {
72 	unsigned long cr0;
73 	u16 fsw, fcw;
74 
75 	fsw = fcw = 0xffff;
76 
77 	cr0 = read_cr0();
78 	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
79 	write_cr0(cr0);
80 
81 	if (!test_bit(X86_FEATURE_FPU, (unsigned long *)cpu_caps_cleared)) {
82 		asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
83 			     : "+m" (fsw), "+m" (fcw));
84 
85 		if (fsw == 0 && (fcw & 0x103f) == 0x003f)
86 			set_cpu_cap(c, X86_FEATURE_FPU);
87 		else
88 			clear_cpu_cap(c, X86_FEATURE_FPU);
89 	}
90 
91 #ifndef CONFIG_MATH_EMULATION
92 	if (!boot_cpu_has(X86_FEATURE_FPU)) {
93 		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
94 		for (;;)
95 			asm volatile("hlt");
96 	}
97 #endif
98 }
99 
100 /*
101  * Boot time FPU feature detection code:
102  */
103 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
104 
105 static void __init fpu__init_system_mxcsr(void)
106 {
107 	unsigned int mask = 0;
108 
109 	if (boot_cpu_has(X86_FEATURE_FXSR)) {
110 		/* Static because GCC does not get 16-byte stack alignment right: */
111 		static struct fxregs_state fxregs __initdata;
112 
113 		asm volatile("fxsave %0" : "+m" (fxregs));
114 
115 		mask = fxregs.mxcsr_mask;
116 
117 		/*
118 		 * If zero then use the default features mask,
119 		 * which has all features set, except the
120 		 * denormals-are-zero feature bit:
121 		 */
122 		if (mask == 0)
123 			mask = 0x0000ffbf;
124 	}
125 	mxcsr_feature_mask &= mask;
126 }
127 
128 /*
129  * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
130  */
131 static void __init fpu__init_system_generic(void)
132 {
133 	/*
134 	 * Set up the legacy init FPU context. (xstate init might overwrite this
135 	 * with a more modern format, if the CPU supports it.)
136 	 */
137 	fpstate_init(&init_fpstate);
138 
139 	fpu__init_system_mxcsr();
140 }
141 
142 /*
143  * Size of the FPU context state. All tasks in the system use the
144  * same context size, regardless of what portion they use.
145  * This is inherent to the XSAVE architecture which puts all state
146  * components into a single, continuous memory block:
147  */
148 unsigned int xstate_size;
149 EXPORT_SYMBOL_GPL(xstate_size);
150 
151 /* Get alignment of the TYPE. */
152 #define TYPE_ALIGN(TYPE) offsetof(struct { char x; TYPE test; }, test)
153 
154 /*
155  * Enforce that 'MEMBER' is the last field of 'TYPE'.
156  *
157  * Align the computed size with alignment of the TYPE,
158  * because that's how C aligns structs.
159  */
160 #define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
161 	BUILD_BUG_ON(sizeof(TYPE) != ALIGN(offsetofend(TYPE, MEMBER), \
162 					   TYPE_ALIGN(TYPE)))
163 
164 /*
165  * We append the 'struct fpu' to the task_struct:
166  */
167 static void __init fpu__init_task_struct_size(void)
168 {
169 	int task_size = sizeof(struct task_struct);
170 
171 	/*
172 	 * Subtract off the static size of the register state.
173 	 * It potentially has a bunch of padding.
174 	 */
175 	task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);
176 
177 	/*
178 	 * Add back the dynamically-calculated register state
179 	 * size.
180 	 */
181 	task_size += xstate_size;
182 
183 	/*
184 	 * We dynamically size 'struct fpu', so we require that
185 	 * it be at the end of 'thread_struct' and that
186 	 * 'thread_struct' be at the end of 'task_struct'.  If
187 	 * you hit a compile error here, check the structure to
188 	 * see if something got added to the end.
189 	 */
190 	CHECK_MEMBER_AT_END_OF(struct fpu, state);
191 	CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
192 	CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
193 
194 	arch_task_struct_size = task_size;
195 }
196 
197 /*
198  * Set up the xstate_size based on the legacy FPU context size.
199  *
200  * We set this up first, and later it will be overwritten by
201  * fpu__init_system_xstate() if the CPU knows about xstates.
202  */
203 static void __init fpu__init_system_xstate_size_legacy(void)
204 {
205 	static int on_boot_cpu __initdata = 1;
206 
207 	WARN_ON_FPU(!on_boot_cpu);
208 	on_boot_cpu = 0;
209 
210 	/*
211 	 * Note that xstate_size might be overwriten later during
212 	 * fpu__init_system_xstate().
213 	 */
214 
215 	if (!boot_cpu_has(X86_FEATURE_FPU)) {
216 		/*
217 		 * Disable xsave as we do not support it if i387
218 		 * emulation is enabled.
219 		 */
220 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
221 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
222 		xstate_size = sizeof(struct swregs_state);
223 	} else {
224 		if (boot_cpu_has(X86_FEATURE_FXSR))
225 			xstate_size = sizeof(struct fxregs_state);
226 		else
227 			xstate_size = sizeof(struct fregs_state);
228 	}
229 	/*
230 	 * Quirk: we don't yet handle the XSAVES* instructions
231 	 * correctly, as we don't correctly convert between
232 	 * standard and compacted format when interfacing
233 	 * with user-space - so disable it for now.
234 	 *
235 	 * The difference is small: with recent CPUs the
236 	 * compacted format is only marginally smaller than
237 	 * the standard FPU state format.
238 	 *
239 	 * ( This is easy to backport while we are fixing
240 	 *   XSAVES* support. )
241 	 */
242 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
243 }
244 
245 /*
246  * FPU context switching strategies:
247  *
248  * Against popular belief, we don't do lazy FPU saves, due to the
249  * task migration complications it brings on SMP - we only do
250  * lazy FPU restores.
251  *
252  * 'lazy' is the traditional strategy, which is based on setting
253  * CR0::TS to 1 during context-switch (instead of doing a full
254  * restore of the FPU state), which causes the first FPU instruction
255  * after the context switch (whenever it is executed) to fault - at
256  * which point we lazily restore the FPU state into FPU registers.
257  *
258  * Tasks are of course under no obligation to execute FPU instructions,
259  * so it can easily happen that another context-switch occurs without
260  * a single FPU instruction being executed. If we eventually switch
261  * back to the original task (that still owns the FPU) then we have
262  * not only saved the restores along the way, but we also have the
263  * FPU ready to be used for the original task.
264  *
265  * 'lazy' is deprecated because it's almost never a performance win
266  * and it's much more complicated than 'eager'.
267  *
268  * 'eager' switching is by default on all CPUs, there we switch the FPU
269  * state during every context switch, regardless of whether the task
270  * has used FPU instructions in that time slice or not. This is done
271  * because modern FPU context saving instructions are able to optimize
272  * state saving and restoration in hardware: they can detect both
273  * unused and untouched FPU state and optimize accordingly.
274  *
275  * [ Note that even in 'lazy' mode we might optimize context switches
276  *   to use 'eager' restores, if we detect that a task is using the FPU
277  *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
278  */
279 static enum { ENABLE, DISABLE } eagerfpu = ENABLE;
280 
281 /*
282  * Find supported xfeatures based on cpu features and command-line input.
283  * This must be called after fpu__init_parse_early_param() is called and
284  * xfeatures_mask is enumerated.
285  */
286 u64 __init fpu__get_supported_xfeatures_mask(void)
287 {
288 	/* Support all xfeatures known to us */
289 	if (eagerfpu != DISABLE)
290 		return XCNTXT_MASK;
291 
292 	/* Warning of xfeatures being disabled for no eagerfpu mode */
293 	if (xfeatures_mask & XFEATURE_MASK_EAGER) {
294 		pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
295 			xfeatures_mask & XFEATURE_MASK_EAGER);
296 	}
297 
298 	/* Return a mask that masks out all features requiring eagerfpu mode */
299 	return ~XFEATURE_MASK_EAGER;
300 }
301 
302 /*
303  * Disable features dependent on eagerfpu.
304  */
305 static void __init fpu__clear_eager_fpu_features(void)
306 {
307 	setup_clear_cpu_cap(X86_FEATURE_MPX);
308 }
309 
310 /*
311  * Pick the FPU context switching strategy:
312  *
313  * When eagerfpu is AUTO or ENABLE, we ensure it is ENABLE if either of
314  * the following is true:
315  *
316  * (1) the cpu has xsaveopt, as it has the optimization and doing eager
317  *     FPU switching has a relatively low cost compared to a plain xsave;
318  * (2) the cpu has xsave features (e.g. MPX) that depend on eager FPU
319  *     switching. Should the kernel boot with noxsaveopt, we support MPX
320  *     with eager FPU switching at a higher cost.
321  */
322 static void __init fpu__init_system_ctx_switch(void)
323 {
324 	static bool on_boot_cpu __initdata = 1;
325 
326 	WARN_ON_FPU(!on_boot_cpu);
327 	on_boot_cpu = 0;
328 
329 	WARN_ON_FPU(current->thread.fpu.fpstate_active);
330 	current_thread_info()->status = 0;
331 
332 	if (boot_cpu_has(X86_FEATURE_XSAVEOPT) && eagerfpu != DISABLE)
333 		eagerfpu = ENABLE;
334 
335 	if (xfeatures_mask & XFEATURE_MASK_EAGER)
336 		eagerfpu = ENABLE;
337 
338 	if (eagerfpu == ENABLE)
339 		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
340 
341 	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
342 }
343 
344 /*
345  * We parse fpu parameters early because fpu__init_system() is executed
346  * before parse_early_param().
347  */
348 static void __init fpu__init_parse_early_param(void)
349 {
350 	if (cmdline_find_option_bool(boot_command_line, "eagerfpu=off")) {
351 		eagerfpu = DISABLE;
352 		fpu__clear_eager_fpu_features();
353 	}
354 
355 	if (cmdline_find_option_bool(boot_command_line, "no387"))
356 		setup_clear_cpu_cap(X86_FEATURE_FPU);
357 
358 	if (cmdline_find_option_bool(boot_command_line, "nofxsr")) {
359 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
360 		setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
361 		setup_clear_cpu_cap(X86_FEATURE_XMM);
362 	}
363 
364 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
365 		fpu__xstate_clear_all_cpu_caps();
366 
367 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
368 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
369 
370 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
371 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
372 }
373 
374 /*
375  * Called on the boot CPU once per system bootup, to set up the initial
376  * FPU state that is later cloned into all processes:
377  */
378 void __init fpu__init_system(struct cpuinfo_x86 *c)
379 {
380 	fpu__init_parse_early_param();
381 	fpu__init_system_early_generic(c);
382 
383 	/*
384 	 * The FPU has to be operational for some of the
385 	 * later FPU init activities:
386 	 */
387 	fpu__init_cpu();
388 
389 	/*
390 	 * But don't leave CR0::TS set yet, as some of the FPU setup
391 	 * methods depend on being able to execute FPU instructions
392 	 * that will fault on a set TS, such as the FXSAVE in
393 	 * fpu__init_system_mxcsr().
394 	 */
395 	clts();
396 
397 	fpu__init_system_generic();
398 	fpu__init_system_xstate_size_legacy();
399 	fpu__init_system_xstate();
400 	fpu__init_task_struct_size();
401 
402 	fpu__init_system_ctx_switch();
403 }
404